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General experimental methods
1
 

“UV-vis spectra were recorded on a SHIMADZU UV-2450 spectrophotometer using a quartz cuvette 

(path length, 1 cm). The fluorescence spectra were obtained with a SHIMADZU 5301 PC 

spectrofluorimeter. TEM images were recorded in Transmission Electron Microscope (TEM-JEOL 

2100F). X-ray diffraction patterns were collected using Rigaku Xpert Pro-X-ray diffractometer 

provided with CuKα radiation (1.541 A⁰) in the 2 range of 20-80⁰C at a step size of 0.02⁰. The 

dynamic light scattering (DLS) data were recorded with MALVERN Instruments (Nano-ZS). Infrared 

spectra were obtained on Varian 660-IR spectrometer using KBr pellets.” X-ray photoelectron spectra 

(XPS) were acquired in PHI Versa Prob 5000. The amount of Ag and Fe in catalyst was determined by 

atomic absorption spectrophotometer (GBC Avant Ver 1.31). Sample preparation was done by reflux 

assisted digestion of 2 mg of catalyst with concentrated HNO3. The resulting solution was cooled, 

centrifuged and filtered. The filtrate was diluted to 10 times with deionized water. The surface area 

studies were carried out on a Brunauer-Emmett-Teller (BET) surface area analyzer. The samples were 

degassed at 120°C for 6h in vacuum before taking the measurements. Cyclic Voltammetry studies were 

performed on CH Instruments CH1660D in presence of supporting electrolyte 0.1M 

tetrabutylammonium perchlorate (Bu4NClO4), Ag/AgCl as reference electrode, platinum wire as 

counter electrode and glass carbon electrode as working electrode. “TEM and HR-TEM images were 

recorded using HR-TEM-JEM 2100 microscope.” Raman spectrum was obtained through Raneshaw in 

via reflex micro Raman microscope. “To record FT-IR spectra, VARIAN 660 IR Spectrometer was 

used.” Thermogravimetric analysis (TGA) was carried out on EXSTAR TG/DTA 3600 at a heating rate 

of 100°C/min under nitrogen atmosphere. VSM measurements were obtained on PAR vibrating sample 

magnetometer. “Photocatalytic experiments were carried out by using the 100 W tungsten filament 

bulbs as irradiation source.” Elemental analysis (C, H, and S) was performed on a Flash EA 1112 
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CHNS analyzer (Thermo Electron Corp.). 
1
H NMR was recorded on a JEOL-FT NMR-AL 400 MHz 

and Bruker (Avance II) FT-NMR 500 MHz spectrophotometer using CDCl3 as solvent and 

tetramethylsilane (Si(CH3)4) for internal standards. Further, NMR data was expressed as follows: 

chemical shifts in ppm (δ) and coupling constants in Hz (J). Multiplicites of signals were quoted as 

follows: s = singlet, d = doublet, dd = doublet of doublet, t= triplet, dt = doublet of triplet and m = 

multiplet. 

Quantum Yield Calculations: 

To find out the fluorescence quantum yield of compound 3, solution of diphenylanthracene (Φfr = 0.90 

in cyclohexane) was used as reference at an excitation wavelength (λex) of 322 nm. Further, the 

following equation was used to determine the quantum yield: 

 

Φfs and Φfr signify the fluorescence quantum yields of sample and reference, respectively. Ls, As, Ds 

and Ns are the length of the absorption cells, absorbance, respective areas of emission and refractive 

index of sample, respectively. Lr, Ar, Dr and Nr are the length of the absorption cells, absorbance, 

respective areas of emission and refractive index of reference, respectively. 

EXPERIMENTAL SECTION 

 

Synthetic scheme of compound 3: 

 

 

 

To a mixture of compounds 1 (0.30 g, 0.64 mmol) and 2 (0.17 g, 1.35 mmol) in 20 mL of 1, 4-dioxane 

was added 1 mL of aqueous solution of K2CO3 (0.71 g, 5.15 mmol) followed by addition of 

[Pd(PPh)3]4 (0.16 g, 0.14 mmol) under N2 atmosphere (Scheme S1). The reaction mixture was refluxed 

fs   = fr    Χ     1-10-ArLr
    Χ    Ns

2       
Χ    Ds

 

                                  1-10-ArLr       Nr
2         Dr 

 

Scheme S1 Synthesis of pentacenequinone compound 3 
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for 24 h. After completion of the reaction, the excess solvent was removed under reduced pressure and 

the residue so obtained was dissolved in DCM. The organic layer was washed with water, dried over 

anhydrous Na2SO4, and removed under reduced pressure to give a crude product which was purified by 

column chromatography using chloroform/hexane (7:3) as an eluent to afford compound 3 as yellow 

solid (0.18 g in 60% yield); mp: >280°C. 
1
H NMR (500 MHz, CDCl3) δ = 8.98 (s, 2H), 8.95 (s, 2H), 

8.32 (s, 2H), 8.17 (d, J = 8.5 Hz, 2H), 7.99 (d, J = 8.5 Hz, 2H), 7.74-7.71 (m, 2H), 7.61-7.58 (m, 2H), 

7.53-7.50 (m, 2H) ppm;  m/z = 473.2387 [M + H]
+
; Elemental analysis: Calcd. For C30H16O2S2: C 

76.25; H 3.41; S 13.57. Found: C 76.23; H 3.40; S 13.54. IR (KBr): νmax (in cm
−1

) = 3092 (C-Ha 

stretching), 1685(s), 1612(s), 1577(s) and 890 (C-Ha out of plane bending). The 
13

C NMR spectrum of 

compound 3 could not be recorded due to its poor solubility. 

Synthetic scheme of compound 5: 

 

 

 

 

To a mixture of compounds 1a (0.30 g, 0.78 mmol) and 2a (0.11 g, 0.85 mmol) in 20 mL of 1,4-

dioxane was added 1 mL of aqueous solution of K2CO3 (0.86 g, 6.2 mmol) followed by addition of 

[Pd(PPh)3]4 (0.27 g, 0.23 mmol) under nitrogen atmosphere (Scheme S2). The reaction mixture was 

refluxed for 24 h under N2 atmosphere. After completion of the reaction, the excess solvent was 

removed under reduced pressure. The residue so obtained was dissolved in DCM. The organic layer 

was washed with water, dried over anhydrous Na2SO4, and removed under reduced pressure to give a 

crude product which was purified by column chromatography using chloroform/hexane (4:6) as an 

eluent to afford compound 5 as yellow solid (0.19 g in 63% yield); mp: >280°C. 
1
H NMR (500 MHz, 

Scheme S2 Synthesis of pentacenequinone compound 5 
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CDCl3) δ = 8.96 (s, 2H), 8.95 (s, 1H), 8.93 (s, 1H), 8.32 (s, 1H), 8.15-8.13 (m, 3H), 7.99-7.97 (m, 1H), 

7.73-7.71 (m, 2H), 7.57-7.56 (m, 1H), 7.44-7.43 (m, 1H), 7.20-7.18 (m, 1H) ppm; m/z = 413.2716 [M + 

Na]
+
; Elemental analysis: Calcd. For C26H14O2S: C 79.98; H 3.61; S 8.21. Found: C 79.96; H 3.59; S 

8.19. The 
13

C NMR spectrum of compound 5 could not be recorded due to its poor solubility. 

Synthesis of silver nanoparticles (AgNPs):  

The AgNPs were prepared by reducing the AgNO3 utilizing assemblies of compound 3. Assemblies of 

compound 3 were prepared by dissolving compound 3 (10 μM) in H2O-THF (1:1) solvent mixture. To 

generate AgNPs, 0.1 M AgNO3 (300 μL) solution was added to 3 mL of assemblies of compound 3 

(1Χ10
-4

 M). The resulting reaction mixture was stirred at room temperature to obtain greyish AgNPs. 

These AgNPs were washed with THF and water in order to remove unreacted AgNO3 and were utilized 

as such in the fabrication of polythiophene 4 supported Ag@Fe3O4 NCs. The concentration of AgNPs 

solution was found to be 0.009 M as determined by AAS. 

Generation of polythiophene 4 supported Ag@Fe3O4 NCs: 

(a) Polythiophene 4 supported Ag-Fe3O4 nanocomposites (1:1) 

0.3 mL of AgNPs (0.009 M, dispersed in water) and 0.06 mL of FeCl3 (0.1 M) solution were 

simultaneously added to 6 mL of assemblies of compound 3 (10
-4

 M) in H2O-THF (1:1) solvent 

mixture with vigorous stirring. During stirring, color of solution was changed from light brown to 

blackish brown indicating the generation of polythiophene 4 supported Ag-Fe3O4 nanocomposites. 

Black colored precipitates were observed after stirring the reaction mixture continuously for 1h at room 

temperature. The resulting reaction mixture was sonicated to obtain homogeneous solution. 

(b) Polythiophene 4 supported Ag@Fe3O4 NCs (1:2) 

For preparation of polythiophene 4 supported Ag@Fe3O4 NCs (1:2), 0.3 mL of AgNPs solution (0.009 

M), 120 µL of FeCl3 solution (0.1 M) and 9.0 mL of assemblies of compound 3 (10
-4

 M) in H2O-THF 
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(1:1) solution were mixed and stirred vigorously at room temperature for 1h. 5.0 mL of this solution 

was used as such for carrying out dehydrogenative coupling reactions. 

(c) Polythiophene 4 supported Ag@Fe3O4 NPs (2:1) 

For preparation of polythiophene 4 supported Ag@Fe3O4 NPs (1:2), 0.6 mL of AgNPs solution (0.009 

M), 60 µL of FeCl3 solution (0.1 M) and 9.0 mL of assemblies of compound 3 (10
-4

 M) in H2O-THF 

(1:1) solution were mixed. The resulting solution was vigorously stirred for 1h at room temperature. 

General experimental procedure for dehydrogenative coupling reactions utilizing polythiophene 

4 supported Ag@Fe3O4 NCs (1:2) as photocatalyst: 

In a 50 ml round-bottom flask (RBF), benzophenone phenylhydrazone, 6a (1.0 equiv., 0.1 g) was 

dissolved in 10 mL of toluene-H2O (1:1) solvent mixture in presence of in situ generated polythiophene 

4 supported Ag@Fe3O4 nanoclusters (0.01 mmol). After degassing the reaction mixture under vaccum 

for 2-3 min, the RBF was put in a water bath (to prevent heating effect) on magnetic stirrer. The 

reaction mixture was irradiated with a 100 W tungsten filament bulb (0.4 W/cm
2
) to provide visible 

light for 8 h. After completion of the reaction, solvent was evaporated under reduced pressure and the 

resulting residue was dissolved in DCM. The organic layer was washed with water, dried over 

anhydrous Na2SO4 and concentrated under reduced pressure to yield the crude product which was 

recrystallized from ethanol and hexane to obtain pure product, 7a. The aqueous layer containing 

photocatalyst was retrieved magnetically and was reused for carrying out further dehydrogenative 

coupling reactions. 

For preparation of indazole derivatives, reactants (6a-6j) were synthesized according to previously 

reported methods
2
. 
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Journal Nanoparticles Preparation 

method 

Chemicals used External 

Reducing

/oxidising 

agent/Sur

factant/ 

Base 

Temp  

(
o
C) 

Time 

 

Application Shape  Size Re-

cyclability 

of catalyst 

Present work Polythiophene 

supported 

Ag@Fe3O4 

magnetic 

nanoclusters 

Wet 

Chemical 

method 

Pentacenequinone 

compound 3, 

AgNO3, 

FeCl3.6H2O 

No Room 

tempe

rature 

4 h C-N bond 

formation 

via 

Dehydrogen

ative 

coupling 

Spherical 

shaped 

34 

nm 

    Yes 

 (8 times) 

ACS Appl. Mater. 

Interfaces  

2017, 9, 24433 

Ag@Fe3O4 

core-shell NPs 

Solvo 

thermal 

method 

Fe(NO3)3.9H2O, 

AgNO3, 

NaAc, PDDA, 

ethylene glycol 

Yes 210ºC 4 h - Spherical 

shaped 

141.4

-

181.2 

nm 

- 

New J. Chem., 

2017, 41, 10155 

Ag@ Fe3O4- 

PEI NPs 

 

Solvo 

thermal 

method 

Fe(NO3)3.9H2O, 

AgNO3, 

NaAc, PVP 

Yes 30-

200ºC 

8h Bacterial 

adsorbent 

Spherical 

shaped 

175 

nm 

Yes  

(6 times) 

ACS Sustainable 

Chem. Eng.  

2016, 4, 965 

Ag-Fe3O4 

nanoparticles 

Coprecipitati

on route 

FeCl3·6H2O,  

FeSO4.7H2O, 

NaOH, 

CMC-stabilized 

Ag NPs  

Yes 100 ºC 1h Reduction of 

aldehydes 

using 40 bar 

H2 

Spherical 

shaped 

17-

18 

nm 

Yes 

(6 times) 

ACS Appl. Mater. 

Interfaces 

2016, 8 , 25162 

Ag-Fe3O4 

Core- Shell 

Solvo 

thermal 

method 

Fe(NO3)3.9H2O, 

AgNO3, 

NaOAc 

Yes 200 ºC  24h  

- 

Nano 

flowers 

120/ 

210 

nm 

- 

ACS Appl. Mater. 

Interfaces  

2015, 7, 16027 

Ag-Fe3O4 

Core- Shell 

Coprecipitati

on route 

FeCl3·6H2O, 

FeCl2·4H2O, 

NaOH, PVP, 

AgNWs 

Yes 70 ºC 1h  

- 

Fe3O4 

nanosphere

s on 

AgNWs. 

90-

143 

nm 

 

- 

RSC Adv. 

2015, 5, 102610 

Ag:Fe3O4 

nanocomposite 

Solvo 

thermal 

method 

Silver oleate, Iron 

oleate, 

octadecylene, 

Oleic acid 

Yes 150 ºC 5h Detection of 

pesticides in 

water 

Spherical 50 

nm 
 

- 

Scientific Reports 

2014, 4, 6839 

Ag@Fe3O4 

core-shell 

nanoparticles 

Thermal 

decompositi

on 

Fe(acac)3,  1,2-

hexadecanediol,  

oleylamine, oleic 

acid, AgNO3  

Yes 200-

260 ºC 

2h  

- 

Brick 

shaped 

13 

nm 
 

- 

Nanoscale  

2014, 6, 12618 

Fe3O4-Ag 

nanoparticles 

Solvo 

thermal 

method 

AgNO3, Oleic acid 

sodium oleate, 

Polyacrylate 

stabilized Fe3O4 

Yes 200 ºC  8h Detection of 

thiram in 

water 

Dumb 

bell shaped 

500 

nm 
 

       - 

Green Chem. 

2014, 16, 2835 

Ag-

Fe3O4@chitin 

nanocomposite 

Solvo 

thermal 

method 

FeCl2·4H2O, 

NaOH, AgNO3, 

Chitin 

Yes 90 ºC 10 h Reduction of 

4-

nitrophenol 

to 4-

aminophenol 

using 

NaBH4 

Spherical 10-

40 

nm 

Yes  

(10 times) 

J. Phys. Chem. C 

2014, 118, 13168 

Ag-Fe3O4 Thermal 

decompositi

on 

Ag seeds, 

Fe(acac)3, 

oleylamine, 

oleic acid  

Yes 300 ºC  40 

min 

 

- 

Nano 

flowers 

7-8 

nm 
 

- 

J. Mater. Chem. C 

2014, 2, 9964 

 

 

 

Ag-Fe3O4 Coprecipitati

on route 

FeCl3·6H2O, 

FeCl2·4H2O, 

NH4OH, PAA, 

AgNO3, Sodium 

citrate, NaBH4 

Yes RT 2-3 h Detection of 

dopamine 

Spherical 30 

nm 
 

- 

 

 

Table S1. Comparison of wet chemical method in present manuscript over other reported procedure in the 

literature for the preparation of Ag@Fe3O4 nanocomposites. 
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 Previous work on preparation of Ag@Fe3O4 nanocomposites
3-5

 

(b)   Fe(NO3)3.9H2O + AgNO3 
PVP, NaAc, Ethylene glycol 

200ºC, 24h 

 Ag@Fe3O4 nanocomposites 

Size =175 nm  

 Prolonged reaction time 

 High temperature 

 Catalytic applications 

not much explored 

Solution of AgNPs 

(d) Assemblies of compound 3 + AgNO3 
 3h 

FeCl3.6H2O 

Assemblies of 

compound 3 

75 min. 

 
Polythiophene 4 

nanosheet 

   Ag 
   Fe3O4 NCs 

Polythiophene supported 

Ag@Fe3O4 nanoclusters 

Size = 34 nm 

 Room temperature 

 Mixed aqueous  media 

 Highly efficient 

recyclable, photocatalyst 

in C-H to C-N bond 

transformation. 

Recent approach 

Scheme S3 Scheme showing comparison of generation of Ag@Fe3O4 nanocomposites with previously 

reported methods. 

(a) Fe(NO3)3.9H2O + AgNO3 
NaAc, Ethylene glycol, Citric acid 

200ºC, 6h 

 Ag@Fe3O4 nanocomposites 

Size =141.4-181.2 nm 

(c) Fe(NO3)3.9H2O + AgNO3  Ag@Fe3O4 nanocomposites NaAc, Ethylene glycol 

210ºC, 24h Size =120/210 nm  
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Journal Name Catalyst Catalyst 

loading 

Ligand/base/

Oxidant 

Solvent Temperature Time   Yield 

Present manuscript   Polythiophene    

      supported 

Ag@Fe3O4 NCs 

0.01mmol  

- 

H2O:Toluene Visible light 7-10h 64-90% 

Angew. Chem. Int Ed.  

2017, 56, 1120 

Acr+ -Mes ClO4
- , 

Co(dmgH)2PyCl 

3 mol% - CH3CN Blue LED 

(3W) 

Under 

nitrogen 

atmosphere 

24h 35-89% 

J. Am. Chem. Soc. 

2017, 139, 643. 

Pd(OAc)2 0.89 

mmol 

Di(2-pyridyl) 

ketone, H2O2 

CH3CN, MeOH, 

THF or AcOH 

60º-80ºC 3-12h 82-98% 

Angew. Chem. Int. Ed.  

2017, 56, 7449 

[RhCp*Cl2]2 5 mol% 2-

methylquinoli

ne, PhCO2Na, 

Ag2CO3 

Toluene 90ºC  

Under 

nitrogen 

atmosphere 

16h 44-88% 

Chem. Commun. 

 2017, 53, 5744 

CuI or Cu(OTf)2 10 mol% PhI(OTFA)2 DCE 100ºC 10h 32-85% 

Org. Lett.  

2017, 19, 914 

Pd(CH3CN)2Cl2 10 mol% Chloranil 1,4-dioxane 80ºC 24 h 27-98% 

Nat. Commun.  

2016, 7, 11188 

Ru(bpy)3Cl2.6H2

O 

2 mol% TEMPO, 

K2CO3 

CHCl3 Blue LED 

(3W) 

5-24h 

 

51-86% 

J. Am. Chem. Soc. 

2016, 138, 1265 

Pd/bis-sulfoxide, 

Co(salophen) 

2.5-5 

mol% 

DHBQ, 

TBAA, O2 

TBME 45ºC 72h 52-96% 

Org. Lett.  

2016, 18, 3586 

Pd(OAc)2 10 mol% O2 DMSO/toluene 80º-120ºC 24 h 36-95% 

     J. Org. Chem. 

     2016, 81, 2035 

Pd(OAc)2 20 mol% Cu(OAc)2, 

O2 

DMSO 120ºC 8-10h 63-87% 

Chem. Eur. J.  

2016, 22, 15669 

Ir(ppy)2 

(dtbbpy)PF6 

2 mol% NaClO 1,4-dioxane White LED 

(5 W) 

1h 45-91% 

Chem. Eur. J.  

2016, 22, 4379 

Copper(II) 2-

ethylhexanoate 

20 mol% Dess-Martin 

periodinane 

DMSO 110ºC 1h 70-87% 

Chem. Eur. J.  

2016, 22, 6487 

Cu(OAc)2 15 mol% Ag2CO3 m-Xylene 140ºC 24h 68-91% 

ACS Catal.  

2015, 5, 4796 

[Ir(dFppy)2phen]P

F6, Pd(OAc)2 

10 mol% Molecular O2 DMSO 80ºC, Blue 

LED  (7W) 

8-16h 75-94% 

Org. Chem. Front. 

2015, 2, 51 

Pd(OAc)2 10 mol% Ce(SO4)2, 

DMF, MsOH 

DCM 120º  C 48h 30-74% 

 

Table S2 Comparison of catalytic activity of polythiophene supported Ag@Fe3O4 nanoclusters with other 

catalytic systems reported in literature for C-H functionalization/C-N bond formation. 
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Figure S2 UV-vis spectra showing the variation of absorbance of compound 3 (10 μM) in 

H2O-THF mixture with different fractions of H2O. 

 

Figure S1 UV-vis spectrum of compound 3 in pure THF. 
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Figure S3 UV-vis absorption spectra of compound 3 in H2O-THF (1:1) solvent mixture 

upon increasing temperature from 25 to 70°C. 
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Figure S4 Fluorescence spectra of compound 3 (10 μM) in H2O-THF mixture with 

different water fractions; λex = 322 nm 
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Figure S5 TEM image of compound 3 in H2O-THF (1:1) mixture showing irregular shaped assemblies; 

scale bar 100 nm. 

Figure S6 DLS studies of compound 3 in H2O-THF (1:1) mixture which showed the presence of 

particles having average diameter in the range of 100 nm. 
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The first order6 rate constant for the formation of silver nanoparticles was calculated from the changes of intensity of absorbance 

of assemblies of compound 3 at 438 nm wavelength in the presence of Ag+ ions at different time interval .7-8 From the time vs. 

absorbance plot at fixed wavelength 438 nm by using first order rate equation, we get the rate constant = k = slope × 2.303 = 

8.18 ×10-5 sec-1. 
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Figure S8 Graphical representation of the rate of formation of AgNPs stabilized by assemblies of 

compound 3 (A) Time (h) vs. absorbance plot at 438 nm (B) regression plot of A. 

       Regression Statistics 

Multiple R  0.995544 

R Square  0.991108 

Intercept   0.131 

Slope   0.128 
 

Figure S7 UV-vis spectra of compound 3 (10 μM) upon addition of Ag
+
 ions (100 equiv.) with time in 

H2O-THF (1:1) solvent mixture showing surface plasmon resonance (SPR) band at 438 nm. 
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Broadening of 

absorption spectrum 

Figure S9 UV-vis spectra of compound 3 (10 µM) upon addition of Fe
3+ 

ions (20 equiv.) in H2O-

THF (1:1) mixture; Inset showing enlarged absorption spectra in the range of 370-580 nm along 

with change in color of solution from colorless to black in presence of Fe
3+ 

ions.  
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Figure S10 Absorption spectra of compound 3 (10 μM) upon additions of 100 equivalents of 

various metal ions (Ag
+
, Hg

2+
, Co

2+
, Fe

2+
, Li

+
, Mg

2+
, Cu

2+
, Cd

2+
, Ni

2+
, Pb

2+
, Na

+
, K

+
 and Zn

2+
) as 

their perchlorate/nitrate salt in H2O-THF (1:1), buffered with HEPES, pH = 7.0. 
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Compound 3 + Ag+ 

 
 

Compound 3 + Hg2+, 

Co2+, Fe2+, Li+, Mg2+, 

Cu2+, Cd2+, Ni2+, Pb2+, 

Na+, K+ and Zn2+. 

 

Figure S11 Absorption spectra of compound 3 (10 μM) upon additions of 20 equivalents of 

various metal ions (Al
3+

, Ca
2+

, Cu
2+

, Co
2+

, Fe
3+

, Pd
2+

, Na
+
, K

+
 and Mg

2+
) as their chloride salt in 

H2O-THF (1:1), buffered with HEPES, pH = 7.0. 
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Figure S12 (A) TEM image showing the (A) formation of Ag-Fe3O4 NPs  prepared by mixing AgNPs 

and Fe
3+

 ions in 1:1 ratio; (B) formation of Ag@Fe3O4 NCs  by mixing AgNPs and Fe
3+

 ions in 1:2 ratio.  
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          Figure S13 UV-vis spectra of aqueous solution of (a) Fe3O4 NCs (b) AgNPs (c) Ag@Fe3O4 NCs stabilized  

          by assemblies of compound 3. 
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Figure S15 UV-vis spectra with time for simultaneous addition of aqueous solution of Fe
3+

 ions
 
and 

AgNPs to the assemblies of compound 3 (10 μM). 

415 nm 
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At 75 min 

Fe
3+

 ions 

At 30 min 

Figure S14 Schematic illustration of generation of polythiophene 4 supported Ag@Fe3O4 NCs 

(supported by TEM image) by adding aqueous solution of Fe
3+

 ions and AgNPs to the assemblies of 

compound 3 under stirring.  
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Figure S16 Graphical representation of rate of formation of Ag@Fe3O4 NCs (A) Time (min.) vs. absorbance 

plot at 415 nm (B) regression plot of A. 

The first order rate constant for the formation of Ag@Fe3O4 NCs was calculated from the change of intensity of blue shifted 

absorbance band of AgNPs in the presence of assemblies of compound 3 and FeCl3 solution at different time interval. 

From the time vs. absorbance plot at fixed wavelength 415 nm by using first order rate equation, we get the rate constant = k = 

slope×2.303 = 4.09×10-4 s-1. 
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  Regression Statistics 

Multiple R  0.995065 

R Square  0.990155 

Intercept  0.443514 

Slope  0.010662 
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Figure S17 Fluorescence spectra of compound 3 (10
 
μM) with addition of AgNPs and Fe

3+
 ions in H2O-

THF (1:1) solvent mixture; λex = 322 nm. 
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Polythiophene 4        
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Ag@Fe3O4 NCs 

Figure S18 Cyclic voltammogram of the compound 3 and polythiophene 4 supported Ag@Fe3O4 NCs in 

H2O:CH3CN (1:1) containing 0.1 M Bu4NClO4 (supporting electrolyte) and Ag/AgCl (reference 

electrode). 

Entry Reduction  

potential (eV) 

Oxidation  

potential (eV) 

Compound 3 -0.19 0.13 

Polythiophene 4 supported Ag@Fe3O4 

NCs 

0.22 -0.0787 

 

Table S3 Table showing oxidation and reduction potential of compound 3 and polythiophene 4 supported 

Ag@Fe3O4 NCs. 
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Figure S19 (A) TEM image of polythiophene 4 supported Ag@Fe3O4 nanoclusters (B) SAED pattern 

of polythiophene 4 nanosheets supported Ag@Fe3O4 NCs. 
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Figure S20 DLS studies of polythiophene 4 supported Ag@Fe3O4 nanoclusters indicated the presence 

of two sets of particles having average size 43 nm and 120 nm. 
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Figure S21 X-Ray diffraction pattern of in situ generated Ag@Fe3O4 NCs. 
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Figure S22 Raman scattering spectrum of polythiophene 4 supported Ag@Fe3O4 NCs showed the 

presence of band at 670 cm
-1

 corresponding to the A1g vibration mode of Fe3O4 NPs. 
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Figure S24 TGA of compound 3 and polythiophene 4 supported Ag@Fe3O4 NCs. This data indicated 

that polythiophene supported Ag@Fe3O4 NCs consisted of 28.0 wt% of polythiophene as organic 

component.  

 

 

Figure S23 XPS analysis of polythiophene 4 supported Ag@Fe3O4 NCs indicated the presence of Ag
0
 

and Fe3O4 species along with polythiophene. 
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Parameter Value Parameter definition 

Hc (Oe) 68.5 Coercive Field: Field at which M/H 

changes sign 

Mr (emu g-1) 0.177 Remanent Magnetization: M at H=0 

Ms (emu g-1) 40.772 Saturation Magnetization: maximum M 

measured 

S 0.00434 Squareness = Mr/Ms 

 

Table S4 Showing the coercivity, magnetization values obtained from Hysteresis loop of 

polythiophene 4 supported Ag@Fe3O4 nanocomposites at room temperature; 25
°
C. 

Figure S25 Hysteresis loop of polythiophene 4 supported Ag@Fe3O4 nanocomposites at room 

temperature (25°C). Inset showing expanded curve. 
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Figure S27 ESI-MS spectrum of trimer formed after oxidation of compound 3 showed a parent ion 

peak correspond to [Mt+H]
+
, m/z = 1413.0007. 

Mt = 

Figure S26 FT-IR spectra of compound 3 and polythiophene 4 supported Ag@Fe3O4 NCs showing 

disappearance of the bands at 3092 and 890 cm
-1

 indicated the formation of polythiophene species 

through C-Ha bonds. The peaks in the range of 400-600 cm
-1

 and 1028 cm
-1 

are associated with the 

stretching & torsional vibration modes of the Fe3O4 NCs and Ag (0) respectively.  
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Figure S28 Schematic illustration of preparation of AgNPs in presence of assemblies of compound 

3. 

Figure S29 Schematic presentation describing the preparation of polythiophene 4 supported Ag@Fe3O4 NCs. 
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2:1 

50 nm 

Ag@Fe3O4 

Figure S30 TEM image showing the formation of Ag@Fe3O4 NPs prepared by mixing AgNPs and Fe
3+

 

ions in 2:1 ratio showing larger sized core. 
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Figure S31 (A) Fluorescence spectra of oxidized species 4 in H2O-THF (1:1) solvent mixture upon addition 

of bare Ag@Fe3O4 nanocomposites. (B) Spectral overlap of absorption spectrum of Ag@Fe3O4 NCs and 

fluorescence spectrum of oxidized species 4 in H2O-THF (1:1) mixture showing energy transfer from 

oxidized species 4 to Ag@Fe3O4 NCs. 
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S. No. Reaction conditions Time Yield 

1. Toluene, 110⁰C 10 h 76% 
2. Toluene:H2O, 110⁰C  9 h 75% 

3. THF, 50⁰C 24 h - 

4. EtOH, 80⁰C 24 h - 

5. CH3CN, 80⁰C 24 h - 

6. DMSO, 100⁰C 24 h 25% 

7. 1,4-dioxane, 100⁰C 24 h 30% 

8. Toluene:H2O (1:1), visible light 8h 78% 
 

Table S5 Optimization of reaction conditions for dehydrogenative coupling of 6a utilizing polythiophene 4 

supported Ag@Fe3O4 NCs (1:2) as photocatalyst. 

100 nm 

(B) 

Figure S32 (A) UV-vis spectra of aqueous solution of (a) bimetallic Ag-Fe3O4 NPs (b) AgNPs (c) 

Fe3O4 NCs stabilized by assemblies of compound 5. (B) TEM image of Ag-Fe3O4 NPs stabilized by 

assemblies of compound 5. 
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Figure S33 Structure of polythiophene 8. 

Polythiophene 8 

Table S6 Influence of the stabilizing agent on the photocatalytic efficiency of Ag@Fe3O4 nanocomposites in 

dehydrogenative coupling of phenylhydrazones 

S. No.               Catalyst/Reaction Conditions Time Yield BET surface 

area (in m
2
/g) 

1. Polythiophene 4 supported Ag@Fe3O4 NCs (1:2), hv 8h 78% 48.18 

2. Polythiophene 4, hv 24 h - 3.34 

3. Bare AgNPs, hv 24 h - 2.63 

4. Bare AgNPs + Polythiophene 4, hv  24 h - 6.12 

5. Bare Fe3O4 NCs, hv 24 h Traces 8.34 

6. Bare Fe3O4 NCs + Polythiophene 4, hv 24 h Traces 16.61 

7. Bare Ag@Fe3O4  nanocomposites, hv 24 h 20% 20.30 

8. Bare Ag@Fe3O4 nanocomposites  + Polythiophene 4, hv 12 h 62% 38.20 

9. Assemblies of compound 5:Ag-Fe3O4, hv  24 h 50% 34.31 

10. Bare Ag@Fe3O4 nanocomposites + Polythiophene 8, hv 24 h 22% 22.60 

11. Bare Ag@Fe3O4 nanocomposites + Polythiophene 8 + 

Benzoquinone (1.2 equiv.), hv 

24 h 38% 27.01 

12. Polythiophene 4 supported ellipsoidal shaped Ag@Fe3O4 

NCs (2:1), hv 

10 h 67% 42.16 
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Figure S34 Polythiophene supported Ag@Fe3O4 NCs (a) separated aqueous layer after completion of 

model reaction; (b) a magnetic stirring bar put towards the aqueous layer; (c) an external magnet attracted 

Ag@Fe3O4 NCs. 
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Figure S35 Recyclability of polythiophene 4 supported Ag@Fe3O4 NCs as photocatalyst for synthesis of 

indazole compounds. 
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Figure S36 Mass spectrum of 6a-TEMPO adduct 
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[M+] 

6a-TEMPO adduct 

S. No. TEMPO Yield of 7a 

1. 0 equiv. 78% 

2. 1.0 equiv. 46% 

3. 2.0 equiv. 15% 
 

Table S7 Effect of addition of TEMPO on dehydrogenative coupling of benzophenone 

phenylhydrazone, 6a in presence of polythiophene 4 supported Ag@Fe3O4 NCs as photocatalyst. 
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Scheme S4 Plausible mechanism of dehydrogenative coupling of 6a utilizing polythiophene 4 

supported Ag@Fe3O4 NCs as photocatalyst 
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Compound 7a
2
 White solid; 1,3-Diphenyl-1H-indazole: (77 mg in 78%  yield). 

1
H NMR (500 MHz, CDCl3) δ = 

8.10 (d, J = 8.0 Hz, 1H), 8.05 (d, J = 8.0 Hz, 2H), 7.82-7.79 (m, 3H), 7.58-7.52 (m, 4H), 7.48-7.43 (m, 2H), 7.38 (t, 

J = 7.5 Hz, 1H), 7.30 (t, J = 7.5 Hz, 1H) ppm. 

 

Figure S37 
1
H NMR of compound 7a in CDCl3 

7a 

H2O CDCl3 

Hexane 
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Compound 7b
9
 Gray solid; 3-(4-Fluoro-phenyl)-1-phenyl-1H-indazole: (63 mg in 64% yield). 

1
H NMR (500 

MHz, CDCl3) δ = 8.04-7.99 (m, 3 H), 7.80-7.78 (m, 3 H), 7.58-7.53 (m, 2 H), 7.49-7.45 (m, 1 H), 7.42-7.37 (m, 

1 H), 7.32-7.29 (m, 1 H), 7.24-7.21 (m, 2 H) ppm. 

 

 

Figure S38 
1
H NMR of compound 7b in CDCl3 

7b 

CDCl3 

H2O 

Hexane 



S37 
 

 

Compound 7c
10

 Pale yellow solid; 3-(4-Chloro-phenyl)-1-phenyl-1H-indazole: (65 mg in 66% yield). 

1
H NMR (400 MHz, CDCl3) δ = 8.05 (d, J = 8.4 Hz, 1H), 7.99 (d, J = 8.4 Hz, 2H), 7.79 (d, J = 7.6 Hz, 

3 H), 7.57 (t, J = 8.0 Hz, 2H), 7.52-7.46 (m, 3H), 7.40 (t, J = 7.6 Hz, 1H), 7.31 (t, J = 7.6 Hz, 1H) ppm.   

Figure S39 
1
H NMR of compound 7c in CDCl3 

7c 

CDCl3 
H2O 

Hexane 
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 Compound 7d
9
 White solid;

 
3-(4-Bromo-phenyl)-1-phenyl-1H-indazole: (69 mg in 70% yield). 

1
H 

NMR (500 MHz, CDCl3) δ = 8.05-8.03 (m, 1 H), 7.93 (d, J = 8.5 Hz, 2 H), 7.80-7.78 (m, 3 H), 7.66 (d, J 

= 8.5 Hz, 2 H), 7.59-7.55 (m, 2 H), 7.49-7.46 (m, 1 H), 7.41-7.38 (m, 1 H), 7.33-7.29 (m, 1 H) ppm.   

Figure S40 
1
H NMR of compound 7d in CDCl3 

7d 

Hexane 

CDCl3 

H2O 



S39 
 

 

Compound 7e
2
 Light yellow solid; 6-Fluoro-3-(4-fluoro-phenyl)-1-phenyl-1H-indazole: (64 mg in 

65% yield). 
1
H NMR (500 MHz, CDCl3) δ = 7.99 -7.94 (m, 3H), 7.75 (d, J = 8.0 Hz, 2H), 7.57 (t, J = 

7.5 Hz, 2H), 7.43-7.39 (m, 2H), 7.23 (t, J = 8.8 Hz, 2H), 7.07 (dt, J = 9.0, 2.0 Hz, 1H) ppm. 

 

 

Figure S41 
1
H NMR of compound 7e in CDCl3 

7e 

H2O 

 

CDCl3 

 

Hexane 
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Compound 7f
2, 11

 White solid; 6-Chloro-3-(4-chloro-phenyl)-1-phenyl-1H-indazole: (67 mg in 68% yield). 

1
H NMR (500 MHz, CDCl3) δ = 7.96 -7.93 (m, 3H), 7.76 -7.73 (m, 3H), 7.58 (t, J = 8.0 Hz, 2H), 7.50 (d, J 

= 8.5 Hz, 2H), 7.42 (t, J = 7.5 Hz, 1H), 7.28-7.27 (m, 1H) ppm. 

 

7f 

Figure S42 
1
H NMR of compound 7f in CDCl3 

CDCl3 

H2O 
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Compound 7g
12

 White solid; 6-Methyl-1-phenyl-3-p-tolyl-1H-indazole: (84 mg in 85% yield).
1
H NMR 

(400 MHz, CDCl3) δ = 7.96-7.91 (m, 3H), 7.79 (d, J = 8.4 Hz, 2H), 7.57-7.51 (m, 3H), 7.38-7.32 (m, 3H), 

7.12 (d, J = 8.4 Hz, 1H), 2.53 (s, 3H), 2.44 (s, 3H) ppm.  

 

Figure S43 
1
H NMR of compound 7g in CDCl3 

7g H2O 

CDCl3 

Hexane 
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Compound 7h
11

 Light brown solid; 6-Methoxy-3-(4-methoxy-phenyl)-1-phenyl-1H-indazole: (89 mg in 

90% yield). 
1
H NMR (400 MHz, CDCl3) δ = 7.94 (d, J = 8.8 Hz, 2H), 7.89 (d, J = 9.2 Hz, 1H), 7.77 (d, J = 

7.6 Hz, 2H), 7.55 (t, J = 7.6 Hz, 2H), 7.37 (t, J = 7.2 Hz, 1H), 7.11 (d, J = 2.0 Hz, 1H), 7.05 (d, J = 8.8 Hz, 

2H), 6.92 (dd, J = 8.8, 2.0 Hz, 1H), 3.88 (s, 6H) ppm.  

 

Figure S44 
1
H NMR of compound 7h in CDCl3 

7h 

H2O 
CDCl3 
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Compound 7i
11

 White solid; 1-Phenyl-3-p-tolyl-1H-indazole: (74 mg in 75% yield). 
1
H NMR (500 MHz, 

CDCl3) δ = 8.03 (d, J = 7.5 Hz, 2H), 7.96 (d, J = 8.0 Hz, 1H), 7.79 (d, J = 7.5 Hz, 2H), 7.58-7.50 (m, 5H), 

7.44-7.35 (m, 2H), 7.13 (d, J = 8.5 Hz, 1H), 2.53 (s, 3H) ppm. 

 

Figure S45 
1
H NMR of compound 7i in CDCl3 

7i 

H2O 

CDCl3 
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Compound 7j
11

 White solid; 6-Methoxy-1,3-diphenyl-1H-indazole: (83 mg in 84% yield). 
1
H NMR (500 MHz, 

CDCl3)  δ = 8.01 (d, J = 7.5 Hz, 2H), 7.93 (d, J = 9.0 Hz, 1H), 7.78 (d, J = 8.0 Hz, 2H), 7.58-7.50 (m, 4H), 7.44-

7.37 (m, 2H), 7.12 (d, J = 2.0 Hz, 1H), 6.94 (dd, J = 9.0, 2.0 Hz, 1H), 3.89 (s, 3H) ppm. 

 

 

Figure S46 
1
H NMR of compound 7j in CDCl3 

7j 

CDCl3 
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Compound 3 Yellow solid; mp: >280 °C; (0.18 g in 60% yield). 
1
H NMR (500 MHz, CDCl3) δ = 8.98 (s, 

2H), 8.95 (s, 2H), 8.32 (s, 2H), 8.17 (d, J = 8.5 Hz, 2H), 7.99 (d, J = 8.5 Hz, 2H), 7.74-7.71 (m, 2H), 7.61-

7.58 (m, 2H), 7.53-7.50 (m, 2H) ppm. 
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Figure S47 
1
H NMR of compound 3 in CDCl3 

CDCl3 

H2O 
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Figure S48 Mass spectra of compound 3. 
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Compound 5 Yellow solid; mp: >280 °C; (0.19 g in 63% yield). 
1
H NMR (500 MHz, CDCl3) δ = 8.96 (s, 2H), 

8.95 (s, 1H), 8.93 (s, 1H), 8.32 (s, 1H), 8.15-8.13 (m, 3H), 7.99-7.97 (m, 1H), 7.73-7.71 (m, 2H), 7.57-7.56 (m, 

1H), 7.44-7.43 (m, 1H), 7.20-7.18 (m, 1H) ppm. 
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Figure S49 
1
H NMR of compound 5 in CDCl3 
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Figure S50 Mass spectrum of compound 5. 
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