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Figure S1. Experimental procedure for fabricating (a) a silver halide ion precursor solution and 

(b-e) its corresponding digital images. Schematic procedure for (f) deposition of silver halide by 

drop-casting of the precursor solution, and (g) its corresponding digital images. 
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Figure S2. (a) Standard three-electrode electrochemical system composed of a saturated calomel 

electrode (SCE) as a reference and Pt mesh as a counter electrode. (b) Array of digital images of 

experimental samples for AgCl, AgBr, and AgI, in the as-deposited, partly reduced, and fully 

reduced states. 

 

As a representative sample, the bright yellow AgBr particles changed to a brown-colored silver 

because the unique nanostructure affects the visible wavelength optical absorption properties. 
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Figure S3. XRD results for the as-deposited state (black line), partly reduced state (blue line), 

and fully reduced state (red line) for the (a) AgCl and (b) AgI samples. 
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Figure S4. Mass variation ratio between the as-deposited state and fully reduced state of each 

AgCl, AgBr, and AgI samples. 

  

The mass variation between as-deposited AgX and fully reduced AgX, and the mass decreasing 

rate (%) of each AgX sample is shown in the bar graph. When AgCl, AgBr, and AgI are reduced 

to pure Ag, the mass decreasing rates are stoichiometrically 25.4%, 43.1%, and 54.5%, 

respectively. The mass variation for the AgCl, AgBr, and AgI samples are 23.5%, 43.7%, and 

54.5%, respectively, which is assumed to be identical to the stoichiometric values by considering 

the slight experimental error. 
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Figure S5. Structural formation with respect to the reduction current during the silver halide 

electroreduction process. High-magnification SEM images of (a-c) reduced AgCl, (d-f) reduced 

AgBr, and (g-i) reduced AgI with increasing reduction currents. 

 

 

 

 

 

 

 



 

S-7 

 

Figure S6. Structural formation differences caused by different reduction electrolytes during the 

silver halide electroreduction process. High-magnification SEM images of (a-c) reduced AgCl, 

(d-f) reduced AgBr, and (g-i) reduced AgI using different reduction electrolytes. 
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Figure S7. SEM images of the np-Ag framework to confirm thermal stability of np-Ag. Each 

sample was heat treated at (a) 60 ℃, (b) 90 ℃, (c) 120 ℃, (d) 150 ℃, (e) 180 ℃ and (f) 210 ℃ 

for 1 hour. 

 

SEM images of the np-Ag sample heat-treated for 1 hour at each temperature are shown in 

Figure S7. The np-Ag framework is stable up to 120 ℃, however above 150 ℃, the np-Ag 

framework begins to aggregate with each other, forming a thicker, larger ligament structure. This 

tendency to agglomerate becomes more apparent when the heat treatment temperature is higher. 
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Figure S8. Cyclic voltammetry results of np-Ag framework to confirm electrochemical stability. 

Voltage window: (a) -1 – 0V, (b) 0 – 0.8V (vs. SCE). 

 

Cyclic voltammetry results of np-Ag framework for each voltage window are shown in Figure 

S8. Here, the experimental configuration was as follows; SCE was used as a reference electrode, 

and a platinum foil was used as a counter electrode in a 2.5 M Li2SO4 aqueous electrolyte. The 

np-Ag framework was very stable when the (-) potential was applied and the shape of the CV 

curve highly stable for over 2000 cycles (Figure S8a). On the other hand, the np-Ag framework 

degraded sharply when the (+) potential was applied above 0.6 V (Figure S8b). Since the 

oxidation potential of silver (Ag) is + 0.555 V (vs. SCE), silver was oxidized or dissolved in the 

electrolyte in the form of Ag
+
. As a consequence, this np-Ag framework can be utilized with 

high stability as an anode material, but it can hardly be applied to a cathode material. 
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Figure S9. XPS spectrum of Ag 3d for the np-Ag@Fe2O3 anode. 

 

 

Figure S10. Coulombic efficiencies of np-Ag@Fe2O3 electrode during charging/discharging 

with various potential window. 
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Figure S11. Galvanostatic charge-discharge curves of np-Ag@Fe2O3 (with a mass loading of 0.9 

mg cm
-2

) for each charging current density. 

 

 

Figure S12. Rate capabilities of np-Ag@Fe2O3 by varying the active material mass loading in 

terms of the areal specific capacitance. 
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Figure S13. CV curves of the np-Ag@Fe2O3 anodes at mass loadings of (a) 0.45 mg cm
-2

 and 

(b) 1.8 mg cm
-2

. 

 

 

 

 

 

 

 

Table S1. Comparison of the major figures of merit for np-Ag@Fe2O3 using previously reported 

iron oxide-based (FeOx-based) electrochemical electrodes with respect to the specific 

capacitance and cycling performance. 

Electrode 

Structure 

Electrolyte Capacitance Cyclic 

stability 

Publication 

Year 

Ref 

Fe2O3 films 0.25 M Na2SO4 210 F g
-1

 @ 2 mV s
-1

 ~68.4% after 

100 cycles 

2006 [1] 

Carbon 

Nanofoam@FeOx 

2.5 M Li2SO4 84 F g
-1

 @ 5 mV s
-1

 ~80% after 

1000 cycles 

2010 [2] 

CNT@Fe3O4 1 M Na2SO4 165 F g
-1

 @ 2 A g
-1

 ~85.1% after 

1000 cycles 

2011 [3] 

rGO@Fe2O3 

nanotube 

1 M Na2SO4 215 F g
-1

 @ 2.5 mV s
-1

 ~90% after 

2000 cycles 

2012 [4] 
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Carbon 

nanosheet@Fe3O4 

1 M Na2SO4 163.4 F g
-1

 @ 1 A g
-1

 ~93% after 

5000 cycles 

2013 [5] 

Carbon-coated 

Fe3O4 (core-shell) 

1 M Na2SO4 275.9 F g
-1

 @ 0.5 A g
-1

 ~81.2% after 

500 cycles 

2013 [6] 

N-doped 

graphene@Fe2O3 

1 M Na2SO4 260.1 F g
-1

 @ 2 A g
-1

 ~82.5% after 

1000 cycles 

2014 [7] 

Graphene@Fe2O3 1 M KOH 908 F g
-1

 @ 2 A g
-1

 ~75% after 

200 cycles 

2014 [8] 

Graphene 

paper@Fe3O4 

1 M KOH 368 F g
-1

 @ 1 A g
-1

 ~90% after 

1000 cycles 

2014 [9] 

GF-CNT@Fe2O3 2 M KOH 580.6 F g
-1

 @ 5 A g
-1

 ~100% after 

50000 cycles 

2015 [10] 

Graphene 

aerogel@Fe2O3 

6 M KOH 393 F g
-1

 @ 1.5 A g
-1

 ~81.5% after 

2200 cycles 

2016 [11] 

Grahene@Fe2O3 

nanoplate 

1 M KOH 510 F g
-1

 @ 5 A g
-1

 ~70% after 

1000 cycles 

2016 [12] 

Hollow 

carbon@Fe3O4 

5 M LiCl 193 F g
-1

 @ 1 mV s
-1

 ~94.8% after 

10000 cycles 

2017 [13] 

Nickel 

Nanotube@Fe2O3 

Nanoneedles 

1 M Na2SO4 418.7 F g
-1

 @ 10 mV s
-1

 ~93.3% after 

5000 cycles 

2017 [14] 

Carbon 

Cloth@FeOOH 

2 M KOH 796 F g
-1

 @ 30 A g
-1

 ~91% after  

10000 cycles 

2017 [15] 

Graphene 

oxide@Fe2O3 

nanoparticle 

3 M KOH 91 F g
-1

 @ 20 mV s
-1

 Not reported 2017 [16] 

Carbon 

Cloth@Fe2O3 

Nanorod@Graphene 

1 M LiOH 701 F g-1 @ 6 A g-1 ~91% after 

5000 cycles 

2018 [17] 

Nanoporous 

silver@Fe2O3 

2.5 M Li2SO4 616 F g
-1

 @ 10 mV s
-1

 

(608 F g
-1

 @ 10 A g
-1

) 

~85% after 

6000 cycles 

This work - 
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