Detection of Lung Cancer: Concomitant Volatile Organic Compounds and Metabolomics profiling of six cancer cell lines of different histological origins

Zhunan Jia^{1,2}, Hui Zhang³, Choon Nam Ong^{3,4,*}, Abhijeet Patra^{1,2}, Yonghai Lu⁴, Chwee Teck Lim^{2,5,6}, Thirumalai Venkatesan ^{1,2,7,8,9,*}

¹ NUSNNI-Nanocore, National University of Singapore, 5A Engineering Drive 1, 117411,

Singapore

² NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, 117456, Singapore

³ NUS Environmental Research Institute, National University of Singapore, 5A Engineering

Drive 1, 117411 Singapore

⁴ Saw Swee Hock School of Public Health, National University of Singapore, 12 Science Drive 2,

117549, Singapore

⁵ Department of Biomedical Engineering, 9 Engineering Drive 1, National University of Singapore, 117575, Singapore

⁶Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore

⁷ Department of Electrical Engineering, National University of Singapore, 4 Engineering Drive 3,117583, Singapore

⁸Department of Materials Science and Engineering, National University of Singapore, 9

Engineering Drive 1, 117574, Singapore

⁹Department of Physics, National University of Singapore, 2 Science Drive 3, 117551, Singapore *correspondence: venky@nus.edu.sg, ephocn@nus.edu.sg

Key words: Volatile organic compound; Metabolomics; Lung cancer; Histology; GC-Q-TOF/MS

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Table Captions

Table S1. m/z, CAS number, and retention time of 20 statistically differential VOCs.

Table S2. Comparison of match, reverse match and probability scores of the 13 VOCs confirmed with standards.

Table S3. Retention time and m/z values of 37 statistically differential non-volatile metabolites.

Table S4. Comparison of match, reverse match and probability scores of the 20 non-volatile metabolites confirmed with standards.

Figure Captions

Figure S1. Morphology of eight lung cell lines when cultured in supplier recommended medium

Figure S2. PCA score plot of metabolites profiling shows QC samples are clustered together.

Figure S3. Features detected in blank SPME fiber. (TIC chromatogram with labelled compound ID, followed with a table showing the retention time, mass, compound, CAS number, match score, reverse match score and probability of each peak.)

Figure S4. TIC of 20 VOCs in representative samples.

Figure S5. TIC of 37 non-volatile metabolites in representative samples

Figure S6. Parallel comparison of spectrums of 13 VOCs in sample and in standards. (Spectrum of standard is in red, spectrum of sample is in black)

Figue S7. Parallel comparison of spectrums of 20 non-volatile metabolites in sample and in standards. (Spectrum of standard is in red, spectrum of sample is in black)

Figure S8. ROC analysis of a) cancer vs normal cell b) large cell vs. other NSCLC. c) SCLC vs NSCLC

m/z	CAS	Retention Time (min)	Compound
57.0685	123-38-6	1.6	Propanal
58.0387	67-64-1	1.62	Acetone
45.03243	78-92-2	1.64	2-Butanol
71.0826	107-83-5	1.87	Pentane,2-methyl
91.05265	108-88-3	4.59	Toluene
83.04758	625-65-0	5.5	2-Pentene, 2,4-dimethyl-
56.0998	66-25-1	5.61	Hexanal
91.05268	100-41-4	7.54	Ethylbenzene
91.05264	95-47-6	7.86	o-xylene
91.0571	108-38-3,106-42-3	7.92	m & p-Xylene
57.03459	108-93-0	8.52	Cyclohexanol
104.0602	100-42-5	8.61	Styrene
105.0375	100-52-7	11.09	Benzaldehyde
105.0779	95-63-6	11.33	1,2,4-Trimethylbenzene
57.06854	104-76-7	13.47	2-Ethyl-1-Hexanol
55.05294	14507-02-9	13.47	2,4-Decadien-1-ol
98.1042	124-19-6	15.94	Nonanal
128.0648	91-20-3	18.05	Naphthalene
91.05252	1014-60-4	19.25	Benzene, 1,3-bis(1,1-dimethylethyl)-
91.05247	96-76-4	21.89	Phenol, 2,4-bis(1,1-dimethylethyl)-

Table S1. m/z, CAS number, and retention time of 20 statistically differential VOCs.

Table S2. Comparison of match, reverse match and probability scores of the 13 VOCs confirmed with
standards.

	Compound	Sample		Standards		S	
		Match	Reverse	Probability	Match	Reverse	Probability
			Match			Match	
1	Acetone	712	765	50	703	802	45.3
2	Pentane,2-methyl	706	732	6.5	704	737	7.58
3	Propanal	703	712	12.3	713	725	25.9
4	Toluene	866	895	34	795	850	24.1
5	Hexanal	727	804	14.9	706	812	16.7
6	Ethylbenzene	878	901	60.4	903	925	67.2
7	o-xylene	868	914	29	894	913	28.4
8	m & p-Xylene	849	909	32.4	890	910	28.3
9	Styrene	707	856	19.4	726	877	14.1
10	1,2,4-	721	877	14.3	810	907	22.8
	Trimethylbenzene						
11	2-Ethyl-1-Hexanol	785	820	14.6	742	849	9.9
12	Nonanal	768	806	13.5	726	815	10.9
13	Naphthalene	919	942	55	939	950	45.1

	RT	M/Z	Compound
	(min)		
1	4.069	73	Acetamide
2	4.427	145	Dimethylurea
3	4.8	144	Valine
4	5.008	174	Phenylethanolamine
5	5.441	158	Leucine
6	5.7	73,158	Isoleucine
7	5.789	73,142	Proline
8	5.9	73,147,174	Glycine
9	5.98	75,117,132,199	Cyclohexaneacetic acid
10	6.263	73,99,147,241	Pyrimidine
11	6.439	73,147,245	3-Ketovaleric acid
12	6.531	73,204,218	Serine
13	6.891	73,117,218,219	Threonine
14	7.55	73,147,174,248	Alanine
15	8.16	73,147,218	Aminomalonic acid
16	8.451	73,147	Butanedioic acid
17	8.98	73,100,232	Aspartic acid
18	10.58	73,142	Ornithine
19	10.64	73,128,246	Glutamic acid
20	10.756	73,192,218	Phenylalanine
21	11.5	73,116,231	Asparagine
22	12.42	73,147,217	Ribitol
23	13.72	73,265,280	Purine
24	14.54	117,285	Tetradecanoic acid
25	14.8	73,217,307	Fructose
26	15.1	319	mannose
27	15.58	73,147,205,319	Glucose
28	15.7	73,174,317	Lysine
29	15.9	73,218	Tyrosine
30	17.7	117,313	Hexadecanoic acid
31	18.31	73,147,217,305	Inositol
32	18.95	73,147,319	Allose
33	20.238	117,339	Oleic acid
34	20.64	117,341	Octadecanoic acid
35	23.37	73,217	Uridine
⊢∔	26.47	73,204,361	Lactose
36	20.47	13,201,301	2

Table S3. Retention time and m/z values of identified statistically differential non-volatile metabolites.

		Chemical Standards			Sample		
	Compounds	Match	Reverse Match	Probability (%)	Match	Reverse Match	Probability (%)
1	Valine	879	879	74	877	880	76.1
2	Leucine	887	887	41.1	852	862	38.9
3	Isoleucine	899	911	63	908	927	62.9
4	Proline	882	885	94.1	876	886	95.6
5	Glycine	904	904	87.4	889	899	86.7
6	Serine	902	904	84.2	892	895	81.3
7	Threonine	911	912	94.2	893	913	95.7
8	Phenylalanine	902	902	55.9	890	891	59.4
9	Asparagine	890	911	81.9	823	867	78.5
10	Ornithine	851	852	93.2	837	851	92.7
11	Lysine	755	795	92.8	764	809	92.8
12	Tyrosine	925	941	86.2	907	933	77.2
13	Hexadecanoic acid	837	844	84.3	848	850	94
14	Glutamic acid	901	903	92.5	898	898	90.8
15	Oleic acid	874	875	15.7	862	869	19.1
16	Octadecanoic acid	853	855	85.2	846	848	93.9
17	Inositol	906	906	72.6	909	909	77.3
18	Mannose	879	879	11.2	861	862	9.6
19	Glucose	899	899	21	855	897	13.2
20	Fructose	868	868	20	845	842	12.7

Table S4. Comparison of match, reverse match and probability scores of the 20 non-volatile metabolites confirmed with standards.

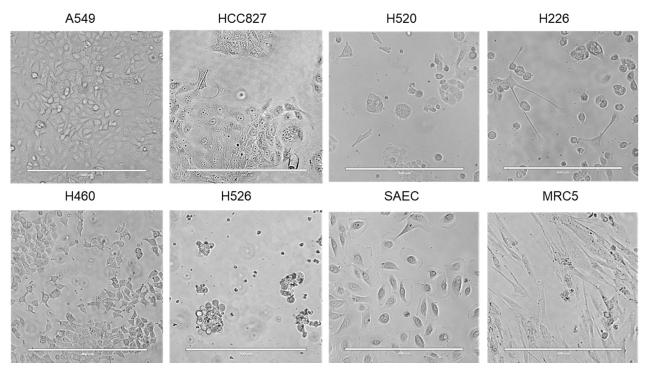
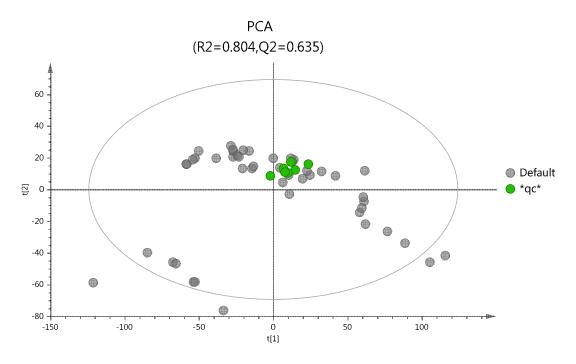
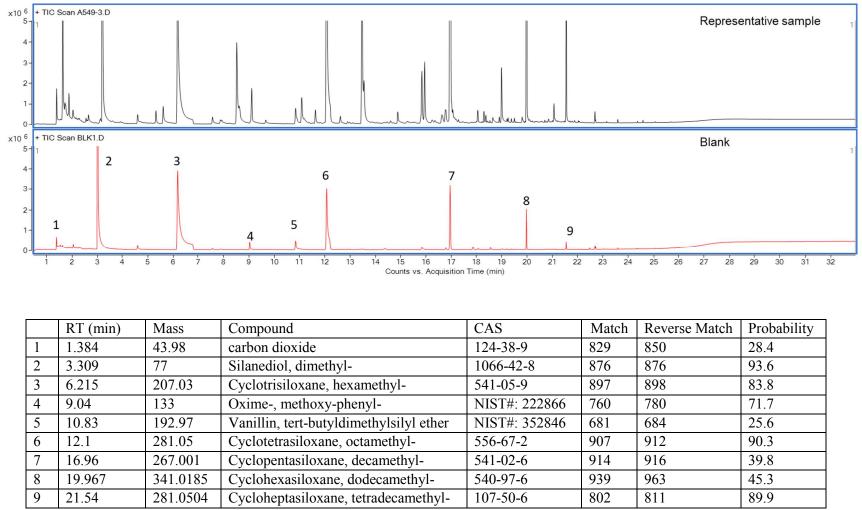
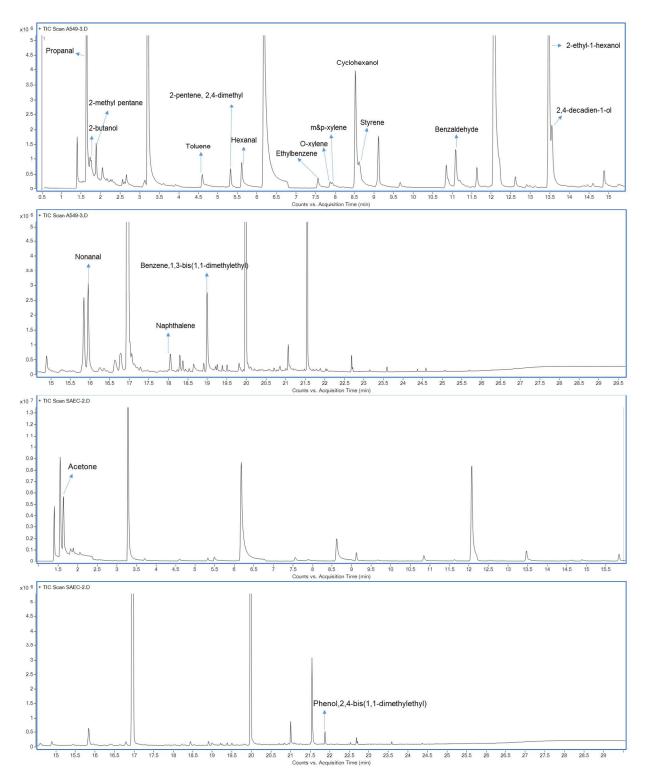


Figure S1. Morphology of eight lung cell lines when cultured in supplier recommended medium

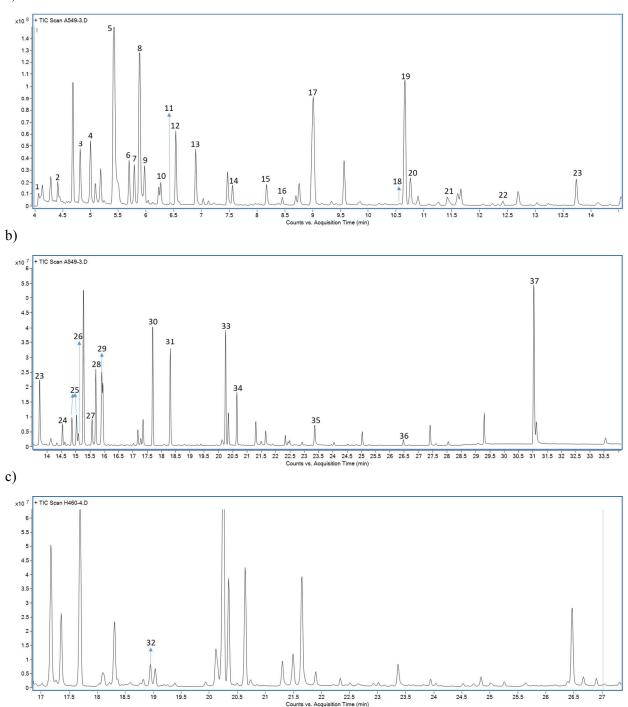

Figure S2. PCA score plot of metabolites profiling shows QC samples are clustered together.

Figure S3. Features detected in blank SPME fiber. (TIC chromatogram with labelled compound ID, followed with a table showing the retention time, mass, compound, CAS number, match score, reverse match score and probability of each peak.)

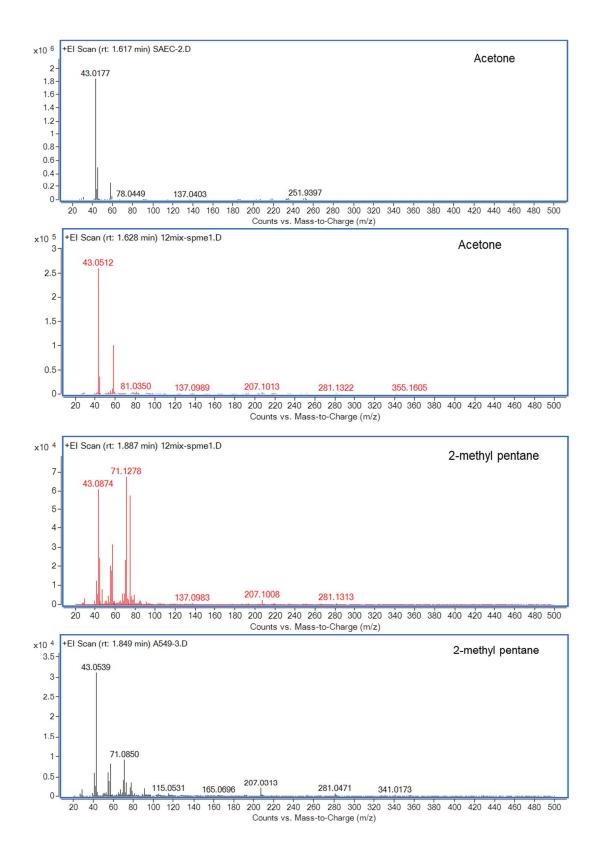


Figure S4. TIC of 20 VOCs in two representative samples. (acetone and phenol,2,4-bis(1,1-eimethylethyl) were shown in sample SAEC-2, the rest were shown in sample A549-3)

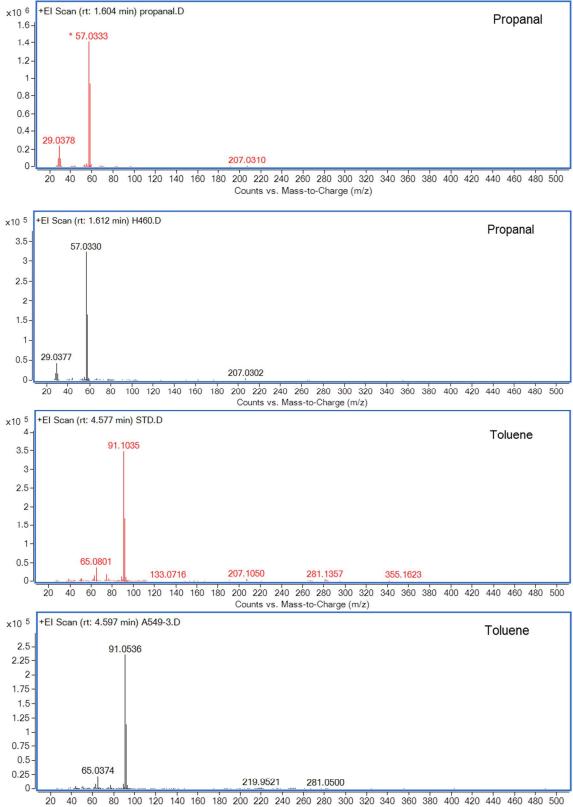
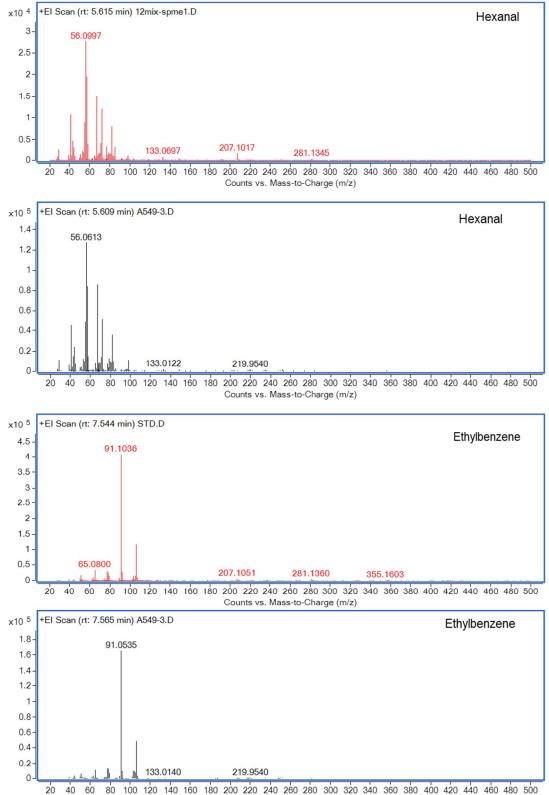
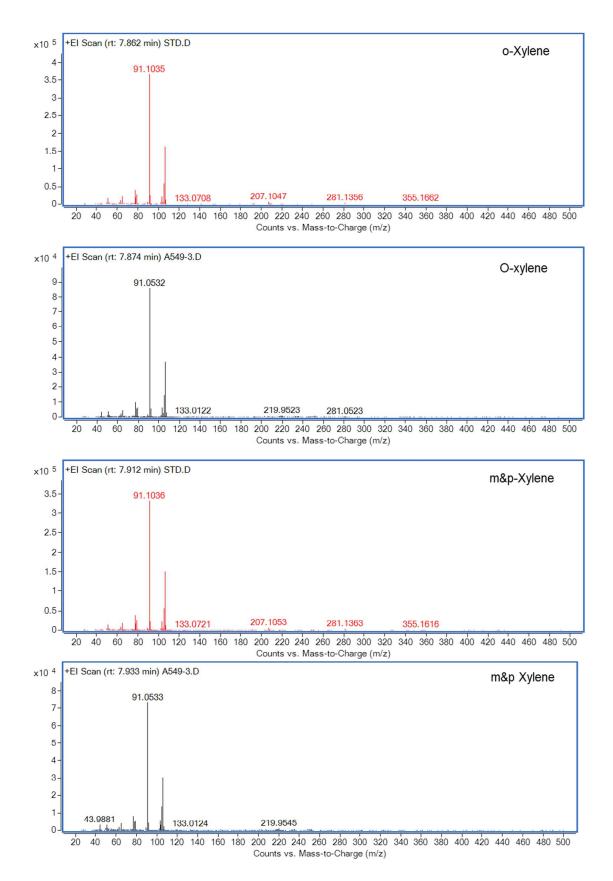
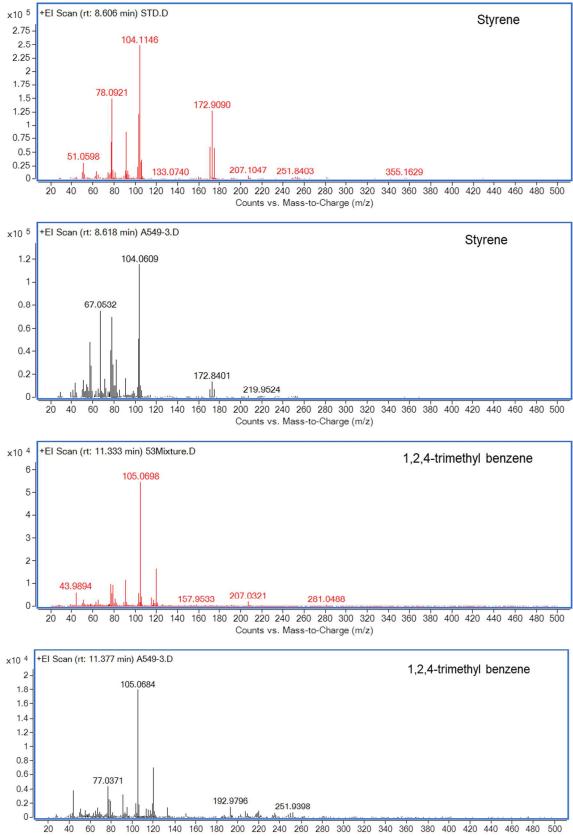
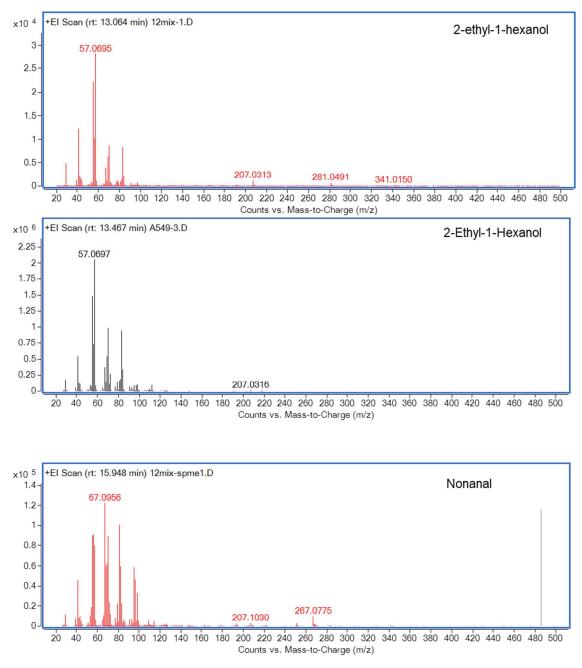


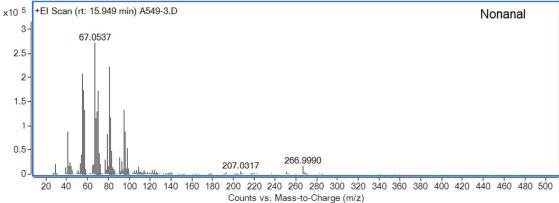
Figure S5. Total Ion Chromatogram of 37 non-volatile metabolites in a representative sample. a).4-14 mins. (1: Acetamide; 2: Dimethylurea; 3: Valine;4: Phenylethanolamine;5: Leucine;6: Isoleucine;7: Proline;8: Glycine;9: Cyclohexaneacetic acid;10: Pyrimidine;11: 3-Ketovaleric acid;12: Serine;13: Threonine;14: Alanine;15: Aminomalonic acid;16: Butanedioic acid;17: Aspartic acid;18: Ornithine;19: Glutamic acid;20: Phenylalanine;21: Asparagine;22: Ribitol;23: Purine;) b). 14-34 mins. (24: Tetradecanoic acid;25: Fructose;26:Mannose;27: Glucose;28: Lysine;29: Tyrosine;30: Hexadecanoic acid;31: Inositol;33: Oleic acid;34: Octadecanoic acid;35: Uridine;36: Lactose;37: Cholesterol) c).

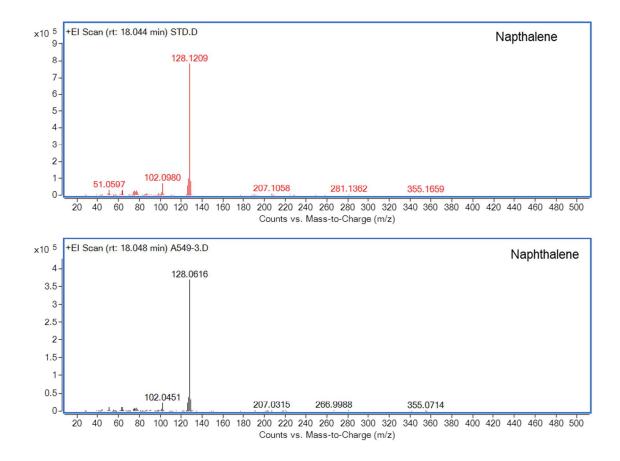

Compound 32 Allose is of very low level in the selected sample (A549-3), therefore its TIC peak was shown in another sample (H460-4)

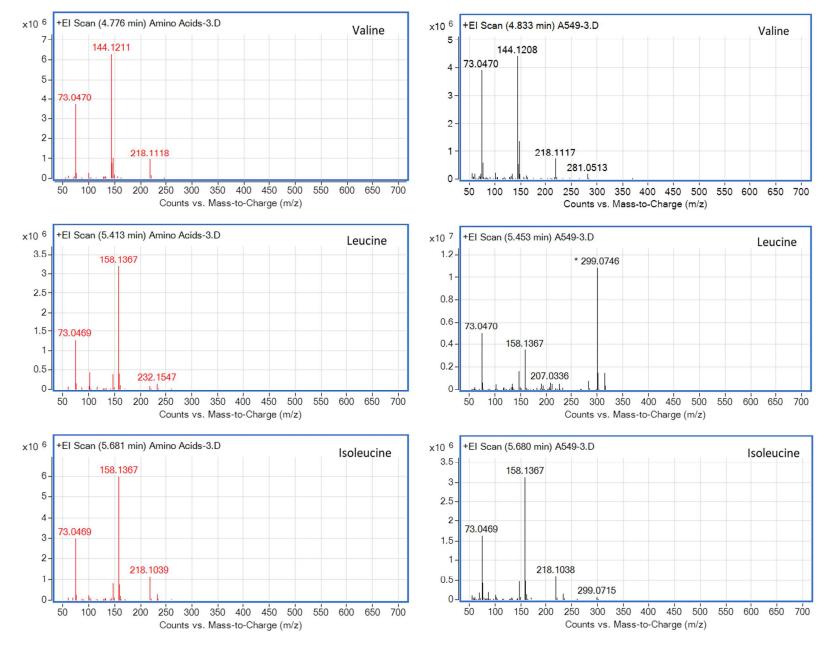

S11

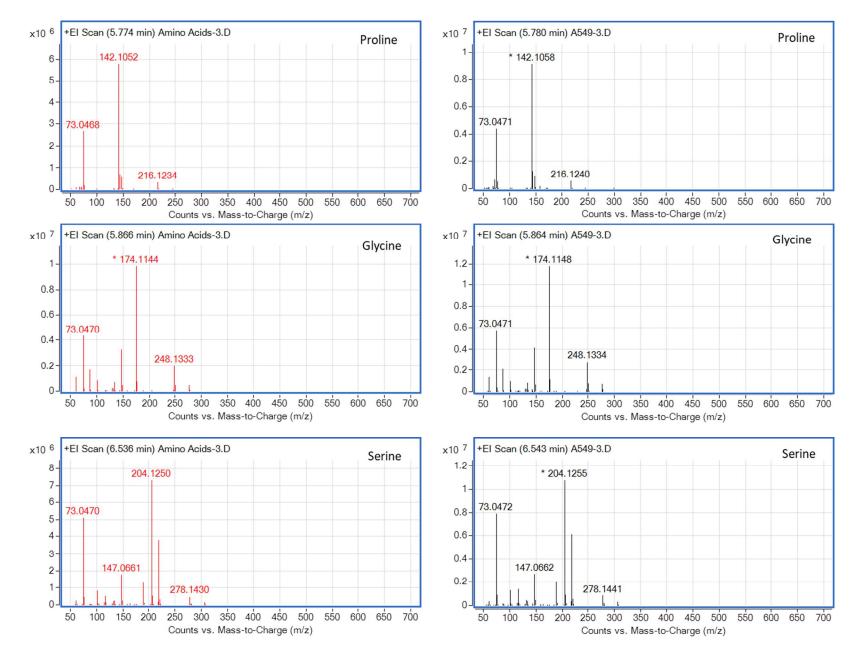

Counts vs. Mass-to-Charge (m/z)

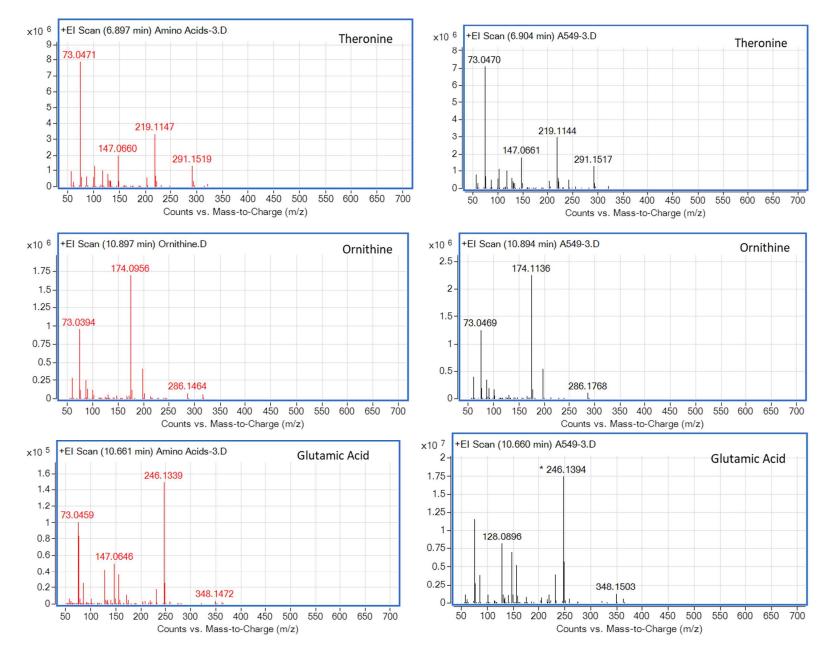

Counts vs. Mass-to-Charge (m/z)

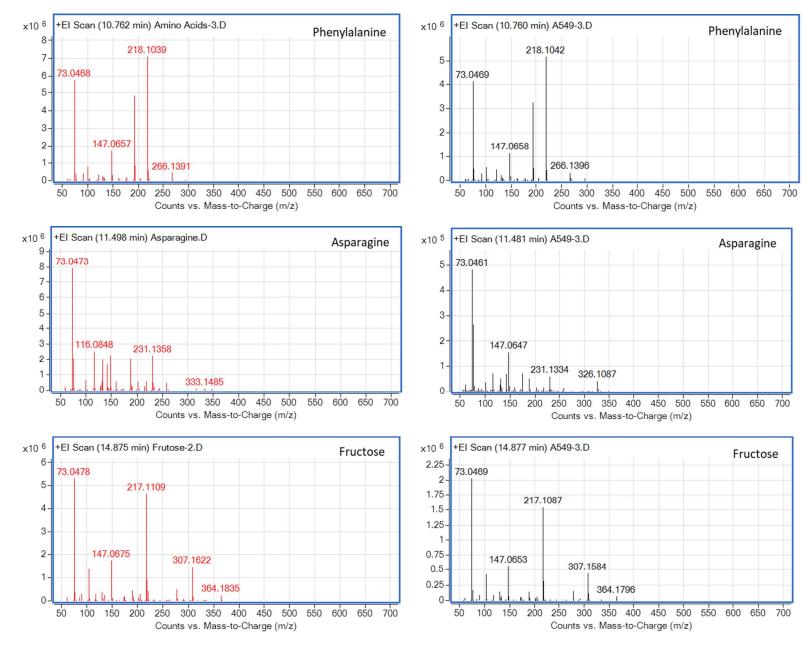


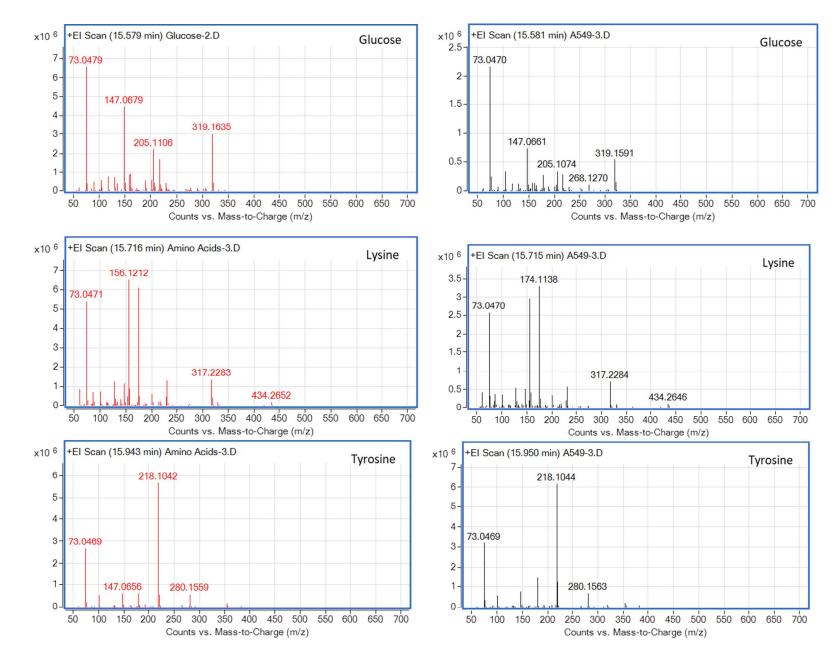

S14

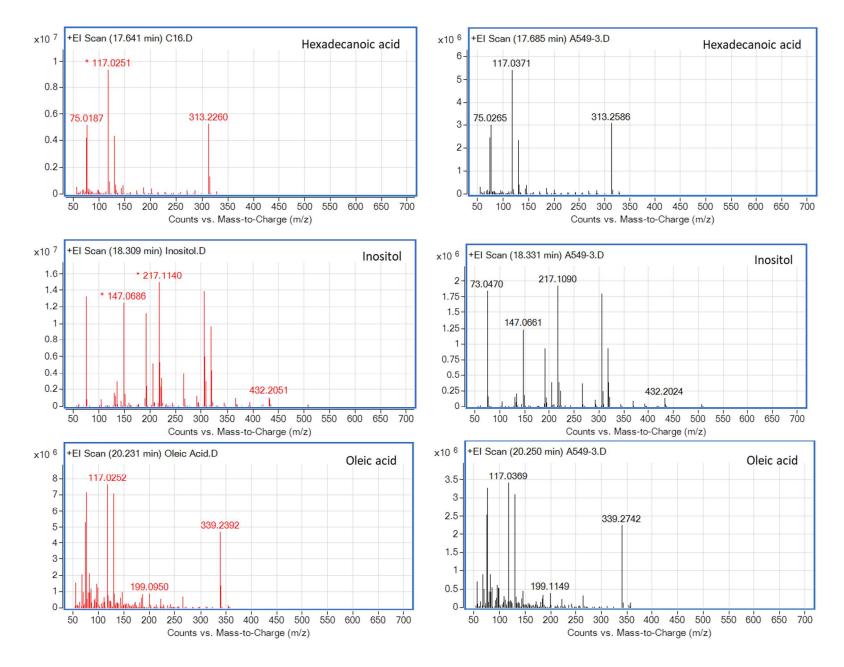

Counts vs. Mass-to-Charge (m/z)

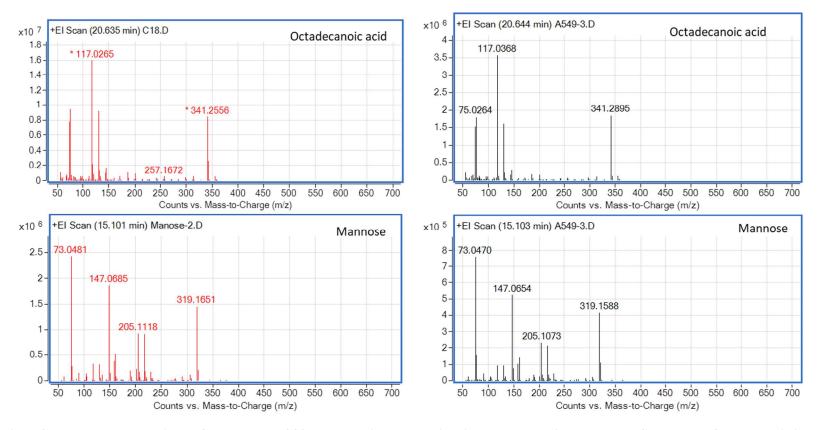


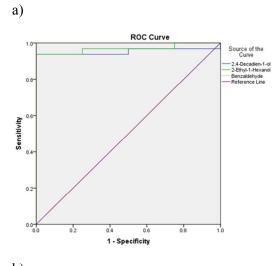




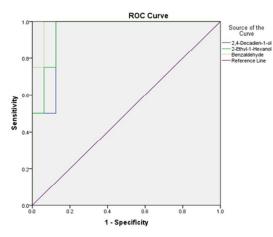

Figure S6. Parallel comparisons of spectrums of 13 VOCs in sample and in standards. Spectrum of standard is in red, spectrum of sample is in black.





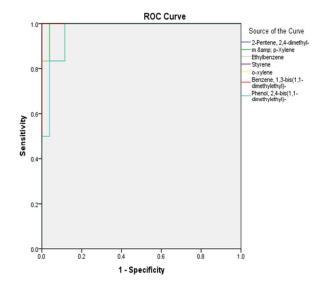


Figue S7. Parallel comparison of spectrums of 20 non-volatile metabolites in sample and in standards. Spectrum of standard is in red, spectrum of sample is in black



Area Under the Curve

Test Result Variable(s)	Area		
2,4-Decadien-1-ol	.953		
2-Ethyl-1-Hexanol	.969		
Benzaldehyde	1.000		



c)

Area Under the Curve

Test Result Variable(s)	Area
2,4-Decadien-1-ol	.938
2-Ethyl-1-Hexanol	.953
Benzaldehyde	.984

Area Under the Curve

Test Result Variable(s)	Area		
2-Pentene, 2,4-dimethyl-	1.000		
m & p-Xylene	.994		
Ethylbenzene	.981		
Styrene	1.000		
o-xylene	1.000		
Benzene, 1,3-bis(1,1- dimethylethyl)-	1.000		
Phenol, 2,4-bis(1,1- dimethylethyl)-	.968		

Figure S8. ROC analysis of a) cancer vs normal cell b) large cell vs. other NSCLC. c) SCLC vs NSCLC