Supporting information for

Cu^{I}-Catalyzed Asymmetric [3+2] Cycloaddition of Azomethine Ylides with Cyclobutenones

Javier Corpas, ${ }^{\text {a }}$ \$ Alberto Ponce, ${ }^{\text {a, }, \ddagger}$ Javier Adrio, ${ }^{*, a, b}$ and Juan C. Carretero* ${ }^{\text {a,b }}$${ }^{a}$ Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid,Cantoblanco, 28049 Madrid, Spain.${ }^{b}$ Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid,28049 Madrid, Spain
Table of Contents

1. General methods S2
2. Typical procedure for the asymmetric 1,3-dipolar cycloaddition S3
3. Preparation of racemic products for HPLC analysis S15
4. Regiochemical and stereochemical assignment S15
5. HPLC charts S16
6. NMR spectra collection S27

1. General methods

All air- and moisture-sensitive manipulations were carried out in anhydrous solvents and under argon. Toluene, tetrahydrofuran and acetonitrile were dried over the PureSolv MD purification system. Melting points were taken in open-end capillary tubes. Reactions were monitored by thin-layer chromatography carried out on 0.25 mm silica gel plates (230-400 mesh). Flash column chromatographies were performed using silica gel (230400 mesh). NMR spectra were recorded on 300 or 500 MHz instrument and calibrated using residual non-deuterated solvent $\left(\mathrm{CDCl}_{3}\right.$ or benzene- $\left.d_{6}\right)$ as internal reference ($\delta_{H}=7.26 \mathrm{ppm}, \delta_{C}=77.2 \mathrm{ppm}$ for CDCl_{3} and $\delta_{H}=7.16 \mathrm{ppm}, \delta_{C}=128.5 \mathrm{ppm}$ for benzened_{6}). HRMS spectra were recorded on a TOF mass spectrometer with electrospray ionization (ES) as the ionization source. The chromatograms of the racemic and enantiomerically enriched cycloadducts were obtained by HPLC or SFC. Arylcyclobutenones $\mathbf{2 a}, \mathbf{2 b}, \mathbf{2 c}, \mathbf{2 d}$, and $\mathbf{2 e}$ were prepared following the procedure reported in the literature. ${ }^{1} \alpha$-Iminoesters were prepared by condensation of methyl glycinate hydrochloride and the corresponding aldehydes. ${ }^{2}$ Due to their lability, all α iminoesters once isolated were immediately used in the 1,3-dipolar cycloaddition without further purification.

[^0]
2. Typical procedure for the asymmetric 1,3-dipolar cycloaddition.

(1S, 3R, 3aS, 5aR)-Methyl-3,5a-diphenyl-4-(oxo)heptahydrocyclobuta[c]pyrrole-1carboxylate (endo-3a).

To a solution of $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right] \mathrm{PF}_{6}(19.3 \mathrm{mg}, 0.052 \mathrm{mmol})$ and $(R)-$ Fesulphos ($28.6 \mathrm{mg}, 0.062 \mathrm{mmol}$) in toluene (8 mL), under nitrogen atmosphere, at $0^{\circ} \mathrm{C}$, a solution of α-iminoester 1a ($368.2 \mathrm{mg}, 2.08$ $\mathrm{mmol})$ in toluene (6.24 mL), $\mathrm{KO}^{\prime} \mathrm{Bu}(1 \mathrm{M}$ in THF) ($208 \mu \mathrm{l}, 0.208 \mathrm{mmol}$) and a solution of 3-phenylcyclobutenone 2a ($150 \mathrm{mg}, 1.04 \mathrm{mmol}$) in toluene (6 mL) were successively added. After 24 h at $0^{\circ} \mathrm{C}$, the mixture was diluted with 50 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered through a plug of celite $®$. The solvent was evaporated under reduced pressure and the residue was purified by silica gel flash chromatography (cyclohexane/EtOAc 6:1) to afford the cycloadduct endo-3a ($282.5 \mathrm{mg}, 84 \%$, colorless oil).
$[\boldsymbol{\alpha}] \mathbf{D}^{\mathbf{2 0}}:+35.8\left(\mathrm{c}=0.22, \mathrm{CHCl}_{3}\right), 90 \% e e$.
SFC: The enantiomeric excess was determined by SFC using a Chiralpak-ID-3 column [$\mathrm{CO}_{2} / \mathrm{MeOH}$ from 95:5 to $60: 40$ in $\left.8 \mathrm{~min}, 2.0 \mathrm{~mL} / \mathrm{min}(\lambda=230.4 \mathrm{~nm})\right]: t_{\mathrm{R}}=2.584 \mathrm{~min}$ $(1 R, 3 S, 3 a R, 5 a S)-\mathbf{3 a}$ and $3.072 \mathrm{~min}(1 S, 3 R, 3 a S, 5 a R)$-3a.
${ }^{1} H-N M R(300 ~ M H z, ~ C D C l i 3): ~ \delta 7.46-7.30(m, 10 H), 4.73(d, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~s}$, $1 \mathrm{H}), 3.92$ (ddd, $J=7.2,3.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{dd}, J=18.4,2.1 \mathrm{~Hz}, 1 \mathrm{H})$, 3.43 (dd, $J=18.4,3.9 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 205.1,170.7,142.2,136.6,128.7,128.5,128.2,127.4$, 127.3, 127.2, 71.3, 65.0, 56.9, 53.6, 52.2, 47.6.

HRMS (ESI+): calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NO}_{3}, 322.1443$; found, $322.1425([\mathrm{M}+\mathrm{H}], 100)$.
(1S, 3R, 3aS, 5aR)-Methyl-5a-phenyl-3-(4-methoxyphenyl)-4-(oxo)heptahydrocy-clobuta[c]-pyrrole-1-carboxylate (endo-3b).

Following the typical procedure, the reaction of 3phenylcyclobutenone 2a ($14.4 \mathrm{mg}, 0.1 \mathrm{mmol}$) and 1b (41.4 $\mathrm{mg}, 0.2 \mathrm{mmol}$) afforded, after purification by silica gel flash chromatography (cyclohexane/EtOAc 6:1), the cycloadduct endo-3b ($26.9 \mathrm{mg}, 77 \%$, yellow oil).
$[\alpha] \mathbf{D}^{20}:+44.8\left(\mathrm{c}=0.22, \mathrm{CHCl}_{3}\right), 98 \% e e$.
HPLC: The enantiomeric excess was determined by HPLC using a Daicel Chiralpak IB column, n-hexane/isopropanol 95:5, flow rate $0.7 \mathrm{~mL} / \mathrm{min}(\lambda=230.16 \mathrm{~nm}): t_{\mathrm{R}}=81.2 \mathrm{~min}$
$(1 R, 3 S, 3 a R, 5 a S)-\mathbf{3 b}$ and $103.1 \min (1 S, 3 R, 3 a S, 5 a R)-3 \mathbf{b}$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.46-7.28(\mathrm{~m}, 7 \mathrm{H}), 6.89(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.69(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~s}, 1 \mathrm{H}), 3.91-3.83(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.57-3.48(\mathrm{~m}$, $1 \mathrm{H}), 3.42$ (dd, $J=18.4,3.8 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 206.7,170.9,159.4,142.4,129.0,128.7,128.4,127.5$, 127.2, 113.9, 71.4, 64.7, 55.4, 53.6, 52.1, 47.7.

HRMS (ESI+): calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}_{4}, 352.1549$; found, 352.1536 ([M+H], 100).
(1S, 3R, 3aS, 5aR)-Methyl-5a-phenyl-3-(4-chlorophenyl)-4(oxo)heptahydrocyclo-buta[c]pyrrole-1-carboxylate (endo-3c).

Following the typical procedure, the reaction of 3phenylcyclobutenone $2 \mathbf{2 a}(14.4 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $\mathbf{1 c}(42.3 \mathrm{mg}$, 0.2 mmol) afforded, after purification by silica gel flash chromatography (cyclohexane/EtOAc 6:1), the cycloadduct endo-3c ($26.9 \mathrm{mg}, 84 \%$, white solid).
M.р.: $134-136{ }^{\circ} \mathrm{C}$.
$[\alpha] \mathrm{D}^{\mathbf{2 0}}:+26.2\left(\mathrm{c}=0.22, \mathrm{CHCl}_{3}\right), 81 \% e e$.
HPLC: The enantiomeric excess was determined by HPLC using a Daicel Chiralpak IB column, n-hexane/isopropanol 95:5, flow rate $0.7 \mathrm{~mL} / \mathrm{min}(\lambda=230.16 \mathrm{~nm}): t_{\mathrm{R}}=53.0 \mathrm{~min}$ $(1 R, 3 S, 3 a R, 5 a S)-\mathbf{3 c}$ and $61.1 \mathrm{~min}(1 S, 3 R, 3 a S, 5 a R)-3 \mathbf{c}$.
${ }^{1} H-N M R(300 ~ M H z, ~ C D C l ~ 3): ~ © ~ 7.44-7.30(m, ~ 9 H), ~ 4.70(d, ~ J=7.1 ~ H z, ~ 1 H), ~ 4.20 ~(s, ~$ 1 H), $3.90-3.85$ (m, 1H), 3.73 (s, 3H), 3.56-3.48 (m, 1H), 3.48-3.39 (m, 1H), 2.75 (bs, $1 \mathrm{H})$.
${ }^{13} \mathbf{C - N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 205.7,170.9,159.4,142.3,128.9,128.7,128.3,127.4$, 127.1, 113.8, 71.3, 64.7, 55.3, 53.5, 52.1, 47.6.

HRMS (ESI+): calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{Cl}, 356.1053$; found, 356.1052 ([M+H], 100).
(1S, 3R, 3aS, 5aR)-Methyl-5a-phenyl-3-(4-methoxycarbonyl)phenyl-4(oxo)hepta-hydrocyclobuta[c]pyrrole-1-carboxylate (endo-3d).

Following the typical procedure, the reaction of 3phenylcyclobutenone $\mathbf{2 a}(14.4 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $\mathbf{1 d}(47.0$ $\mathrm{mg}, 0.2 \mathrm{mmol})$ afforded, after purification by silica gel flash chromatography (cyclohexane/EtOAc 6:1), the cycloadduct endo-3d ($27.7 \mathrm{mg}, 73 \%$, yellow solid).
M.p.: $142-144{ }^{\circ} \mathrm{C}$.
$[\boldsymbol{\alpha}]^{\mathbf{2 0}}:+19.3\left(\mathrm{c}=0.22, \mathrm{CHCl}_{3}\right), 85 \%$ ee.
HPLC: The enantiomeric excess was determined by HPLC using a Daicel Chiralpak IB column, n-hexane/isopropanol 95:5, flow rate $0.7 \mathrm{~mL} / \mathrm{min}(\lambda=230.16 \mathrm{~nm}): t_{\mathrm{R}}=32.8 \mathrm{~min}$ ($1 R, 3 S, 3 a R, 5 a S)-\mathbf{3 d}$ and $35.6 \mathrm{~min}(1 S, 3 R, 3 a S, 5 a R)-\mathbf{3 d}$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.91(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-$ $7.26(\mathrm{~m}, 4 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~s}, 1 \mathrm{H}), 3.85-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.79$ (s, 3H), 3.61 ($\mathrm{s}, 3 \mathrm{H}$), $3.45-3.36(\mathrm{~m}, 1 \mathrm{H}), 3.32$ (dd, $J=18.6,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{bs}, 1 \mathrm{H})$. ${ }^{13}$ C-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 206.1,170.7,166.9,142.4,142.2,129.8,129.7,128.7$, 127.4, 127.3, 127.1, 76.0, 71.3, 64.5, 53.8, 52.18, 52.16, 47.4.

HRMS (ESI+): calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{NO}_{5}, 380.1498$; found, $380.1498([\mathrm{M}+\mathrm{H}], 100)$.
(1S, 3R, 3aS, 5aR)-Methyl-5a-phenyl-3-(3-methoxyphenyl)-4(oxo)heptahydrocyclo-buta[c]-pyrrole-1-carboxylate (endo-3e).

Following the typical procedure, the reaction of 3phenylcyclobutenone $\mathbf{2 a}(14.4 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $\mathbf{1 e}(41.4 \mathrm{mg}$, 0.2 mmol) afforded, after purification by silica gel flash chromatography (cyclohexane/EtOAc 6:1), the cycloadduct endo-3e ($27.1 \mathrm{mg}, 72 \%$, yellow oil).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}}:+48.6\left(\mathrm{c}=0.22, \mathrm{CHCl}_{3}\right), 85 \% e e$.
HPLC: The enantiomeric excess was determined by HPLC using a Daicel Chiralpak IB column, n-hexane/isopropanol 95:5, flow rate $0.7 \mathrm{~mL} / \mathrm{min}(\lambda=210.8 \mathrm{~nm})$: $t_{\mathrm{R}}=142.5 \mathrm{~min}$ $(1 S, 3 R, 3 a S, 5 a R)-3 e$ and $215.8 \mathrm{~min}(1 R, 3 S, 3 a R, 5 a S)-3 \mathbf{e}$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.45-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.04-6.96(\mathrm{~m}, 2 \mathrm{H})$, 6.88-6.81 (m, 1H), $4.70(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~s}, 1 \mathrm{H}), 3.93-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~s}$, $3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.59-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.42(\mathrm{dd}, J=18.5,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{bs}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 205.3,170.8,159.7,142.3,138.7,129.4,128.7,127.4$, 127.2, 119.4, 113.5, 112.8, 76.6, 71.3, 64.9, 55.3, 53.6, 52.1, 47.5.

HRMS (ESI+): calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}_{4}, 352.1549$; found, $352.1542([\mathrm{M}+\mathrm{H}], 100)$.
(1S, 3R, 3aS, 5aR)-Methyl-5a-phenyl-3-(3-methylphenyl)-4-(oxo)heptahydrocyclo-buta[c]pyrrole-1-carboxylate (endo-3f).

Following the typical procedure, the reaction of 3phenylcyclobutenone $\mathbf{2 a}(14.4 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $\mathbf{1 f}(38.2 \mathrm{mg}$, 0.2 mmol) afforded, after purification by silica gel flash chromatography (cyclohexane/EtOAc 6:1), the cycloadduct endo-3f ($27.9 \mathrm{mg}, 84 \%$, colorless oil).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}}:+74.4\left(\mathrm{c}=0.22, \mathrm{CHCl}_{3}\right), 86 \%$ ee.
SFC: The enantiomeric excess was determined by SFC using a Chiralpak ID-3 column $\left[\mathrm{CO}_{2} / \mathrm{MeOH} 95: 5 \mathrm{in} 60 \mathrm{~min}\right.$, flow rate $\left.2.0 \mathrm{~mL} / \mathrm{min}(\lambda=210.4 \mathrm{~nm})\right]: t_{\mathrm{R}}=4.996 \mathrm{~min}(1 R$, $3 S, 3 a R, 5 a S)$ - $\mathbf{3 f}$ and $8.527 \mathrm{~min}(1 S, 3 R, 3 a S, 5 a R)-\mathbf{3 f}$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.21-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.04(\mathrm{~m}, 7 \mathrm{H}), 7.00-6.95(\mathrm{~m}$, $1 \mathrm{H}), 4.55(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~s}, 1 \mathrm{H}), 3.78-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{dd}, J=$ $18.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{dd}, J=18.5,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{bs}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 205.4,170.9,142.3,138.0,136.9,128.9,128.7,128.3$, 127.7, 127.4, 127.2, 124.2, 71.4, 65.0, 53.6, 52.1, 47.6, 29.8, 21.6.

HRMS (ESI+): calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}_{3}, 336.1594$; found, $336.1600([\mathrm{M}+\mathrm{H}], 100)$.
(1S, 3R, 3aS, 5aR)-Methyl-5a-phenyl-3-(2-bromophenyl)-4-(oxo)heptahydrocyclo-buta[c]-pyrrole-1-carboxylate (endo-3g).

Following the typical procedure, the reaction of 3phenylcyclobutenone $\mathbf{2 a}(14.4 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $\mathbf{1 g}(51.2 \mathrm{mg}, 0.2$ mmol) afforded, after purification by silica gel flash chromatography (cyclohexane/EtOAc 6:1), the cycloadduct endo-3g ($30.0 \mathrm{mg}, 72 \%$, white solid).
M.р.: $150-152{ }^{\circ} \mathrm{C}$.
$[\boldsymbol{\alpha}]^{\mathbf{2 0}}:+70.2\left(\mathrm{c}=0.22, \mathrm{CHCl}_{3}\right), 92 \%$ ee.
SFC: The enantiomeric excess was determined by SFC using a Chiralpak-ID-3 column $\left[\mathrm{CO}_{2} / \mathrm{MeOH}\right.$ from 95:5 to $60: 40$ in $\left.8 \mathrm{~min}, 2.0 \mathrm{~mL} / \mathrm{min}(\lambda=230.4 \mathrm{~nm})\right]: t_{\mathrm{R}}=2.411 \mathrm{~min}$ $(1 R, 3 S, 3 a R, 5 a S)-3 \mathrm{~g}$ and $2.866 \mathrm{~min}(1 S, 3 R, 3 a S, 5 a R)-\mathbf{3 g}$.
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.68(\mathrm{dd}, J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{dd}, J=7.9,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{td}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~s}, 1 \mathrm{H}), 4.18(\mathrm{ddd}, J=6.8,3.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{dd}, J=$ $18.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{dd}, J=18.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{bs}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 205.5,170.9,142.6,136.5,132.7,129.5,128.7,128.6$, $127.6,127.2,123.2,73.1,70.8,63.6,54.0,52.1,46.9$.
HRMS (ESI+): calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{Br}, 400.0548$; found, 400.0518 ([M+H], 100).
(1S, 3R, 3aS, 5aR)-Methyl-5a-phenyl-3-(1-naphthyl)-4-(oxo)heptahydrocyclo-buta[c]pyrrole-1-carboxylate (endo-3h).

Following the typical procedure, the reaction of 3phenylcyclobutenone 2a $(14.4 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $\mathbf{1 h}$ (45.4 $\mathrm{mg}, 0.2 \mathrm{mmol}$) afforded, after purification by silica gel flash chromatography (cyclohexane/EtOAc 6:1), the cycloadduct endo-3h ($33.4 \mathrm{mg}, 90 \%$, white solid).
M.p.: $108-110{ }^{\circ} \mathrm{C}$.
$[\alpha]{ }^{20}:+23.4\left(c=0.22, \mathrm{CHCl}_{3}\right), 97 \% e e$.
SFC: The enantiomeric excess was determined by SFC using a Chiralpak-ID-3 column [CO2/ MeOH from 95:5 to $60: 40$ in $8 \mathrm{~min}, 2.0 \mathrm{~mL} / \mathrm{min}(\lambda=230.4 \mathrm{~nm})]: t_{\mathrm{R}}=3.597 \mathrm{~min}$ $(1 R, 3 S, 3 a R, 5 a S)-\mathbf{3 h}$ and $4.319(\mathrm{~min})(1 S, 3 R, 3 a S, 5 a R)-\mathbf{3 h}$.
${ }^{1} H-N M R(300 ~ M H z, ~ C D C l ~ 3): ~ \delta ~ 8.01-7.81 ~(m, ~ 5 H), ~ 7.58-7.35 ~(m, ~ 7 H), ~ 7.45-7.34 ~(m, ~ 7 H), ~$ $5.43(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~s}, 1 \mathrm{H}), 4.20-4.14(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{dd}, J=18.4$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{dd}, J=18.4,3.9 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 205.1,171.0,142.6,133.8,132.7,130.9,129.5,128.8$, 128.5, 127.6, 127.3, 126.4, 125.7, 125.6, 124.0, 122.2, 74.9, 70.9, 60.8, 54.0, 52.2, 47.3. HRMS (ESI+): calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{NO}_{3}, 372.1600$; found, 372.1609 ([M+H], 100).
(1S, 3R, 3aS, 5aR)-Methyl-5a-phenyl-3-(furan-2-yl)-4-(oxo)heptahydrocyclo-buta[c]pyrrole-1-carboxylate (endo-3i).

Following the typical procedure, the reaction of 3phenylcyclobutenone 2a ($14.4 \mathrm{mg}, 0.1 \mathrm{mmol}$) and $\mathbf{1 i}(33.4 \mathrm{mg}, 0.2$ mmol) afforded, after purification by silica gel flash chromatography (cyclohexane/EtOAc 6:1), the cycloadduct endo-3i ($24.9 \mathrm{mg}, 80 \%$, yellow oil).
$[\boldsymbol{\alpha}] \mathbf{D}^{\mathbf{2 0}}:+18.1\left(\mathrm{c}=0.22, \mathrm{CHCl}_{3}\right), 88 \% e e$.
HPLC: The enantiomeric excess was determined by HPLC using a Daicel Chiralpak IB column, n-hexane/isopropanol $95: 5$, flow rate $0.7 \mathrm{~mL} / \mathrm{min}(\lambda=210.8 \mathrm{~nm})$: $t_{\mathrm{R}}=44.2 \mathrm{~min}$ $(1 S, 3 R, 3 a S, 5 a R)-3 i$ and $57.8 \mathrm{~min}(1 R, 3 S, 3 a R, 5 a S)-3 i$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta 7.43-7.33(\mathrm{~m}, 6 \mathrm{H}), 6.47-6.34(\mathrm{~m}, 2 \mathrm{H}), 4.74(\mathrm{~d}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.13(\mathrm{~s}, 1 \mathrm{H}), 4.00-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.57-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.47-3.38(\mathrm{~m}$, $1 \mathrm{H}), 1.71$ (bs, 1H).
${ }^{13}$ C-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 204.4,170.6,150.3,142.5,141.8,128.8,127.3,110.6$, 107.8, 71.5, 59.1, 53.2, 52.3, 48.4, 29.8.

HRMS (ESI+): calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{4}, 312.1236$; found, $312.1232([\mathrm{M}+\mathrm{H}], 100)$.
(1S, 3R, 3aS, 5aR)-Methyl-5a-phenyl-3-(thiophen-2-yl)-4(oxo)heptahydrocyclo-buta[c]pyrrole-1-carboxylate (endo-3j).

Following the typical procedure, the reaction of 3phenylcyclobutenone 2a ($14.4 \mathrm{mg}, 0.1 \mathrm{mmol}$) and $\mathbf{1 j}$ ($36.6 \mathrm{mg}, 0.2$ mmol) afforded, after purification by silica gel flash chromatography (cyclohexane/EtOAc 6:1), the cycloadduct endo-3j ($24.5 \mathrm{mg}, 75 \%$, yellow oil).
$[\boldsymbol{\alpha}] \mathbf{D}^{\mathbf{2 0}}:+51.0\left(\mathrm{c}=0.22, \mathrm{CHCl}_{3}\right), 80 \%$ ee.
SFC: The enantiomeric excess was determined by SFC using a Chiralpak-IC column $\left[\mathrm{CO}_{2} / \mathrm{MeOH}\right.$ from $95: 5$ to $60: 40$ in $\left.8 \mathrm{~min}, 2.0 \mathrm{~mL} / \mathrm{min}(\lambda=230.4 \mathrm{~nm})\right]: t_{\mathrm{R}}=4.578 \mathrm{~min}$ $(1 S, 3 R, 3 a S, 5 a R)-\mathbf{3 j}$ and $6.07 \mathrm{~min}(1 R, 3 S, 3 a R, 5 a S)-\mathbf{3 j}$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.33-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.12(\mathrm{~m}, 2 \mathrm{H})$, 7.02 (d, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{dd}, J=5.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~s}$, $1 \mathrm{H}), 3.82$ (ddd, $J=7.1,3.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{dd}, J=18.6,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, 3.32 (dd, $J=18.6,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.82$ (bs, 1H).
${ }^{13}$ C-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 204.8,170.5,142.0,140.2,128.9,128.8,127.4,127.3$, 127.0, 126.0, 125.3, 125.0, 71.4, 61.1, 53.6, 52.2, 48.2, 29.9.

HRMS (ESI+): calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{3} \mathrm{~S}, 328.1007$; found, 328.0991 ([M+H], 100).
(1S, 3S, 3aS, 5aR)-Methyl-3-cyclohexyl-5a-phenyl-4-(oxo)heptahydrocyclo-buta[c]pyrrole-1-carboxylate (endo-3k).

Following the typical procedure, the reaction of 3phenylcyclobutenone $\mathbf{2 a}(14.4 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $\mathbf{1 k}(36.6 \mathrm{mg}, 0.2$ mmol) afforded, after purification by silica gel flash chromatography (cyclohexane/EtOAc 6:1), the cycloadduct endo-3k ($20.9 \mathrm{mg}, 64 \%$, colorless oil).
$[\boldsymbol{\alpha}]^{\mathbf{2 0}}:+60.1\left(\mathrm{c}=0.22, \mathrm{CHCl}_{3}\right), 72 \% e e$.

HPLC: The enantiomeric excess was determined by HPLC using a Daicel Chiralpak IA column, n-hexane/isopropanol 95:5, flow rate $0.7 \mathrm{~mL} / \mathrm{min}(\lambda=210.8 \mathrm{~nm})$: $t_{\mathrm{R}}=19.7 \mathrm{~min}$ $(1 R, 3 R, 3 a R, 5 a S)-3 k$ and $21.8 \mathrm{~min}(1 S, 3 S, 3 a S, 5 a R)-3 k$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.42-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 3 \mathrm{H}), 4.00(\mathrm{~s}, 1 \mathrm{H}), 3.81$ (ddd, $J=7.3,3.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.42-3.34(\mathrm{~m}, 1 \mathrm{H}), 3.30(\mathrm{dd}, J=18.6,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.20(\mathrm{dd}, J=9.9,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{bs}, 1 \mathrm{H}), 2.07-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.63(\mathrm{~m}$, $3 \mathrm{H}), 1.39-1.00(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C - N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta 207.0,171.2,142.7,128.7,127.2,127.1,75.2,71.9,68.2$, 52.9, 52.1, 48.0, 39.8, 31.6, 30.8, 26.4, 25.8, 25.7.

HRMS (ESI+): calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}_{3}, 328.1913$; found, 328.1907 ([M+H], 100).
(1S, 3R, 3aS, 5aR)-Methyl-5a-phenyl-3-(2-bromophenyl)-2-N-(benzyl)-4-(oxo)-heptahydro-cyclobuta[c]pyrrole-1-carboxylate (N -benzyl derivative of endo-3g).

To a solution of endo-3g ($116.1 \mathrm{mg}, 0.36 \mathrm{mmol}$) in THF (15.0 mL) at room temperature, was added successively $\mathrm{K}_{2} \mathrm{CO}_{3}(80 \mathrm{mg}, 0.58$ mmol) and benzyl bromide ($56 \mu \mathrm{~L}, 0.47 \mathrm{mmol}$). The mixture was stirred at $40^{\circ} \mathrm{C}$ for 12 h and then was cooled to room temperature. After that, water was added (10.0 mL) and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 8 \mathrm{~mL}$). The resulting organic phase was washed with brine ($2 \times 8 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (cyclohexane-EtOAc 3:1), to afford the N-benzyl derivative (142.8 mg, 95%, white solid).
M.p.: $158-160{ }^{\circ} \mathrm{C}$.
${ }^{1} H-N M R(300 ~ M H z, ~ C D C l ~ 3): ~ \delta ~ 7.71(d d, ~ J=7.8, ~ 1.5 ~ H z, ~ 1 H), ~ 7.66-7.60 ~(m, ~ 1 H), ~ 7.46-~$ $7.33(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.15(\mathrm{~m}, 3 \mathrm{H}), 6.98(\mathrm{dd}, J=7.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.45$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 4.05-3.97 (m, 2H), $3.94(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J=14.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~s}, 1 \mathrm{H}), 3.26(\mathrm{dd}, J=18.8,5.3 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 205.0,170.9,142.0,134.8,133.2,133.0,130.5,130.1$, $129.6,128.8,128.4,127.8,127.7,127.3,127.1,124.1,74.4,71.8,67.2,53.9,53.8,51.9$, 46.7.

HRMS (ESI+): calcd for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{BrNO}_{3}, 490.1018$; found, $490.1442([\mathrm{M}+\mathrm{H}], 100)$.
(1S, 3R, 3aS, 5aR)-Methyl-3-phenyl-5a-(4-methoxyphenyl)-4-(oxo)heptahydrocyclo-buta[c]pyrrole-1-carboxylate (endo-31).

Following the typical procedure, the reaction of 3-(4methoxyphenyl)cyclobutenone $\mathbf{2 b}$ ($17.4 \mathrm{mg}, 0.1 \mathrm{mmol}$) and 1a ($35.4 \mathrm{mg}, 0.2 \mathrm{mmol}$) afforded, after purification by silica gel flash chromatography (cyclohexane/EtOAc 6:1), the cycloadduct endo-31 ($28.1 \mathrm{mg}, 80 \%$, white solid).
M.p.: $134-136^{\circ} \mathrm{C}$.
$[\alpha] \mathrm{D}^{20}:+22.7\left(\mathrm{c}=0.22, \mathrm{CHCl}_{3}\right), 90 \% e e$.
SFC: The enantiomeric excess was determined by SFC using a Chiralpak-IC column $\left[\mathrm{CO}_{2} / \mathrm{MeOH}\right.$ from 95:5 to $60: 40$ in $\left.8 \mathrm{~min}, 2.0 \mathrm{~mL} / \mathrm{min}(\lambda=230.4 \mathrm{~nm})\right]: t_{\mathrm{R}}=5.1 \mathrm{~min}(1 S$, $3 R, 3 a S, 5 a R)-31$ and $6.085 \mathrm{~min}(1 R, 3 S, 3 a R, 5 a S)-31$.
${ }^{1} H$-NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.45-7.29(\mathrm{~m}, 7 \mathrm{H}), 6.97-6.92(\mathrm{~m}, 2 \mathrm{H}), 4.71(\mathrm{~d}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.17(\mathrm{~s}, 1 \mathrm{H}), 3.90-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{dd}, J=18.4$, $2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.38 (dd, $J=18.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}$).
${ }^{13}$ C-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 205.4,170.9,158.6,137.0,134.1,128.5,128.4,128.0$, 127.0, 114.0, 71.3, 64.8, 55.3, 53.6, 53.4, 52.0, 47.0.

HRMS (ESI+): calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{4}, 352.1549$; found, 352.1538 ([M+H], 100).
(1S, 3R, 3aS, 5aR)-Methyl-3-phenyl-5a-(4-fluorophenyl)-4-(oxo)heptahydrocyclo-buta[c]pyrrole-1-carboxylate (endo-3m).

Following the typical procedure, the reaction of 3-(4fluorophenyl)cyclobutenone $\mathbf{2 c}(16.2 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $\mathbf{1 a}$ (35.4 $\mathrm{mg}, 0.2 \mathrm{mmol}$) afforded, after purification by silica gel flash chromatography (cyclohexane/EtOAc 6:1), the cycloadduct endo-3m ($24.4 \mathrm{mg}, 72 \%$, yellow solid).
M.p.: $150-152{ }^{\circ} \mathrm{C}$.
$[\alpha] \mathrm{D}^{20}:+12.6\left(\mathrm{c}=0.22, \mathrm{CHCl}_{3}\right), 90 \% e e$.
SFC: The enantiomeric excess was determined by SFC using a Chiralpak-IC column $\left[\mathrm{CO}_{2} / \mathrm{MeOH}\right.$ from 95:5 to $60: 40$ in $\left.8 \mathrm{~min}, 2.0 \mathrm{~mL} / \mathrm{min}(\lambda=210.4 \mathrm{~nm})\right]: t_{\mathrm{R}}=3.989 \mathrm{~min}$ $(1 S, 3 R, 3 a S, 5 a R)-\mathbf{3 m}$ and $4.917 \mathrm{~min}(1 R, 3 S, 3 a R, 5 a S)-3 m$.
${ }^{1} H-N M R(300 ~ M H z, ~ C D C l ~ 3): ~ \delta ~ 7.43-7.31(m, ~ 7 H), ~ 7.10(t, ~ J=8.6 ~ H z, ~ 2 H), ~ 4.71(d, ~ J=~$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.16$ (s, 1H), 3.87 (ddd, $J=7.3,4.3,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.74 (s, 3H), 3.53 (dd, $J=$ $18.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.38 (dd, $J=18.4,4.3 \mathrm{~Hz}, 1 \mathrm{H}$).
${ }^{13}$ C-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 205.0,170.8,162.0(\mathrm{~d}, J=246.6 \mathrm{~Hz}), 138.1(\mathrm{~d}, J=3.3$ $\mathrm{Hz}), 137.0,129.2(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 128.5,128.2,127.1,115.6(\mathrm{~d}, J=21.5 \mathrm{~Hz}), 76.5,71.4$, 65.0, 53.9, 52.2, 47.1.
${ }^{19}$ F-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-115.4$.
HRMS (ESI+): calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{FNO}_{3}, 340.1349$; found, 340.1356 ([M+H], 100).

(1S, 3R, 3aS, 5aR)-Methyl-3-phenyl-5a-(2-methylphenyl)-4-(oxo)heptahydrocyclo-buta[c]pyrrole-1-carboxylate (endo-3n).

Following the typical procedure, the reaction of 3-(2methylphenyl)cyclobutenone $\mathbf{2 d}(15.8 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $\mathbf{1 a}(35.4 \mathrm{mg}$, 0.2 mmol) afforded, after purification by silica gel flash chromatography (cyclohexane/EtOAc 6:1), the cycloadduct endo-3n ($23.1 \mathrm{mg}, 69 \%$, white solid).
M.p.: $172-174{ }^{\circ} \mathrm{C}$.
$[\boldsymbol{\alpha}]^{\mathbf{2 0}}:+33.0\left(\mathrm{c}=0.22, \mathrm{CHCl}_{3}\right), 92 \%$ ee.
SFC: The enantiomeric excess was determined by SFC using a Chiralpak-IC column $\left[\mathrm{CO}_{2} / \mathrm{MeOH}\right.$ from 95:5 to $60: 40$ in $\left.8 \mathrm{~min}, 2.0 \mathrm{~mL} / \mathrm{min}(\lambda=210.4 \mathrm{~nm})\right]: t_{\mathrm{R}}=4.564 \mathrm{~min}$ $(1 S, 3 R, 3 a S, 5 a R)-3 n$ and $5.654 \min (1 R, 3 S, 3 a R, 5 a S)-3 n$.
${ }^{1} H-N M R ~(300 ~ M H z, ~ C D C l ~ i n): ~ \delta ~ 7.37-7.13(m, ~ 9 H), ~ 4.77(d, ~ J=7.1 ~ H z, ~ 1 H), ~ 4.10(s, ~ 1 H), ~$ 4.06-3.98 (m, 1H), 3.63-3.54 (m, 4H), 3.37 (dd, $J=18.4,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}-$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 206.1,171.4,139.0,137.0,136.0,132.3,129.3,128.5$, 128.1, 127.7, 127.1, 126.4, 75.0, 70.0, 64.4, 53.8, 52.1, 49.2, 21.4.

HRMS (ESI+): calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{3}, 336.1600$; found, 336.1586 ([M+H], 100).

(1S, 3S, 3aS, 5aS)-Methyl-3,3a,5a-triphenyl-4-(oxo)heptahydrocyclobuta[c]-

 pyrrole-1-carboxylate (endo-30).

Following the typical procedure, the reaction of 2,3diphenylcyclobutenone $\mathbf{2 e}(22.0 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $\mathbf{1 a}(35.4 \mathrm{mg}, 0.2$ mmol) afforded, after purification by silica gel flash chromatography (cyclohexane/EtOAc 6:1), the cycloadduct endo-30 ($22.3 \mathrm{mg}, 64 \%$, white solid).
M.p.: $152-154{ }^{\circ} \mathrm{C}$.
$[\boldsymbol{\alpha}] \mathrm{D}^{\mathbf{2 0}}:+30.3\left(\mathrm{c}=0.22, \mathrm{CHCl}_{3}\right), 84 \% e e$.
SFC: The enantiomeric excess was determined by SFC using a Chiralpak-IC column $\left[\mathrm{CO}_{2} / \mathrm{MeOH}\right.$ from 95:5 to $60: 40$ in $\left.8 \mathrm{~min}, 2.0 \mathrm{~mL} / \mathrm{min}(\lambda=210.4 \mathrm{~nm})\right]: t_{\mathrm{R}}=4.475 \mathrm{~min}$
($1 S, 3 S, 3 a S, 5 a S)$-3o and $4.745 \mathrm{~min}(1 R, 3 R, 3 a R, 5 a R)-\mathbf{3 o}$.
${ }^{1} H-N M R ~(300 ~ M H z, ~ B e n z e n e-~ d ~ d ~) ~: ~ \delta ~ 7.12-7.06 ~(m, ~ 3 H), ~ 7.04-6.84 ~(m, ~ 12 H), ~ 4.51 ~(s, ~ 1 H), ~$ $4.13(\mathrm{~s}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=18.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{~d}, J=18.9 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 207.8,171.2,139.9,136.3,135.8,128.3,128.1,128.0$ (bs), 127.9, 127.8, 127.2, 126.9, 126.6, 86.6, 73.3, 65.7, 55.1, 52.8, 52.5.

HRMS (ESI+): calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{NO}_{3}, 398.1756$; found, 398.1751 ([M+H], 100).
(1S, 3R, 3aS, 5aR)-Methyl-3, 5a-diphenyl-2-N-(benzyloxycarbonyl)-4-(oxo)-heptahydrocyclobuta[c]pyrrole-1-carboxylate (endo-7).

To a solution of endo-3a ($125 \mathrm{mg}, 0.39 \mathrm{mmol}$) in THF (16.0 mL) at room temperature, $\mathrm{K}_{2} \mathrm{CO}_{3}(95.8 \mathrm{mg}, 0.69 \mathrm{mmol})$ and benzyl chloroformate ($66 \mu \mathrm{~L}, 0.46 \mathrm{mmol}$) were successively added. The reaction was stirred at room temperature for 12 hours and the mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(10.0 \mathrm{~mL})$. Then the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 8 mL) and the resulting organic phase was washed with brine (20 mL), dried over MgSO_{4} and concentrated under reduce pressure. The residue was purified by silica gel flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{TBME}\right.$ (tert-butyl methyl ether) 80:1) to afford the compound endo-7 ($158 \mathrm{mg}, 89 \%$, orange solid).
M.p.: $168-170{ }^{\circ} \mathrm{C}$.
$[\alpha] \mathrm{D}^{20}:+41.7\left(\mathrm{c}=0.22, \mathrm{CHCl}_{3}\right), 90 \% e e$.
SFC: The enantiomeric excess was determined by SFC using a Chiralpak-IC column $\left[\mathrm{CO}_{2} / \mathrm{MeOH}\right.$ from 95:5 to $60: 40$ in $\left.8 \mathrm{~min}, 2.0 \mathrm{~mL} / \mathrm{min}(\lambda=210.4 \mathrm{~nm})\right]: t_{\mathrm{R}}=4.475 \mathrm{~min}$ $(1 R, 3 S, 3 a R, 5 a S)-7$ and $5.682 \mathrm{~min}(1 S, 3 R, 3 a S, 5 a R)-7$.
${ }^{1} \mathbf{H}$-NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.51$ (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.46-7.27(\mathrm{~m}, 9 \mathrm{H}), 7.21-7.13$ (m, 2H), 6.93-6.84 (m, 2H), 5.44 (d, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.96$ (s, 2H), 4.83 (s, 1H), 4.27 (ddd, $J=10.5,5.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{dd}, J=18.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{dd}, J$ $=18.1,5.2 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 200.6,170.9,155.1,142.6,138.2,135.7,129.2,128.7$, 128.4, 128.0, 127.8, 127.7, 127.6, 126.3, 126.2, 75.0, 72.2, 67.8, 65.6, 55.3, 52.6, 48.2.

HRMS (ESI+): calcd for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{NO}_{5}, 456.1811$; found, 456.1808 ([M+H], 100).

5-Benzyl 4-methyl (3aR, 4S, 6S, 6aS)-2-oxo-3a,6-diphenylhexahydro-5H-furo[2,3-c]pyrrole-4,5-dicarboxylate (endo-8).

To a solution of endo- $7(80.0 \mathrm{mg}, 0.18 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ at 0
${ }^{\circ} \mathrm{C} m$-chloroperbenzoic acid ($\leq 77 \%$ purity, $151.9 \mathrm{mg}, 0.88 \mathrm{mmol}$) was added. The mixture was stirred at room temperature for 24 h and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ and a solution of saturated $\mathrm{Na}_{2} \mathrm{SO}_{3}(5.0 \mathrm{~mL})$ were added. The organic phase was sequentially washed with a saturated solution of NaHCO_{3} ($5 \times 10 \mathrm{~mL}$), $\mathrm{H}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$ and brine ($2 \times 10 \mathrm{~mL}$), dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (cyclohexane-EtOAc 4:1), to afford the lactone endo-8 ($59.7 \mathrm{mg}, 72 \%$, white solid).
М.р.: $178-180{ }^{\circ} \mathrm{C}$.
$[\alpha] \mathbf{D}^{20}:+22.4\left(\mathrm{c}=0.22, \mathrm{CHCl}_{3}\right), 90 \% e e$.
SFC: The enantiomeric excess was determined by SFC using a Chiralpak-ID column [CO2 $\mathrm{CO}_{2} \mathrm{MeOH}$ from 95:5 to $\left.60: 40 \mathrm{in} 8 \mathrm{~min}, 2.0 \mathrm{~mL} / \mathrm{min}(\lambda=210.4 \mathrm{~nm})\right]: t_{\mathrm{R}}=5.390 \mathrm{~min}$ ($3 a S, 4 R, 6 R, 6 a R$)-8 and $5.615 \mathrm{~min}(3 a R, 4 S, 6 S, 6 a S)-\mathbf{8}$.
${ }^{1} H-N M R(300 ~ M H z, ~ C D C l ~ 3): ~ \delta ~ 7.65-7.57(m, ~ 2 H), ~ 7.49-7.29 ~(m, ~ 10 H), ~ 7.25-7.18 ~(m, ~$ $3 \mathrm{H}), 5.46$ (d, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.26$ (d, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.97$ (s , 1 H), 3.86 ($\mathrm{s}, 3 \mathrm{H}$), 3.18 (d, $J=18.0 \mathrm{~Hz}, 1 \mathrm{H}$), $2.90(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 172.5170 .5,141.0,135.7,135.6,129.8,128.5,128.4$, $128.3,128.1,128.0,127.8,127.5,125.3,88.1,70.0,67.9,66.0,56.3,53.0,39.1$.

HRMS (ESI+): calcd for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{NO}_{6}, 472.1760$; found, 472.1774 ([M+H], 100).
IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 1708, 1755, 1794.

(1S, 3R, 3aS, 4S, 5aR)-4-hydroxy-1-hydroxymethyl-3, 5a-diphenyl-2-N-(benzyloxycarbonyl)-heptahydrocyclobuta[c]pyrrole (endo-9).

To a solution of endo-7 ($134.4 \mathrm{mg}, 0.295 \mathrm{mmol}$) in THF (1.5 mL) a 1 M solution of lithium aluminum hydride in THF ($0.885 \mathrm{~mL}, 0.885$ mmol) was added dropwise at $-78^{\circ} \mathrm{C}$. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 4 h and then warmed to room temperature and stirred for 12 hours until completion. Ethyl acetate (3.5 mL) was added, the mixture was stirred for one hour and a saturated solution of aqueous ammonium chloride (5 mL) was added. The organic phase was separated, washed with water (10 mL) and brine (10 mL), dried with MgSO_{4}, filtered and evaporated at reduced pressure. After purification by flash chromatography (cyclohexane/EtOAc 3:1) diol endo-9 was obtained as white solid ($112.7 \mathrm{mg}, 89 \%$).
M.p.: $172-174{ }^{\circ} \mathrm{C}$.
$[\alpha] \mathbf{D}^{\mathbf{2 0}}:+36.5\left(\mathrm{c}=0.22, \mathrm{CHCl}_{3}\right), 90 \% e e$.
SFC: The enantiomeric excess was determined by SFC using a Chiralpak-IC column $\left[\mathrm{CO}_{2} / \mathrm{MeOH}\right.$ from 95:5 to $60: 40$ in $\left.8 \mathrm{~min}, 2.0 \mathrm{~mL} / \mathrm{min}(\lambda=210.4 \mathrm{~nm})\right]: t_{\mathrm{R}}=6.484 \mathrm{~min}$ $(1 S, 3 R, 3 \mathrm{aS}, 4 S, 5 \mathrm{a} R)-9$ and $7.726 \mathrm{~min}(1 R, 3 S, 3 \mathrm{a} R, 4 R, 5 \mathrm{aS})-9$.
${ }^{1} H-N M R\left(300 \mathrm{MHz}\right.$, Benzene- d_{6}): $\delta 7.25$ (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.13-7.04 (m, 5H), 7.02$6.92(\mathrm{~m}, 6 \mathrm{H}), 6.73-6.66(\mathrm{~m}, 2 \mathrm{H}), 5.28(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.82(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{dd}, J=11.7,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{dd}, J=11.7,3.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.08 (dd, $J=6.3,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.80(\mathrm{q}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.08$ (ddd, $J=10.4,6.8,3.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.80(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{ddd}, J=12.1,8.0,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{dd}, J=12.1$, $8.0 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 157.9,143.7,140.2,135.7,129.3,129.0,128.4,128.0$, 127.9, 127.5, 127.1, 126.3, 126.2, 73.6, 68.0, 65.3, 65.2, 63.9, 55.5, 50.4, 37.2.

HRMS (ESI+): calcd for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{NO}_{4}, 430.2018$ and 452.1838; found, 430.2012 ([M+H], 17), 452.1812 ([M+Na], 100).
(1S, 3R, 3aS, 4S, 5aR)-Methyl-3, 5a-diphenyl-2-N-(benzyloxycarbonyl)-4-hydroxy-heptahydrocyclobuta[c]pyrrole-1-carboxylate (endo-10).

To a solution of endo-7 ($150.0 \mathrm{mg}, 0.329 \mathrm{mmol}$) in $\mathrm{MeOH}(5.0 \mathrm{~mL})$ at room temperature $\mathrm{NaBH}_{4}(18.7 \mathrm{mg}, 0.49 \mathrm{mmol})$ was added and the mixture was stirred for 2 h . Then a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(5.0$ mL) was added and the resulting aqueous phase was extracted with
$\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The organic phase was washed successively with a saturated solution of $\mathrm{NaHCO}_{3}(2 \times 5 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$ and brine $(5.0 \mathrm{~mL})$. The resulting organic solution was dried with MgSO_{4} and concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (cyclohexane/EtOAc 1:1), to afford the alcohol endo10 ($98.7 \mathrm{mg}, 65 \%$, white solid).
M.p.: $154-156{ }^{\circ} \mathrm{C}$.
$[\alpha] \mathrm{D}^{\mathbf{2 0}}:+57.8\left(\mathrm{c}=0.22, \mathrm{CHCl}_{3}\right), 90 \% e e$.
SFC: The enantiomeric excess was determined by SFC using a Chiralpak-IA column $\left[\mathrm{CO}_{2} / \mathrm{MeOH}\right.$ from 95:5 to $60: 40$ in $\left.8 \mathrm{~min}, 2.0 \mathrm{~mL} / \mathrm{min}(\lambda=210.4 \mathrm{~nm})\right]: t_{\mathrm{R}}=5.281 \mathrm{~min}$ $(1 R, 3 S, 3 \mathrm{a}, 4 R, 5 \mathrm{aS})-10$ and $6.656 \mathrm{~min}(1 S, 3 R, 3 \mathrm{aS}, 4 S, 5 \mathrm{a} R)$-10.
${ }^{1} H-N M R ~\left(300 ~ M H z, ~ C 6 D_{6}\right): ~ \delta 7.85(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.22(\mathrm{~m}, 11 \mathrm{H}), 7.10-6.93(\mathrm{~m}$, $2 \mathrm{H}), 5.75$ (d, $J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 2 \mathrm{H}), 4.56(\mathrm{~s}, 1 \mathrm{H}), 4.10-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.92-3.82$
(m, 1H), $3.79(\mathrm{~s}, 3 \mathrm{H}), 2.87-2.65(\mathrm{~m}, 2 \mathrm{H}), 1.16(\mathrm{~d}, \mathrm{~J}=11.4 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.1,155.1,143.0,139.7,136.0,129.2,128.9,128.4$, $128.0,127.9,127.5,127.3,126.9,126.3,72.1,67.6,65.2,64.6,56.9,52.3,50.3,39.2$. HRMS (ESI+): calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{NO}_{5}, 458.1967$; found, 458.1922 ([M+H], 100).
(1R, 3S, 6S, 8R, 9S)-Benzyl-5-oxo-1,8-diphenyl-4-oxa-7-azatricycle[4.3.0.0 ${ }^{3,9}$]-nonane-7-carboxylate (endo-11).

To a solution of $\mathrm{PPh}_{3} \mathrm{AuCl}(3.25 \mathrm{mg}, 0.0066 \mathrm{mmol})$ and $\mathrm{AgOTf}(1.69 \mathrm{mg}$, $0.0066 \mathrm{mmol})$ in toluene $(1.0 \mathrm{~mL})$ at room temperature a suspension of alcohol endo- 10 ($30.0 \mathrm{mg}, 0.066 \mathrm{mmol}$) in toluene (1.5 mL) was added. Then, the mixture was stirred at $110{ }^{\circ} \mathrm{C}$ for 30 minutes and $\mathrm{Et}_{3} \mathrm{~N}(0.1 \mathrm{~mL}), \operatorname{AcOEt}(5.0$ $\mathrm{mL})$ and $\mathrm{H}_{2} \mathrm{O}(5.0 \mathrm{~mL})$ were succesively added. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 3 \mathrm{~mL})$ and the resulting organic phase was washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$ and brine ($2 \times 5 \mathrm{~mL}$), dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (cyclohexane/EtOAc 4:1), to afford the lactone 11 ($27.8 \mathrm{mg}, 99 \%$, white solid).
M.p.: $148-150{ }^{\circ} \mathrm{C}$.
$[\boldsymbol{\alpha}] \mathbf{D}^{20}:+48.2\left(\mathrm{c}=0.22, \mathrm{CHCl}_{3}\right), 90 \% e e$.
SFC: The enantiomeric excess was determined by SFC using a Chiralpak-IC column [$\mathrm{CO}_{2} / \mathrm{MeOH}$ from 95:5 to $60: 40$ in $\left.8 \mathrm{~min}, 2.0 \mathrm{~mL} / \mathrm{min}(\lambda=240.4 \mathrm{~nm})\right]: t_{\mathrm{R}}=5.315 \mathrm{~min}$ $(1 R, 3 S, 6 S, 8 R, 9 S)-11$ and $6.424 \min (1 S, 3 R, 6 R, 8 S, 9 R)-\mathbf{1 1}$
${ }^{1}$ H-NMR, COSY $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 1: 0.63\right.$ mixture of rotamers. The asterisk $*$ denotes
 the signal of the minor rotamer): $\delta 7.40-7.13(\mathrm{~m}, 15 \mathrm{H}), 5,63(\mathrm{~d}$, $\left.J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 5,51^{*}\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 5,42^{*}(\mathrm{~d}, J=1.5$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 5,30\left(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 5,29^{*}(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\left.\mathrm{H}_{4} / \mathrm{H}_{4}\right), 5.09\left(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{4} / \mathrm{H}_{4}\right)^{\prime}\right), 4.72(\mathrm{t}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}$, H_{1}), 4.69* ($\mathrm{t}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{1}$), $3.68\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{6}\right), 3.61^{*}(\mathrm{~m}, 1 \mathrm{H}$, H_{6}), 2.59 (dd, $J=12.0,4.2 \mathrm{~Hz}, \mathrm{H}_{2} / \mathrm{H}_{2}$), $2.40(\mathrm{dd}, J=11.9,4.7 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}_{2} / \mathrm{H}_{2}$.

${ }^{13}$ C-NMR, DEPT-135, HMQC, HMBC ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 1: 0.63$ mixture of rotamers. The asterisk * denotes the signal of the minor rotamer) : ${ }^{3} \delta 166.8\left(1 \mathrm{C}, \mathrm{C}_{\mathrm{h}}\right), 154.3\left(1 \mathrm{C}, \mathrm{C}_{\mathrm{f}}\right), 154.1^{*}\left(1 \mathrm{C}, \mathrm{C}_{\mathrm{f}}\right), 139.3$ ($1 \mathrm{C}, \mathrm{CH}_{\mathrm{ar}}$), 139.1* (1C, $\mathrm{CH}_{\mathrm{ar}}$), 137.0* ($1 \mathrm{C}, \mathrm{CH}_{\mathrm{ar}}$), 136.2 (1C, $\mathrm{CH}_{\mathrm{ar}}$), 135.8 ($1 \mathrm{C}, \mathrm{CH}_{\mathrm{ar}}$), $135.7^{*}\left(1 \mathrm{C}, \mathrm{CH}_{\mathrm{ar}}\right), 129.2\left(3 \mathrm{C}, \mathrm{CH}, \mathrm{CH}_{\mathrm{ar}}\right)$, $128.7\left(\mathrm{CH}_{\mathrm{ar}}\right), 128.6^{*}\left(\mathrm{CH}_{\mathrm{ar}}\right), 128.5\left(2 \mathrm{C}, \mathrm{CH}_{\mathrm{ar}}\right), 128.3^{*}\left(\mathrm{CH}_{\mathrm{ar}}\right)$, 127.9* ($\mathrm{CH}_{\mathrm{ar}}$), 127.6*, 127.5* (2C, CH, $\mathrm{CH}_{\mathrm{ar}}$), 127.3 (2C, CH, $\mathrm{CH}_{\mathrm{ar}}$), 125.3* ($\mathrm{CH}_{\mathrm{ar}}$), 125.24* ($\mathrm{CH}_{\mathrm{ar}}$), 125.3 (2C, $\mathrm{CH}, \mathrm{CH}_{\mathrm{ar}}$), 125.0* (2C, CH, $\mathrm{CH}_{\mathrm{ar}}$), 75.74* (1C, CH, C_{a}), $75.7\left(1 \mathrm{C}, \mathrm{CH}, \mathrm{C}_{\mathrm{a}}\right), 69.45\left(1 \mathrm{C}, \mathrm{CH}, \mathrm{C}_{\mathrm{d}}\right)$, 68.9* (1C, CH, C ${ }_{\text {d }}$), $67.7\left(1 \mathrm{C}, \mathrm{CH}_{2}, \mathrm{C}_{e}\right), 67.6^{*}\left(1 \mathrm{C}, \mathrm{CH}_{2}, \mathrm{C}_{\mathrm{e}}\right), 62.3^{*}\left(1 \mathrm{C}, \mathrm{CH}, \mathrm{C}_{\mathrm{g}}\right), 62.2$ $\left(1 \mathrm{C}, \mathrm{CH}, \mathrm{C}_{\mathrm{g}}\right), 60.3\left(1 \mathrm{C}, \mathrm{CH}, \mathrm{C}_{\mathrm{i}}\right), 56.5^{*}\left(1 \mathrm{C}, \mathrm{CH}, \mathrm{C}_{\mathrm{i}}\right), 55.1\left(1 \mathrm{C}, \mathrm{C}_{\mathrm{c}}\right), 54.5^{*}\left(1 \mathrm{C}, \mathrm{C}_{\mathrm{c}}\right), 36.3$ $\left(1 \mathrm{C}, \mathrm{CH}_{2}, \mathrm{C}_{\mathrm{b}}\right), 36.4^{*}\left(1 \mathrm{C}, \mathrm{CH}_{2}, \mathrm{C}_{\mathrm{b}}\right)$.

HRMS (ESI+): calcd for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{NO}_{4}, 426.1705$; found, 426.1532 ([M+H], 100).

3. Preparation of racemic products for HPLC analysis.

The racemic pyrrolidines were prepared according to the general procedure, but using (\pm)-Binap as ligand. The samples for HPLC analysis were dissolved in isopropyl alcohol for the determination of enantiomeric excess in the case of HPLC and dichloromethane for SFC, and used as quickly as possible to minimize the formation of decomposition products.

4. Regiochemical and stereochemical assignment

The relative and absolute configuration of endo- $\mathbf{3 g}$ was unequivocally established by X ray crystal structure analysis of its N -benzyl derivative.

CCDC 1828413 contains the supplementary crystallographic data. These data can be obtained free of charge from the Cambridge Crystallographic Data Center via https://www.ccdc.cam.ac.uk

[^1]Figure S1: X-Ray Structure of the N-benzyl derivative of endo-3g

Table S1. Crystal data of 7 (Hydrogen atoms removed for clarity).

Chemical formula	$\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{BrNO}_{3}$	
Formula weight	$490.38 \mathrm{~g} / \mathrm{mol}$	
Temperature	$200(2) \mathrm{K}$	
Wavelength	$0.71073 \AA$	
Crystal size	$0.076 \times 0.191 \times 0.427 \mathrm{~mm}$	
Crystal habit	clear colourless prismatic	
Crystal system	orthorhombic	
Space group	P 212121	
Unit cell dimensions	$\mathrm{a}=7.3574(3) \AA$	$\alpha=90^{\circ}$
	$\mathrm{b}=17.3491(9) \AA$	$\beta=90^{\circ}$
	$\mathrm{c}=18.2869(9) \AA$	$\gamma=90^{\circ}$
Volume	$2334.22(19) \AA^{3}$	
Z	4	
Density (calculated)	$1.395 \mathrm{~g} / \mathrm{cm}^{3}$	
Absorption coefficient	$1.789 \mathrm{~mm}^{-1}$	
F(000)	1008	

Table S2. Data collection and structure refinement

Diffractometer	Bruker APEX-II CCD
Theta range for data collection	2.23 to 25.35°
Index ranges	$\begin{aligned} & -7<=\mathrm{h}<=8,-20<=\mathrm{k}<=20,- \\ & 22<=1<=2 \end{aligned}$
Reflections collected	21048
Independent reflections	4274 [R (int) $=0.0597]$
Coverage of independent reflections	100.0\%
Absorption correction	multi-scan
Max. and min. transmission	0.8760 and 0.5150
Structure solution technique	direct methods
Structure solution program	SHELXS-97 (Sheldrick 2008)
Refinement method	Full-matrix least-squares on F^{2}
Refinement program	SHELXL-2014/7 (Sheldrick, 2014)
Function minimized	$\Sigma \mathrm{w}\left(\mathrm{Fo}^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}$
Data / restraints / parameters	4274 / 0 / 290
Goodness-of-fit on $\mathbf{F}^{\mathbf{2}}$	1.012
Final R indices	$\begin{array}{ll} 3399 \text { data } & \mathrm{R} 1=0.0361, \\ \mathrm{I}>2 \sigma(\mathrm{I}) & \text { wR2 }=0.0684 \end{array}$
	$\begin{array}{ll}\text { all data } & \begin{array}{l}\mathrm{R} 1=0.0561, \\ \mathrm{wR} 2=0.0746\end{array}\end{array}$
Weighting scheme	$\begin{aligned} & \mathrm{w}=1 /\left[\sigma^{2}\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}\right)+(0.0313 \mathrm{P})^{2}+0.3686 \mathrm{P}\right] \\ & \text { where } \mathrm{P}=\left(\mathrm{F}_{\mathrm{o}}^{2}+2 \mathrm{~F}_{\mathrm{c}}^{2}\right) / 3 \end{aligned}$
Absolute structure parameter	-0.0(0)
Largest diff. peak and hole	0.294 and -0.349 e^{-3}
R.M.S. deviation from mean	$0.051 \mathrm{e}^{\text {® }}{ }^{-3}$

5. HPLC charts.

endo-3a

Figure S2: (\pm)-endo-3a

Figure S3: (+)-endo-3a; 90\% ee

endo-3b

Figure S4: \pm)-endo-3b

Figure S5: (+)-endo-3b; 98\% ee

endo-3c

Figure S6: (\pm)-endo-3c

Figure S7: (+)-endo-3c; 81% ee

Figure S8: (\pm)-endo-3d

Figure S9: (+)-endo-3d; 85\% ee

endo-3e

Figure S10: (\pm)-endo-3e

Figure S11: (+)-endo-3e; 85\% ee

Figure S12: (\pm)-endo-3f

Figure S13: (+)-endo-3f; 86% ee

endo- $\mathbf{3 g}$

Figure S14: (\pm)-endo-3g

Figure S15: (+)-endo-3g; 92% ee

Figure S16: $(\pm$)-endo-3h

Figure S17: (+)-endo-3h; 97% ee

endo-3i

Figure S18: (\pm)-endo-3i

Figure S19: (+)-endo-3i; 88% ee

Figure S20: (\pm)-endo-3j

Figure S21: (+)-endo-3j; 80\% ee

endo-3k

Figure S22: (\pm)-endo-3k

Figure S23: (+)-endo-3k; 72\% ee

endo-31

Figure S24: (\pm)-endo-31

Figure S25: (+)-endo-31; 90% ee

endo- $\mathbf{3 m}$

Figure S26: (\pm)-endo-3m

Figure S27: (+)-endo-3m; 90\% ee

Figure S28: $(\pm$)-endo-3n

-

Figure S29: (+)-endo-3n; 92% ee

endo-30

Figure S30: (\pm)-endo-3o

Figure S31: (+)-endo-30; 84\% ee

endo-7

Figure S32: (\pm)-endo-7

Figure S33: (+)-endo-7, 90% ee

endo-8

Figure S34: (\pm)-endo-8

Figure S35: (+)-endo-8, 90% ee

endo-9

Figure S36: \pm)-endo-9

Figure S37: (+)-endo-9, 90 \% ee

endo-10

Figure S38: (\pm)-endo-10

Figure S39: (+)-endo-10, 90% ee

endo-11

Figure S40: (\pm)-endo-11

Figure S41: (+)-endo-11, 90 \% ee

6. NMR spectra collection

The existence of seven aliphatic carbons in compound endo-3b was determined by recording the ${ }^{13} \mathrm{C}$-NMR in benzene- d_{6}.

Scaling up in the region between 47.0-54.5 ppm:

Scaling up in the region 62.0-79.0 ppm

endo-3h

| | | |
| :--- | :--- | :--- | :--- |

[^2]
endo-3k

${ }^{19}$ F-NMR spectrum:

[^3]

Frequency $\left(\mathrm{cm}^{-1}\right)$

COSY spectrum:
(udd) it

NOESY spectrum:
(undd) T

DEPT 135 spectrum:

COSY spectrum:
(mdd) If

HMQC spectrum:
(mdd) it

HMBC spectrum:
(mdd) is

The existence of an equilibrium between rotamers was evidenced qualitatively from the performance of a 2D NOESY experiment of compound $\mathbf{1 2}$ in CDCl_{3} (see below). In addition to the signals corresponding to the nuclear Overhauser effect (nOe , indicated in yellow) strong peaks of cross between protons in equivalent equilibrium of a pair of rotamers were detected (peaks EXSY, indicated in blue). These two types of signals easily differentiate between them in the spectrum since they appear in different phases (positive peaks NOE, in yellow, negative peaks EXSY, in blue). ${ }^{4}$

4. For other examples of the use of this technique for the discrimination between rotamers, see: Rayyan, S.; Fossen, T.; Solheim Nateland, H.; Andersen, M. Phytochem. Anal., 2005, 16, 334 and references cited therein.

[^0]: 1. Sugimoto, K.; Hayashi, R.; Nemoto, H.; Toyooka, N.; Matsyua, Y. Org. Lett., 2012, 14, 3510.
 2. a) Cabrera, S.; Arrayás, R. G.; Carretero, J. C. J. Am. Chem. Soc. 2005, 127, 16394; b) Nájera, C.; Sansano, J. M. Curr. Org. Chem. 2003, 7, 1105; c) Cooper, D. M.; Grigg, R.; Hargreaves, S.; Kennewell, P.; Redpath, J. Tetrahedron 1995, 51, 7791.
[^1]: 3. Some aromatic carbons could not be assigned from the collected spectroscopic data due to the complexity of the spectrum around $125.0-140.0 \mathrm{ppm}$. These signals are indicated as $\mathrm{CH}_{\text {ar }}$.
[^2]: $\left.\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}\right)$

[^3]:

