Supporting Information - I

Novel aminoquinoline derivatives significantly reduce parasite load in Leishmania infantum infected mice

Jelena Konstantinović ${ }^{\text {f }}$, Milica Videnović\#, Stefania Orsini ${ }^{\dagger}$, Katarina Bogojević ${ }^{\text {II }}$, Sarah D’Alessandro ${ }^{¥}$, Diletta Scaccabarozzi ${ }^{\Psi}$, Nataša Terzić Jovanović ${ }^{\nabla}$, Luigi Gradoni ${ }^{\dagger}$, Nicoletta Basilico ${ }^{*, *}$, Bogdan A. Šolaja*, ${ }^{*, \$, \$}$
${ }^{\text {§ }}$ University of Belgrade, Faculty of Chemistry, Studentski trg 12-16, P.O. Box 51, 11158, Belgrade, Serbia
\# Faculty of Chemistry Innovative Centre, Studentski trg 12-16, 11158 Belgrade, Serbia
${ }^{\nabla}$ University of Belgrade, Institute of Chemistry, Technology, and Metallurgy, Njegoševa 12, 11000 Belgrade, Serbia
${ }^{\S}$ Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11158 Belgrade, Serbia
${ }^{¥}$ Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, Milan, Italy
${ }^{\Psi}$ Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
${ }^{\dagger}$ Unit of Vector-borne Diseases, Istituto Superiore di Sanità, Rome, Italy

Table of contents

Biological assays S3-S5
Methods for HPLC purity analyses S6-S8
Synthetic procedures S9-S26
In vitro activities against L. infantum and L. tropica promastigotes and S27
cytotoxicity against THP-1 human cells (Table S1)
In vitro activities against intramacrophage L. infantum amastigotes S28
(Table S2)
Antileishmanial activity in vivo (Table S3, Table S4) S29-S31
Nitric oxide and ROS production (Figure S1, Figure S2) S31

Biological assays

In vitro antileishmanial activity - assay on promastigotes. Promastigote stage of L. infantum strain MHOM/TN/80/IPT1 and L. tropica (MHOM/IT/2012/ISS3130) were cultured in Schneider's Drosophila medium (Lonza) supplemented with 10% heat-inactivated fetal calf serum (HyClone) at $22{ }^{\circ} \mathrm{C}$. The complete medium used for antileishmanial activity assay was RPMI (EuroClone) supplemented with 10% heat-inactivated fetal calf serum (EuroClone), 20 mM Hepes, and 2 mM L-glutamine. To estimate the 50% inhibitory concentration $\left(\mathrm{IC}_{50}\right)$, the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) method was used with modifications. ${ }^{1}$ Compounds were dissolved in DMSO and then diluted with medium to achieve the required concentrations. Drugs were placed in 96 wells round-bottom microplates and seven serial dilutions made. Amphotericin B was used as the reference anti-Leishmania drug. Parasites were diluted in complete medium to 5×10^{6} parasites $/ \mathrm{mL}$ and $100 \mu \mathrm{~L}$ of the suspension was seeded into the plates, incubated at $22{ }^{\circ} \mathrm{C}$ for 72 h and then $20 \mu \mathrm{~L}$ of MTT solution ($5 \mathrm{mg} / \mathrm{mL}$) was added into each well for 3 h . The plates were then centrifuged, the supernatants discarded and the resulting pellets dissolved in $100 \mu \mathrm{~L}$ of lysing buffer consisting of $20 \%(\mathrm{w} / \mathrm{v})$ of a solution of SDS (Sigma), 40% of N, N-dimethylformamide (Merck) in $\mathrm{H}_{2} \mathrm{O}$. The absorbance was measured spectrophotometrically at a test wavelength of 550 nm and a reference wavelength of 650 nm . The results are expressed as IC_{50} which is the dose of compound necessary to inhibit parasite growth by 50%; each IC_{50} value is the mean \pm standard deviation of separate experiments performed in duplicate.

In vitro intracellular amastigote susceptibility assays. THP-1 cells (human acute monocytic leukemia cell line) were maintained in RPMI supplemented with 10% FBS (EuroClone), $50 \mu \mathrm{M}$ 2-mercaptoethanol, 20 mM Hepes, 2 mM glutamine, at $37{ }^{\circ} \mathrm{C}$ in $5 \% \mathrm{CO}_{2}$. For Leishmania infections, THP-1 cells were plated at 5×10^{5} cells $/ \mathrm{mL}$ in 16 -chamber Lab-Tek culture slides (Nunc) and treated with $0.1 \mu \mathrm{M}$ phorbol myristate acetate (PMA, Sigma) for 48 h to achieve differentiation into macrophages. Cells were washed and infected with metacyclic L. infantum promastigotes at a macrophage/promastigote ratio of $1 / 10$ for 24 h . Cell monolayers were then washed and incubated in the presence of test compounds for 72 h . Slides were fixed with methanol and stained with Giemsa. The results are expressed as the percentage of infected
macrophages in treated and non-treated cells determined by light microscopyand as IC_{50} which is the dose of compound necessary to inhibit parasite growth by 50%; each IC_{50} value is the mean \pm standard deviation of separate experiments performed in duplicate.

Cytotoxicity against differentiated THP-1 cells. THP-1 cells were plated at 5×10^{5} cells $/ \mathrm{mL}$ in 96 wells flat bottom microplates and treated with $0.1 \mu \mathrm{M}$ PMA for 48 h to achieve differentiation into macrophages. Cells were then treated for 72 hours with serial dilutions of test compounds and cell viability evaluated using the MTT assay already described. ${ }^{2}$ The results are expressed as IC_{50}, which is the dose of compound necessary to inhibit cell growth by 50%.

Nitric oxide and ROS production. Immortalized mouse C57B1/6 bone marrow derived macrophages (BMDM) were generated as described ${ }^{3}$ and maintained in Dulbecco's minimal essential medium, DMEM (Euroclone, Italy) supplemented with 10\% FBS (EuroClone), 2 mM L-glutamine, 20 mM HEPES at $37^{\circ} \mathrm{C}$ in $5 \% \mathrm{CO}_{2}$. For NO and ROS production, BMDM were seeded (96-well plates; 1×10^{5} cells/well) and incubated overnight. Cells were then primed with $50 \mathrm{U} / \mathrm{ml}$ of Interferon-gamma (IFN- γ) for 2 h , and treated for 24 hours with different concentrations of $\mathbf{1 5}(5,2.5,1.25 \mu \mathrm{M})$ or $\mathbf{1 0}(2.5,1.25,0.625 \mu \mathrm{M})$. LPS $(100 \mathrm{ng} / \mathrm{mL})$ was used as positive control. Cell viability was determined by MTT assay. Nitric oxide production was measured in cell supernatants by Griess reaction. ${ }^{4}$ The Griess reagents consisted in a mixture of equal parts of Reagent A (1% [w/v] sulphanilamide), and Reagent B (0.1% [w/v] naphthylethylenediamine dihydrochloride, and $2.5 \%[\mathrm{w} / \mathrm{v}]$ phosphoric acid). Fifty microliters of supernatants were mixed with an equal volume of Griess mixture and the nitrite levels were quantified by extrapolation from NaNO_{2} standard curve. Absorbance was measured at 540 nm using a microplate reader (Synergy 4 microplate reader, Biotek, GE). ROS production was measured using the H_{2} DCFDA dye. After treatment of BMDM (as described above), the medium was discarded, the macrophages were washed with PBS, and incubated with H_{2} DCFDA $(20 \mu \mathrm{M}$ in PBS) for 30 min in the dark at $37{ }^{\circ} \mathrm{C}$ in $5 \% \mathrm{CO}_{2}$. The supernatants were transferred into a flatbottom black plate and fluorescence was measured spectrofluorometrically using an excitation wavelength of 485 nm and an emission wavelength of 528 nm by a Synergy 4, Biotek ${ }^{\circledR}$. Statistical analyses were performed with GraphPad Prism 5 software by using 1-way ANOVA test followed by Bonferroni's post hoc test.

Tolerability studies in mice. Groups of four or five healthy female C57B1/6 mice were treated per os (p.o.) or subcutaneous (s.c.) in a single dose with aminoquinolines suspended in 0.5% hydroxyethylcellulose-0.1\% Tween 80 previously dissolved in DMSO (for p.o.) or dissolved in sunflower oil (for s.c.). Individual mouse behavior and appearance was monitored two times a day for 30 days. Compounds proved to be tolerable in mice if all mice survived 30 days after administration and showed normal appearance and behavior. The study followed the International Guiding Principles for biomedical research involving animals, and was reviewed by a local Ethics Committee and approved by the Veterinary Directorate at the Ministry of Agriculture and Environmental Protection of Serbia (decision no. 323-07-02444/2014-05/1).

Antileishmanial activity in vivo. A standard protocol using a short-term infection of Balb/c mice with Leishmania infantum was employed. ${ }^{5}$ Briefly, a semi-purified suspension of 2×10^{6} Leishmania infantum amastigotes (WHO reference strain: MHOM/TN/1980/IPT-1), was inoculated via the tail vein in groups of Balb/c mice weighing 18-20 g. On day 7 after infection the increase in parasite load was monitored by killing one animal from the control group. Liver was weighed, from which imprints were made and parasites counted against 500 liver cell nuclei. Their numbers were expressed as arbitrary units, i.e. the number of parasites per liver cell nucleus multiplied by the weight of the organ in mg. The compounds were dissolved and administered per os ($\mathbf{1 5}$ in 0.1% Tween $/ 0.5 \%$ HEC in water; $\mathbf{1 0}$ in water) or s.c. ($\mathbf{1 5}$ in sunflower oil; $\mathbf{1 0}$ in water), for 4 or 5 consecutive days from day 9 after infection. A group of mice was left untreated and served as control. On days 13 or 14, the parasite load of killed mice was assessed as described above, and the mean parasite count of each treated group was expressed as a percentage of the mean parasite count of the control group. The study followed the International Guiding Principles for biomedical research involving animals (European Directive 2010/63/UE), and it was reviewed by a local Ethics Committee. The study was approved by the Directorate of Animal Health and Veterinary Drugs at the Ministry of Health of Italy (authorization no. 120/2015-PR).

Chemistry. Melting points were determined on a Boetius PMHK apparatus and were not corrected. IR spectra were recorded on a Thermo-Scientific Nicolet 6700 FT-IR diamond crystal spectrophotometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian Gemini-200 spectrometer (at 200 and 50 MHz , respectively), and a Bruker Ultrashield Advance III spectrometer (at 500 and 125 MHz , respectively) in the indicated solvent (vide infra) using TMS as the internal standard. Chemical shifts are expressed in ppm (δ) values and coupling constants (J) in Hz. ESI-MS (HRMS) spectra of the synthesized compounds were acquired on a Agilent Technologies 1200 Series instrument equipped with Zorbax Eclipse Plus C18 ($100 \times 2.1 \mathrm{~mm}$ i.d. $1.8 \mu \mathrm{~m}$) column and DAD detector (190-450 nm) in combination with a 6210 Time-of-Flight LC/MS instrument in positive and negative ion mode. The samples were dissolved in MeOH (HPLC grade). The selected values were as follows: capillary voltage 4 kV ; gas temperature 350 ${ }^{\circ} \mathrm{C}$; drying gas $12 \mathrm{~L} \mathrm{~min}^{-1}$; nebulizer pressure 45 psig ; fragmentator voltage: 70 V . Mass spectral analyses were done using electrospray ionization in positive ion mode on a Surveyor separations module coupled to a ThermoFinnigan TSQ AM triple quadrupole mass spectrometer. Gas chromatography tandem mass spectrometry (GC-MS) analyses were performed on an Agilent 7890A GC (Agilent) system equipped with a 5975C inert XL EI/CI MSD and a flame ionization detector (FID) connected by capillary flow technology through a 2 -way splitter with make-up gas. An HP-5 MS capillary column (Agilent Technologies, 25 mm i.d., 30 m length, $0.25 \mu \mathrm{~m}$ film thickness) was used. The flash chromatography was performed on Biotage SP1 system equipped with UV detector and FLASH 12+, FLASH 25+ or FLASH 40+ columns charged with KP-SIL ($40-63 \mu \mathrm{~m}$, pore diameter $60 \AA$), KP-C18-HS ($40-63 \mu \mathrm{~m}$, pore diameter $90 \AA$) or KPNH $(40-63 \mu \mathrm{~m}$, pore diameter $100 \AA)$ as an adsorbent. Elemental analyses were realized with an Elemental Vario EL III microanalyser. All tested compounds were fully characterized and their purity was $>95 \%$ (as determined by HPLC).

Methods for HPLC purity analyses

Compounds were analyzed for purity (HPLC) using a Agilent 1200 HPLC system equipped with Quat Pump (G1311B), Injector (G1329B) 1260 ALS, TCC 1260 (G1316A) and Detector 1260 DAD VL+ (G1315C). HPLC analysis was performed in two diverse systems for each compound. Method A: Zorbax Eclipse Plus C18 $2.1 \times 100 \mathrm{~mm}, 1.8 \mu$, S.N. USUXU04444 was used as the stationary phase. Eluent was made from the following solvents: 0.2% formic acid in water (A)
and methanol (B). The analysis were performed at the UV max of the compounds (at 254 nm for compounds 4, $\mathbf{6}$ and 21, 270 nm for compounds $\mathbf{3}$ and 5, 290 nm for 22 and 23 and 330 nm for compounds 1, 2, 10, 24 and 25) to maximize selectivity. Compounds were dissolved in methanol, final concentrations were $\sim 1 \mathrm{mg} / \mathrm{mL}$. Flow rate was $0.2 \mathrm{~mL} / \mathrm{min}$.
Compounds 1-6 and 21 were eluted using gradient protocol: $0-1 \mathrm{~min} 95 \% \mathrm{~A}, 1-6 \mathrm{~min} 95 \% \mathrm{~A} \rightarrow$ $5 \% \mathrm{~A}, 6-11 \mathrm{~min} 5 \% \mathrm{~A}, 11-14 \mathrm{~min} 5 \% \mathrm{~A} \rightarrow 95 \% \mathrm{~A}, 14-20 \mathrm{~min} 95 \% \mathrm{~A}$.

Compound 10 was eluted using gradient protocol: $0-1.5 \mathrm{~min} 95 \% \mathrm{~A}, 1.5-5 \mathrm{~min} 95 \% \mathrm{~A} \rightarrow 5 \% \mathrm{~A}, 5-$ $16 \mathrm{~min} 5 \% \mathrm{~A}, 16-18 \mathrm{~min} 5 \% \mathrm{~A} \rightarrow 95 \% \mathrm{~A}, 18-20 \mathrm{~min} 95 \% \mathrm{~A}$.

Compound 22 was eluted using gradient protocol: $0-1 \min 95 \% \mathrm{~A}, 1-3 \min 95 \% \mathrm{~A} \rightarrow 5 \% \mathrm{~A}, 3-7$ $\min 5 \% \mathrm{~A}, 7-8 \mathrm{~min} 5 \% \mathrm{~A} \rightarrow 95 \% \mathrm{~A}, 8-9 \mathrm{~min} 95 \% \mathrm{~A}$.

Compound 23 was eluted using gradient protocol: 0-2 min $95 \% \mathrm{~A}, 2-4 \min 95 \% \mathrm{~A} \rightarrow 5 \% \mathrm{~A}, 4-10$ $\min 5 \% \mathrm{~A}, 10-11 \mathrm{~min} 5 \% \mathrm{~A} \rightarrow 95 \% \mathrm{~A}, 11-12 \mathrm{~min} 95 \% \mathrm{~A}$.

Compounds 24 and 25 were eluted using gradient protocol: 0-1 min 95\%A, 1-2 min 95\%A \rightarrow $5 \% \mathrm{~A}, 2-10 \mathrm{~min} 5 \% \mathrm{~A}, 10-11 \mathrm{~min} 5 \% \mathrm{~A} \rightarrow 95 \% \mathrm{~A}, 11-12 \mathrm{~min} 95 \% \mathrm{~A}$.

Method B: Zorbax Eclipse Plus C18 $2.1 \times 100 \mathrm{~mm}, 1.8 \mu$, S.N. USUXU04444 was used as the stationary phase. Eluent was made from the following solvents: 0.2% formic acid in water (A) and acetonitrile (B). The analysis were performed at the UV max of the compounds (at 254 nm for compound 21, 270 nm for compounds 3, 4 and $\mathbf{6}$ and 330 nm for compounds 1, 2, 5, 10, 24 and 25) to maximize selectivity. Compounds were dissolved in methanol, final concentrations were $\sim 1 \mathrm{mg} / \mathrm{mL}$. Flow rate was $0.2 \mathrm{~mL} / \mathrm{min}$.
Compounds 1-6 and 21 were eluted using gradient protocol: 0-1 min 95\%A, 1-6 min 95\%A \rightarrow $5 \% \mathrm{~A}, 6-11 \mathrm{~min} 5 \% \mathrm{~A}, 11-14 \mathrm{~min} 5 \% \mathrm{~A} \rightarrow 95 \% \mathrm{~A}, 14-20 \mathrm{~min} 95 \% \mathrm{~A}$.
Compound 10 was eluted using gradient protocol: $0-1.5 \mathrm{~min} 95 \% \mathrm{~A}, 1.5-5 \mathrm{~min} 95 \% \mathrm{~A} \rightarrow 5 \% \mathrm{~A}, 5-$ $16 \mathrm{~min} 5 \% \mathrm{~A}, 16-18 \mathrm{~min} 5 \% \mathrm{~A} \rightarrow 95 \% \mathrm{~A}, 18-20 \mathrm{~min} 95 \% \mathrm{~A}$.

Compound 24 was eluted using gradient protocol: $0-1 \mathrm{~min} 95 \% \mathrm{~A}, 1-3 \mathrm{~min} 95 \% \mathrm{~A} \rightarrow 5 \% \mathrm{~A}, 3-8$ $\min 5 \% \mathrm{~A}, 8-10 \min 5 \% \mathrm{~A} \rightarrow 95 \% \mathrm{~A}, 10-11 \mathrm{~min} 95 \% \mathrm{~A}$.

Compound 25 was eluted using gradient protocol: $0-1 \mathrm{~min} 95 \% \mathrm{~A}, 1-3 \mathrm{~min} 95 \% \mathrm{~A} \rightarrow 5 \% \mathrm{~A}, 3-8$ $\min 5 \% \mathrm{~A}, 8-10 \mathrm{~min} 5 \% \mathrm{~A} \rightarrow 95 \% \mathrm{~A}$.

Method C: Zorbax Eclipse Plus C18 4.6 x 150mm, 1.8μ, S.N. USWKY01594 was used as the stationary phase. Eluent was made from the following solvents: 0.2% formic acid in water (A) and methanol (B). The analysis were performed at the UV max of the compounds (at 330 nm for
compound 15) to maximize selectivity. Compounds were dissolved in methanol, final concentrations were $\sim 1 \mathrm{mg} / \mathrm{mL}$. Flow rate was $0.5 \mathrm{~mL} / \mathrm{min}$.
Compound 15 was eluted using gradient protocol: 0-1 min $95 \% \mathrm{~A}, 1-6 \mathrm{~min} 95 \% \mathrm{~A} \rightarrow 5 \% \mathrm{~A}, 6-11$ $\min 5 \% \mathrm{~A}, 11-14 \mathrm{~min} 5 \% \mathrm{~A} \rightarrow 95 \% \mathrm{~A}, 14-16 \mathrm{~min} 95 \% \mathrm{~A}$.
Method D: Poroshell 120 EC-C18, $4.6 \times 50 \mathrm{~mm}, 2.7 \mu$, S.N. USCFU07797 was used as the stationary phase. Eluent was made from the following solvents: 0.2% formic acid in water (A) and acetonitrile (B). The analysis were performed at the UV max of the compounds (at 254 nm for compound 15) to maximize selectivity. Compounds were dissolved in methanol, final concentrations were $\sim 1 \mathrm{mg} / \mathrm{mL}$. Flow rate was $0.5 \mathrm{~mL} / \mathrm{min}$.

Compound 15 was eluted using gradient protocol: 0-1 min $95 \% \mathrm{~A}, 1-6 \mathrm{~min} 95 \% \mathrm{~A} \rightarrow 5 \% \mathrm{~A}, 6-11$ $\min 5 \% \mathrm{~A}, 11-13 \mathrm{~min} 5 \% \mathrm{~A} \rightarrow 95 \% \mathrm{~A}, 13-17 \mathrm{~min} 95 \% \mathrm{~A}$.

Method E: Poroshell 120 EC-C18, $4.6 \times 50 \mathrm{~mm}, 2.7 \mu$, S.N. USCFU07797 was used as the stationary phase. Eluent was made from the following solvents: 0.2% formic acid in water (A) and methanol (B). The analysis was performed at the UV max of the compounds (290 nm for compounds 22 and 23) to maximize selectivity. Compound was dissolved in methanol, final concentration was $\sim 1 \mathrm{mg} / \mathrm{mL}$. Flow rate was $0.5 \mathrm{~mL} / \mathrm{min}$.

Compounds 22 and 23 were eluted using gradient protocol: 0-1 $\mathrm{min} 95 \% \mathrm{~A}, 1-1.5 \mathrm{~min} 95 \% \mathrm{~A} \rightarrow$ $5 \% \mathrm{~A}, 1.5-6 \mathrm{~min} 5 \% \mathrm{~A}, 6-7 \mathrm{~min} 5 \% \mathrm{~A} \rightarrow 95 \% \mathrm{~A}, 7-8 \mathrm{~min} 95 \% \mathrm{~A}$.

Synthetic procedures

Procedure A: General procedure for nucleophilic substitution. ${ }^{6}$

A solution of 31^{7} (1 equiv) in DCM was cooled to $0{ }^{\circ} \mathrm{C}$, followed by addition of amine (1.5 equiv) and $\mathrm{Et}_{3} \mathrm{~N}$ (1.5 equiv). The reaction mixture was stirred on ice bath for 15 minutes, warmed to r.t. and after another 15 minutes heated to reflux for 1 h . The mixture was transferred to a separation funnel, water was added and desired product extracted with DCM. Combined organic layers were dried over anh. MgSO_{4} and the solvent was removed under reduced pressure.

Procedure B: General procedure for reduction using tin(II)-chloride.

Using slightly modified procedure from literature ${ }^{7}$, a mixture of 3-nitroquinoline derivative (1 equiv) and SnCl_{2} (5 equiv) in EtOH was stirred at r.t. under Ar atmosphere for 2 h . Solvent was removed under reduced pressure, followed by addition of sat. NaHCO_{3}. Crude product was extracted several times with EtOAc. Combined extracts were washed with brine, dried over anh. MgSO_{4} and the solvent was evaporated under reduced pressure.

Procedure C: General procedure for Boc-protecting group removal with TFA.

A solution of amine in TFA/DCM mixture ($\mathrm{v}: \mathrm{v} ; 1: 10$) was stirred at r.t. overnight. Solvents were evaporated under reduced pressure and the residue was dissolved in DCM. The organic layer was washed several times with 2.5 M NaOH and finally with water, dried over anh. MgSO_{4} and the solvent was removed under reduced pressure.

Procedure D: General procedure for reductive amination.

Amine (1.2-1.5 equiv) and appropriate aldehyde (1 equiv) were dissolved in $\mathrm{MeOH} / \mathrm{DCM}$ mixture ($\mathrm{v}: \mathrm{v} ; 2: 1$), glac. AcOH (1.5 equiv) was added, and the mixture was stirred under Ar atmosphere at r.t. After $3 \mathrm{~h}, \mathrm{NaBH}_{4}$ (6 equiv) was added, and stirring was continued for another 18 h . Solvent was removed under reduced pressure, and the residue was dissolved in DCM. The organic layer was washed with 2 M aqueous NH_{3} and extracted with DCM. The combined organic layers were washed with brine and dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Finally, the solvent was evaporeted under reduced pressure.

Procedure E: General procedure for Buchwald-Hartwig amination ${ }^{8}$

A suspension of $\operatorname{Pd}(\mathrm{OAc})_{2}(4.00 \mathrm{~mol} \%)$ and $\operatorname{SPhos}(8.00 \mathrm{~mol} \%)$ in dioxane was purged with Ar and stirred at r.t. After three minutes, solution of 45 (1 equiv) in dioxane, an appropriate amine (1.5 equiv) and $\mathrm{K}_{3} \mathrm{PO}_{4}$ (2.5 equiv) were added. The mixture was heated at $85^{\circ} \mathrm{C}$ for 24 h in a
sealed tube. After filtration the crude product was purified using column chromatography (dry flash, SiO_{2}, eluent $\mathrm{EtOAc} / \mathrm{MeOH}$ and flash, Biotage $\mathrm{SP} 1, \mathrm{NH}$ column, elunet $\mathrm{EtOAc} / \mathrm{MeOH}$).
N-(7-chloroquinolin-4-yl)propane-1,3-diamine (AQ3) and N-(quinolin-4-yl)butane-1,4-diamine (AQ8) were prepared according to known procedures.

tert-Butyl (3-aminopropyl)carbamate (S1).

$\mathrm{H}_{2} \mathrm{NHBoc}$ According to the procedure described in literature ${ }^{9}$, a solution of $\mathrm{Boc}_{2} \mathrm{O}$ $(518.2 \mathrm{mg}, 2.374 \mathrm{mmol})$ in $\mathrm{DCM}(10 \mathrm{~mL})$ was added dropwise to a solution of propane-1,3-diamine ($1 \mathrm{~mL}, 12 \mathrm{mmol}$) in DCM $(40 \mathrm{~mL})$. Reaction mixture was stirred at r.t. for 24 h . Thereafter the solvent was removed under reduced pressure and the product was purified using column chromatography (dry-flash, SiO_{2}, eluent $\mathrm{DCM} / \mathrm{MeOH}$ gradient $6 / 4 \rightarrow \mathrm{MeOH}$). Final product S1 was obtained as a yellowish oil ($228.0 \mathrm{mg}, 55 \%$). IR (ATR): 3350m, 2976s, $2934 \mathrm{~m}, 1692 \mathrm{~s}, 1525 \mathrm{~s}, 1391 \mathrm{~m}, 1366 \mathrm{~m}, 1277 \mathrm{~m}, 1252 \mathrm{~m}, 1173 \mathrm{~s}, 1060 \mathrm{w}, 871 \mathrm{w}, 780 \mathrm{w} \mathrm{cm}{ }^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 4.95 (bs, $\mathrm{H}-\mathrm{N}$), 3.24-3.20 (m, 2H, $\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-$), 2.79 (t, $2 \mathrm{H}, \mathrm{J}$ $=6.7, \mathrm{NH}_{2} \mathrm{CH}_{2}$-), 1.98 (bs, $-\mathrm{NH}_{2}$), $1.66-1.61$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$-), 1.44 ($\mathrm{s}, 9 \mathrm{H}$, $\left.\mathrm{NHCOOC}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 156.19, 79.11, 39.47, 38.30, 33.01, 28.39. HRMS: $m / z 175.14407$ corresponds to molecular formula $\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{H}^{+}$(error in ppm -0.20).

7-Chloroquinolin-4-amine (S2). ${ }^{10}$

To the solution of 4,7 -dichloroquinoline ($676 \mathrm{mg}, 3.41 \mathrm{mmol}$) in phenol $(3.2 \mathrm{~g}$, 34 mmol) stirring in two-necked flask at $110^{\circ} \mathrm{C}$, ammonium-carbonate (1.64 g , 17.1 mmol) was added in portions in a manner determined by intensity of foam developing in the flask. When addition was completed, the mixture was stirred at $165^{\circ} \mathrm{C}$ for 3 h . After cooling to r.t. diethylether was added. The solution was washed with 10% aqueous NaOH , extracted with diethylether and dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The product was purified using column chromatography (dry-flash, SiO_{2}, eluent $\mathrm{DCM} / \mathrm{MeOH}$). Final product $\mathbf{S 2}$ was obtained as white solid ($602 \mathrm{mg}, 99 \%$). M.p. $=137-139^{\circ} \mathrm{C}$. IR (KBr): 3459s, 3358s, 3241s, 2460m, 1698 m , $1639 \mathrm{~s}, 1612 \mathrm{~s}, 1576 \mathrm{~s}, 1508 \mathrm{~s}, 1445 \mathrm{~s}, 1378 \mathrm{~m}, 1327 \mathrm{~m}, 1284 \mathrm{~m}, 1201 \mathrm{~m}, 1130 \mathrm{~m}, 1078 \mathrm{~m}, 910 \mathrm{~m}$, $879 \mathrm{~m}, 855 \mathrm{~m}, 839 \mathrm{~m}, 813 \mathrm{~m}, 761 \mathrm{~m}, 675 \mathrm{w}, 644 \mathrm{w} \mathrm{cm}{ }^{-1} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta\right): 8.26$ (d, J $=5.5, \mathrm{H}-\mathrm{C}(2)), 8.05\left(\mathrm{~d}, J=8.9, \mathrm{H}-\mathrm{C}(5), 7.77(\mathrm{~d}, J=2.1, \mathrm{H}-\mathrm{C}(8)), 7.37\left(\mathrm{dd}, J_{1}=9.0, J_{2}=2.2, \mathrm{H}-\right.\right.$
$\mathrm{C}(6)), 6.62$ (d, $J=5.3, \mathrm{H}-\mathrm{C}(3)) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta$): $155.55,152.11,150.18$, $136.66,127.55,125.93,125.14,118.48,104.03$. HRMS: $m / z 179.03700$ corresponds to molecular formula $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{ClN}_{2} \mathrm{H}^{+}$(error in ppm -0.32).

N^{\prime}-(7-Chloro-3-nitroquinolin-4-yl)- N, N-diethylpropane-1,3-diamine (1).

Compound 1 was synthesized from $31(50.0 \mathrm{mg}, 0.206 \mathrm{mmol})$ and 3-diethylamino-1-propilamine ($0.05 \mathrm{~mL}, 0.32 \mathrm{mmol}$) by procedure A. The product was purified using column chromatography (dryflash, SiO_{2}, eluent $\mathrm{MeOH}, \mathrm{EtOAc} /\left(\mathrm{MeOH} / \mathrm{NH}_{3}=9 / 1\right)$ gradient $9 / 1 \rightarrow 1 / 1$ and flash chromatography, Biotage SP1, NH column, eluent EtOAc/Hex gradient $8 / 2$). Final product $\mathbf{1}$ was obtained as a bright yellow solid ($53.8 \mathrm{mg}, 78 \%$); softens at $50^{\circ} \mathrm{C}$. IR (ATR): $3122 \mathrm{~m}, 2968 \mathrm{~s}$, $2876 \mathrm{~m}, 2839 \mathrm{~m}, 1566 \mathrm{~s}, 1517 \mathrm{~s}, 1448 \mathrm{~m}, 1396 \mathrm{~m}, 1342 \mathrm{~m}, 1284 \mathrm{~m}, 1254 \mathrm{~s}, 1215 \mathrm{~m}, 1191 \mathrm{~m}, 1157 \mathrm{~m}$, $1116 \mathrm{~m}, 1088 \mathrm{w}, 1021 \mathrm{w}, 980 \mathrm{w}, 958 \mathrm{w}, 924 \mathrm{w}, 892 \mathrm{w}, 819 \mathrm{~m}, 774 \mathrm{w}, 719 \mathrm{w}, 596 \mathrm{w} \mathrm{cm}{ }^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 9.97 (s, H-N), 9.26 (s, H-C(2)), 8.19 (d, $J=8.9, \mathrm{H}-\mathrm{C}(5)$), 7.95 (d, $J=2.3$, $\mathrm{H}-\mathrm{C}(8)), 7.40\left(\mathrm{dd}, J_{1}=9.0, J_{2}=2.2, \mathrm{H}-\mathrm{C}(6)\right), 3.85\left(\mathrm{q}, 2 \mathrm{H}, J=6.0, \mathrm{ArNHCH}_{2}\right.$), $2.66(\mathrm{t}, 2 \mathrm{H}, J=$ 6.2, $\left.-\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 2.59\left(\mathrm{q}, 4 \mathrm{H}, J=7.1,-\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 1.94-1.89\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArNHCH}_{2} \mathrm{CH}_{2}-\right)$, $1.04\left(\mathrm{t}, 6 \mathrm{H}, J=7.1,-\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 150.88, 149.73, 148.64, $138.32,129.31,127.38,126.12,125.82,118.07,50.72,48.57,46.98,27.60,11.31$. HRMS: m / z 337.14259 corresponds to molecular formula $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{ClN}_{4} \mathrm{O}_{2} \mathrm{H}^{+}$(error in ppm 0.03); m/z 169.07533 corresponds to molecular formula $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{ClN}_{4} \mathrm{O}_{2} \mathrm{H}_{2}{ }^{2+}$ (error in ppm 2.39). HPLC purity $(\lambda=330 \mathrm{~nm})$ method A: RT 9.953 min , area 98.91%; method B: RT 8.598 min , area 95.44\%.

N^{4}-(7-Chloro-3-nitroquinolin-4-yl)- N^{1}, N^{1}-diethylpentane-1,4-diamine (2).

 Compound 2 was synthesized from 31 ($75 \mathrm{mg}, 0.31 \mathrm{mmol}$) and 2-amino-5-diethylaminopentane ($0.09 \mathrm{~mL}, 0.46 \mathrm{mmol}$) by procedure A. The product was purified using column chromatography (dryflash, SiO_{2}, eluent $\mathrm{EtOAc} /\left(\mathrm{MeOH} / \mathrm{NH}_{3}=9 / 1\right)$ gradient $8 / 2 \rightarrow 1 / 1$ and flash chromatography, Biotage SP1, NH column, eluent EtOAc/MeOH gradient EtOAc \rightarrow 97/3). Final product 2 was obtained as a bright yellow oil (88.0 mg , 78%). IR (ATR): $3272 \mathrm{w}, 2968 \mathrm{~m}$, 2930m, 2870w, 2804w, 1606m, 1578s, 1530m, 1450m, 1410m, 1382m, 1276m, 1249m, 1228m,
$1189 \mathrm{w}, 1155 \mathrm{~m}, 1110 \mathrm{w}, 950 \mathrm{w}, 883 \mathrm{w}, 822 \mathrm{w}, 778 \mathrm{w} \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 9.46 (d, $J=8.7, \mathrm{H}-\mathrm{N}$), 9.35 (s, H-C(2)), 8.13 (d, $J=9.2$, H-C(5)), 7.97 (d, $J=2.0, \mathrm{H}-\mathrm{C}(8)$), 7.43 (dd, $J_{l}=$ 9.2, $\left.J_{2}=2.3, \mathrm{H}-\mathrm{C}(6)\right), 4.4 .-4.32\left(\mathrm{~m}, 1 \mathrm{H}, \operatorname{ArNHCH}\left(\mathrm{CH}_{3}\right)-\right), 2.46\left(\mathrm{q}, 4 \mathrm{H}, J=7.1,-\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right)$, $2.38\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.3,-\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 1.82-1.69\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArNHCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}-\right), 1.58-1.46(\mathrm{~m}$, $\left.5 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}, \operatorname{ArNHCH}\left(\mathrm{CH}_{3}\right)-\right), 0.96\left(\mathrm{t}, 6 \mathrm{H}, J=7.2,-\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 151.27,150.38,148.56,138.71,129.56,127.75,126.52,126.19,117.79,54.63$, $52.24,46.74,36.77,23.73,22.12,11.51$. HRMS: $m / z 365.17392$ corresponds to molecular formula $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{ClN}_{4} \mathrm{O}_{2} \mathrm{H}^{+}$(error in ppm 0.10); $m / z 183.09120$ corresponds to molecular formula $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{ClN}_{4} \mathrm{O}_{2} \mathrm{H}_{2}{ }^{2+}$ (error in ppm 3.42). HPLC purity ($\lambda=330 \mathrm{~nm}$) method A: RT 10.947 min , area 98.75%; method B: RT 8.985 min , area 97.28%.

7-Chloro- N^{4}-[3-(diethylamino)propyl]quinoline-3,4-diamine (3).

Compound $\mathbf{3}$ was prepared by procedure B using $\mathbf{1}(10.3 \mathrm{mg}, 0.0306$ $\mathrm{mmol})$ and $\mathrm{SnCl}_{2}(29.0 \mathrm{mg}, 0.153 \mathrm{mmol})$. The product was purified using column chromatography (dry-flash, SiO_{2}, eluent $\left.\mathrm{DCM} /\left(\mathrm{MeOH} / \mathrm{NH}_{3}=9 / 1\right)=9 / 1\right)$. Final product 3 was obtained as a brown oil ($3.8 \mathrm{mg}, 40 \%$). IR (ATR): $3313 \mathrm{~s}, 2969 \mathrm{~s}, 2930 \mathrm{~s}, 2817 \mathrm{~m}, 1596 \mathrm{~s}, 1564 \mathrm{~s}, 1468 \mathrm{~m}, 1380 \mathrm{~s}, 1344 \mathrm{~s}, 1198 \mathrm{~m}, 1166 \mathrm{w}$, $1133 \mathrm{~m}, 1075 \mathrm{~m}, ~ 988 \mathrm{w}, 897 \mathrm{w}, 815 \mathrm{~m}, 767 \mathrm{w}, 673 \mathrm{w}, 548 \mathrm{w}, 436 \mathrm{w} \mathrm{cm}{ }^{-1} .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \delta\right): 8.41(\mathrm{~s}, \mathrm{H}-\mathrm{C}(2)), 7.92(\mathrm{~d}, J=2.1, \mathrm{H}-\mathrm{C}(8)), 7.85(\mathrm{~d}, J=9.2, \mathrm{H}-\mathrm{C}(5)), 7.35\left(\mathrm{dd}, J_{l}=\right.$ $\left.\left.9.2, J_{2}=2.1, \mathrm{H}-\mathrm{C}(6)\right), 4.77(\mathrm{bs}, \mathrm{H}-\mathrm{N}), 4.08(\mathrm{bs},-\mathrm{NH})_{2}\right), 3.38\left(\mathrm{t}, 2 \mathrm{H}, J=6.0, \mathrm{ArNHCH}_{2}\right), 2.73-$ $2.68\left(\mathrm{~m}, 6 \mathrm{H},-\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2},-\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 1.90-1.85\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArNHCH}_{2} \mathrm{CH}_{2}-\right), 1.12(\mathrm{t}, 6 \mathrm{H}$, $\left.J=7.2,-\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 144.58, 144.24, 135.92, 131.03, 130.74, $128.58,126.21,122.17,121.93,51.14,46.38,45.27,26.88,10.66$. HRMS: $m / z 307.16817$ corresponds to molecular formula $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{ClN}_{4} \mathrm{H}^{+}$(error in ppm -0.76); m/z 154.08791 corresponds to molecular formula $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{ClN}_{4} \mathrm{H}_{2}{ }^{2+}$ (error in ppm 0.48). HPLC purity ($\lambda=270$ $\mathrm{nm})$ method A: RT 9.241 min , area 97.15%; method B: RT 7.692 min , area 95.76%.

7-Chloro- N^{4}-[4-(diethylamino)-1-methylbutyl]quinoline-3,4-diamine (4).

Compound $\mathbf{4}$ was prepared by procedure B using $2(64.7 \mathrm{mg}, 0.177$ $\mathrm{mmol})$ and $\mathrm{SnCl}_{2}(168.1 \mathrm{mg}, 0.8865 \mathrm{mmol})$. The product was purified using column chromatography (dry-flash, SiO_{2}, eluent $\left.\mathrm{DCM} /\left(\mathrm{MeOH} / \mathrm{NH}_{3}=9 / 1\right)=9 / 1\right)$. Final product 4 was obtained as a brown oil ($35.8 \mathrm{mg}, 60 \%$). IR (ATR): 3323s, 2968s, $2816 \mathrm{~m}, 1597 \mathrm{~s}, 1564 \mathrm{~s}, 1488 \mathrm{~m}, 1378 \mathrm{~s}, 1347 \mathrm{~s}$, $1196 \mathrm{w}, 1131 \mathrm{~m}, ~ 984 \mathrm{w}, ~ 900 \mathrm{w}, ~ 876 \mathrm{w}, 820 \mathrm{~m}, 767 \mathrm{~m}, 548 \mathrm{w}, 429 \mathrm{w} \mathrm{cm}{ }^{-1} .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\mathrm{CDCl}_{3}, \delta$): 8.45 (s, H-C(2)), 7.94 (d, $J=2.3, \mathrm{H}-\mathrm{C}(8)$), 7.73 (d, $J=8.9$, H-C(5)), 7.37 (dd, $J_{l}=$ $\left.8.9, J_{2}=2.3, \mathrm{H}-\mathrm{C}(6)\right), 3.78$ (bs, $-\mathrm{N} \mathrm{H}_{2}$ exchangeable with $\mathrm{D}_{2} \mathrm{O}$), 3.56 (bs, $\mathrm{H}-\mathrm{N}$ exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right)$, 2.57-2.37 (m, $\left.7 \mathrm{H}, \operatorname{ArNHCH}\left(\mathrm{CH}_{3}\right)-,-\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2},-\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right), 1.68-1.49(\mathrm{~m}, 4 \mathrm{H}$, $\left.\operatorname{ArNHCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}-, \operatorname{ArNHCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{2}-\right), 1.14\left(\mathrm{~d}, 3 \mathrm{H}, J=6.2, \operatorname{ArNHCH}\left(\mathrm{CH}_{3}\right)-\right), 1.00(\mathrm{t}$, $\left.6 \mathrm{H}, J=7.1,-\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 144.64, 144.42, 134.89, 131.52, 131.18, 128.75, 126.56, 122.89, 121.77, 52.90, 51.18, 46.87, 36.42, 23.97, 21.94, 11.47. HRMS: $m / z 335.19970$ corresponds to molecular formula $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{ClN}_{4} \mathrm{H}^{+}$(error in ppm 0.00); m/z 168.10399 corresponds to molecular formula $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{ClN}_{4} \mathrm{H}_{2}{ }^{2+}$ (error in ppm 2.97). HPLC purity method A $(\lambda=254 \mathrm{~nm})$: RT 8.866 min , area 95.57%; method $B(\lambda=270 \mathrm{~nm})$: RT 7.883 min , area 95.56%.
N-(1-adamantylmethyl)- N^{\prime}-(7-chloro-3-nitroquinolin-4-yl)propane-1,3-diamine (5).

A solution of $33(62.0 \mathrm{mg}, 0.279 \mathrm{mmol})$ in $\mathrm{DCM}(3 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$. Then, $31(45.2 \mathrm{mg}, 0.186 \mathrm{mmol})$ was added and stirring continued at same temperature for 15 min . Mixture was allowed to warm to r.t. and after another 15 minutes heated to reflux for 2 h . Water was added and product extracted several times with DCM. Combined organic layers were dried over anh. NaSO_{4} and the solvent was evaporated under reduced pressure. The product was purified using column chromatography (dry-flash, SiO_{2}, eluent $\mathrm{EtOAc} \rightarrow \mathrm{EtOAc} / \mathrm{MeOH}=1 / 1$ and flash chromatography, Biotage SP1, NH column, eluent EtOAc/Hex gradient 6/4 \rightarrow 8/2). Final product 5 was obtained as a bright yellow oil ($57.5 \mathrm{mg}, 72 \%$). IR (ATR): 3334w, 3246w, 2901s, 2844s, 1582s, 1530m, 1449m, 1416m, 1342m, 1279m, 1248m, 1218m, 1187m, 1155m, 1118m, $952 \mathrm{w}, 899 \mathrm{w}, 826 \mathrm{w}, 775 \mathrm{w}, 704 \mathrm{w}, 626 \mathrm{w} \mathrm{cm}{ }^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 9.74 (bs, $\mathrm{H}-\mathrm{N}$
exchangeable with $\mathrm{D}_{2} \mathrm{O}$), 9.32 ($\mathrm{s}, \mathrm{H}-\mathrm{C}(2)$), $8.26(\mathrm{~d}, J=9.2, \mathrm{H}-\mathrm{C}(5)), 7.96(\mathrm{~d}, J=2.1, \mathrm{H}-\mathrm{C}(8)$), 7.41 (dd, $\left.J_{1}=9.0, J_{2}=2.2, \mathrm{H}-\mathrm{C}(6)\right), 3.98-3.95\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArNHCH}_{2}-\right), 2.80(\mathrm{t}, 2 \mathrm{H}, J=6.3$, $\mathrm{CH}_{2} \mathrm{NHCH}_{2} \mathrm{Ad}$), $2.24\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{Ad}\right), 1.97-1.92\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArNHCH}_{2} \mathrm{CH}_{2}{ }^{-}\right.$, -Ad), 1.72-1.70 (m, $3 \mathrm{H},-\mathrm{Ad}), 1.63-1.60(\mathrm{~m}, 3 \mathrm{H},-\mathrm{Ad}), 1.48(\mathrm{~d}, 6 \mathrm{H}, J=2.1,-\mathrm{Ad}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $151.20,150.38,148.63,138.59,129.39,127.96,126.14,125.90,118.00,62.96,48.14,47.89$, $40.86,37.16,33.47,30.73,28.41$. HRMS: $m / z 429.20526$ corresponds to molecular formula $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{ClN}_{4} \mathrm{O}_{2} \mathrm{H}^{+}$(error in ppm 0.20); m/z 215.10664 corresponds to molecular formula $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{ClN}_{4} \mathrm{O}_{2} \mathrm{H}_{2}{ }^{2+}$ (error in ppm 1.92). HPLC purity method $\mathrm{A}(\lambda=270 \mathrm{~nm})$: RT 11.811 min , area 95.51%; method $B(\lambda=330 \mathrm{~nm})$: RT 10.885 min , area 97.86%.

N^{4}-\{3-[(1-adamantylmethyl)amino]propyl\}-7-chloroquinoline-3,4-diamine (6).

Compound 6 was synthesized by procedure B using 5 (36.7 $\mathrm{mg}, 0.086 \mathrm{mmol}$) and $\mathrm{SnCl}_{2}(81.2 \mathrm{mg}, 0.428 \mathrm{mmol})$. The product was purified using column chromatography (dryflash, SiO_{2}, eluent $\left.\mathrm{DCM} /\left(\mathrm{MeOH} / \mathrm{NH}_{3}=9 / 1\right)=9 / 1\right)$. Final product 6 was obtained as a yellowish foam ($24.2 \mathrm{mg}, 71 \%$); softens at $30-32{ }^{\circ} \mathrm{C}$. IR (ATR): $3312 \mathrm{~m}, 2901 \mathrm{~s}, 2845 \mathrm{~s}, 1597 \mathrm{~m}, 1564 \mathrm{~m}, 1453 \mathrm{~m}, 1344 \mathrm{~m}, 1198 \mathrm{w}$, $1119 \mathrm{w}, 897 \mathrm{w}, 814 \mathrm{w}, 734 \mathrm{w}, 548 \mathrm{w} \mathrm{cm}{ }^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 8$): 8.43 (s, H-C(2)), 7.93 (d, $J=2.1, \mathrm{H}-\mathrm{C}(8)), 7.84(\mathrm{~d}, J=9.2, \mathrm{H}-\mathrm{C}(5)), 7.34\left(\mathrm{dd}, J_{l}=9.2, J_{2}=2.1, \mathrm{H}-\mathrm{C}(6)\right), 4.03(\mathrm{bs}, \mathrm{H}-\mathrm{N}$ exchangeable with $\mathrm{D}_{2} \mathrm{O}$), $3.33\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.1, \mathrm{ArNHCH}_{2}-\right), 2.86\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.0,-\mathrm{CH}_{2} \mathrm{NHCH}_{2} \mathrm{Ad}\right)$, 2.32, (s, 2H, $-\mathrm{CH}_{2} \mathrm{Ad}$), 1.98 (bs, 3H, -Ad), 1.86-1.81 (m, 2H, $\mathrm{ArNHCH}_{2} \mathrm{CH}_{2}-$), 1.74-1.72 (m, 3H, -Ad), 1.66-1.63 (m, 3H, -Ad), 1.56 (d, $6 \mathrm{H}, \mathrm{J}=2.4$, -Ad). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $144.54,144.30,135.88,131.32,131.01,128.63,126.37,122.34,122.11,63.53,49.65,46.01$, $41.09,37.15,33.32,29.84,28.40$. HRMS: $m / z 399.22992$ corresponds to molecular formula $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{ClN}_{4} \mathrm{H}^{+}$(error in ppm - 2.71); m/z 200.11926 corresponds to molecular formula $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{ClN}_{4} \mathrm{H}_{2}{ }^{2+}$ (error in ppm 0.62). HPLC purity method $\mathrm{A}(\lambda=254 \mathrm{~nm}$): RT 10.495 min , area 96.03%; method B $(\lambda=270 \mathrm{~nm})$: RT 9.666 min , area 98.63%.

4-(\{3-[4-(3-\{[2-(1-adamantyl)ethyl]ammonio\}propyl)piperazinediium-1-yl]propyl\}amino)-7-chloroquinolinium tetrachloride (10).

$1362 \mathrm{~m}, 1246 \mathrm{w}, 1216 \mathrm{~m}, 1170 \mathrm{w}, 1141 \mathrm{w}, 1097 \mathrm{w}, 1052 \mathrm{w}, 1022 \mathrm{w}, ~ 954 \mathrm{~m}, ~ 905 \mathrm{~m}, ~ 815 \mathrm{~m}, 766 \mathrm{~m}$, $656 \mathrm{w}, 602 \mathrm{w} \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $8.36(\mathrm{~d}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(2)), 8.20(\mathrm{~d}, 1 \mathrm{H}, J=$ $9.3 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(5)), 7.90(\mathrm{~d}, 1 \mathrm{H}, J=1.6 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(8)), 7.69$ (dd, $1 \mathrm{H}, J=1.9 \mathrm{~Hz}, J=9.0 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(6))$, $6.87(\mathrm{~d}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(3)), 3.80-3.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArNHCH}_{2}-\right), 3,70-3,55(\mathrm{~m}, 8 \mathrm{H},-$ $\left.\mathrm{NH}^{+}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NH}^{+}-\right), 3,50-3,40\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArNHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}^{+}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NH}^{+}-\right), 3,35-3,25$ (m, 2H, $\left.\quad-\mathrm{NH}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NH}^{+} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}{ }^{+} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ad}\right), \quad 3,20-3,05 \quad(\mathrm{~m}, \quad 4 \mathrm{H}, \quad-$ $\mathrm{CH}_{2} \mathrm{NH}_{2}{ }^{+} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ad}$, $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ad}$), 2.35-2.25 (m, 2H, ArNHCH $\mathrm{CH}_{2}-$), 2.20-2.10 (m, 2 H , $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}{ }^{+} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ad}\right), 2.00-1.90(\mathrm{~m}, 3 \mathrm{H},-\mathrm{Ad}), 1.80-1.60(\mathrm{~m}, 6 \mathrm{H},-\mathrm{Ad}), 1.60-1.50(\mathrm{~m}, 6 \mathrm{H},-$ Ad), 1.50-1.40 (m, 2H, - $\left.\mathrm{CH}_{2} \mathrm{Ad}\right) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{D}_{2} \mathrm{O}\right): 156.11 ; 142.34 ; 139.40 ; 138.06$; $127.56 ; 124.02 ; 119.16 ; 115.34 ; 98.32 ; 54.28 ; 53.53 ; 49.25 ; 49.06 ; 44.20 ; 43.56 ; 41.34 ; 40.02$; $39.37 ; 36.26 ; 31.06 ; 28,14,22.50,21.01$. HRMS: $m / z 524.35077$ corresponds to molecular formula $\mathrm{C}_{31} \mathrm{H}_{46} \mathrm{ClN}_{5} \mathrm{H}^{+}$(error in ppm -1.30). HPLC purity ($\lambda=330 \mathrm{~nm}$): method A: RT 9.973, area 98.31%; method B: RT 8.296, area 95.32%. Anal. $\left(\mathrm{C}_{31} \mathrm{H}_{46} \mathrm{ClN}_{5} \times 4 \mathrm{HCl} \times 3.5 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{Calcd}$: C, 50.79; H, 7.84; N, 9.55. Found: C, 50.89; H, 7.80; N, 9.62.
N-(7-chloroquinolin-4-yl)- N^{\prime}-[4-(5-fluoro-1-benzothiophene-3-yl)benzyl]propane-1,3diamine (15).

Compound 15 was prepared by procedure D , using aldehyde 39^{11} ($118 \mathrm{mg}, 0.460 \mathrm{mmol}$), amine AQ3 ($162.8 \mathrm{mg}, 0.6906 \mathrm{mmol}$), glac. $\mathrm{AcOH}(40 \mu \mathrm{~L}, 0.7 \mathrm{mmol}), \mathrm{NaBH}_{4}(104.5 \mathrm{mg}$, $2.762 \mathrm{mmol})$ and $\mathrm{MeOH} / \mathrm{DCM}(18 \mathrm{~mL}, 2: 1$, v / v). The product was purified using column chromatography (flash, Biotage SP1, NH column, eluent hexane/EtOAc gradient $2 / 8 \rightarrow \mathrm{EtOAc}$, EtOAc/MeOH gradient $95 / 5 \rightarrow 1 / 1$, MeOH ; flash, Biotage SP 1 , SiO 2 column, eluent $\mathrm{DCM} / \mathrm{MeOH}+\mathrm{NH}_{3}(9 / 1)$ gradient $95 / 5 \rightarrow 3 / 7$). Final product 15 was obtained as a pale yellow foam ($156.5 \mathrm{mg}, 71 \%$). M.p. $=39-40^{\circ} \mathrm{C}$. IR (ATR): 3239w, 3062w, 2935w, 2844w, 1583s, 1537m, 1492w, 1437m, 1368w, 1332w, 1282w, 1251w, 1197w, $1138 \mathrm{w}, 1114 \mathrm{w}, 883 \mathrm{w}, 853 \mathrm{w}, 806 \mathrm{~m}, 784 \mathrm{w}, 650 \mathrm{w} \mathrm{cm}{ }^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 8.50 (d, $J=$ 5.3, H-C(2^{\prime})), 7.92-7.90 (m, H-C($\left.8^{\prime}\right)$), 7.84 (dd, $J_{I}=4.8, J_{2}=8.9, \mathrm{H}-\mathrm{C}(7)$), $7.59-7.53(\mathrm{~m}, 5 \mathrm{H}, 2 \mathrm{H}-$ $\mathrm{Ar}, \mathrm{H}-\mathrm{C}(4), \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)$ and $\mathrm{H}-\mathrm{N}$ exchangeable with $\mathrm{D}_{2} \mathrm{O}$), 7.50 (s, $\mathrm{H}-\mathrm{C}(2)$), 7.48-7.44 (m, 2H-Ar), 7.19-7.11 (m, 2H, H-C(6) and H-C(6')), 6.32 (d, $J=5.2, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)$), 3.92 (s, $2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{NH}-$), 3.45-3.40 (m, 2H, $\mathrm{ArNHCH}_{2}-$), 3.05-3.01 (m, 2H, $\mathrm{ArCH}_{2} \mathrm{NHCH}_{2}-$), 2.02-1.95 (m, 2 H $\mathrm{ArCH}_{2} \mathrm{NHCH}_{2} \mathrm{CH}_{2}$-), 1.86 (bs, $\mathrm{H}-\mathrm{N}$ exchangeable with $\mathrm{D}_{2} \mathrm{O}$). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 161.13 (d, $J=240.7$), 152.13, 150.40, 149.15, 139.14, 138.98, $137.37(\mathrm{~d}, J=4.7), 136.03$, $134.70,134.58,128.83,128.74,128.53,125.86,124.79,124.05$ (d, $J=8.5$), 122.04, 117.50, $113.40(\mathrm{~d}, J=25.6), 108.45$ (d, $J=23.7$), $98.32,54.01,49.32,43.97,27.45$. HRMS: m / z 476.13504 corresponds to molecular formula $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{ClN}_{3} \mathrm{SFH}^{+}$(error in ppm -1.60), m/z 238.57136 corresponds to molecular formula $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{ClN}_{3} \mathrm{SFH}_{2}{ }^{2+}$ (error in ppm -0.75). HPLC purity: method $C(\lambda=330 \mathrm{~nm})$: RT 9.741, area 96.57%; method $\mathrm{D}(\lambda=254 \mathrm{~nm})$: RT 5.816, area 95.63\%.
N-[3-(5-fluoro-1-benzothien-3-yl)prop-2-yn-1-yl]-N'-quinolin-4-ylbutane-1,4-diamine (21).

Solution of $40(11.7 \mathrm{mg}, 0.0507 \mathrm{mmol})$ in DMF (0.1 $\mathrm{mL}), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(2.1 \mathrm{mg}, 6.0 \mathrm{~mol} \%), \mathrm{PPh}_{3}(2.6$ $\mathrm{mg}, 20 \mathrm{~mol} \%)$, solution of $41(10.7 \mathrm{mg}, 0.0422$ mmol) in DMF (0.1 mL), CuI ($0.6 \mathrm{mg}, 6 \mathrm{~mol} \%$) and
$\mathrm{Et}_{2} \mathrm{NH}(78 \mu \mathrm{~L}, 0.71 \mathrm{mmol})$ were added to a dry microwave tube $(0.2-0.5 \mathrm{~mL})$ under Ar atmosphere. The mixture was heated in microwave reactor (Biotage Initiator 2.5 apparatus) at $120^{\circ} \mathrm{C}$ for 25 minutes. After cooling to r.t. the reaction mixture was transferred to the separation funnel and DCM was added. Organic layer was washed with brine (with addition of 1 drop of aqueous NH_{3}) and dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Crude product was purified using column chromatography (flash, Biotage SP, NH column, $12+\mathrm{M}$, eluent hexane/EtOAc gradient $2 / 8 \rightarrow$ EtOAc, EtOAc/MeOH gradient $9 / 1 \rightarrow 1 / 1$). Final product 21 was obtained as yellow oil (5.4 mg , 27%). IR (ATR): $3440 \mathrm{w}, 3250 \mathrm{~m}, 3067 \mathrm{~m}, 2930 \mathrm{~m}, 2858 \mathrm{~m}, 1582 \mathrm{~s}, 1542 \mathrm{~m}, 1442 \mathrm{~m}, 1396 \mathrm{w}$, 1374w, 1340m, 1298w, 1248w, 1196w, 1129w, 1100w, 1036w, 947w, 874w, 808w, 764m, $736 \mathrm{w}, 650 \mathrm{w} \mathrm{cm}{ }^{-1} .{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $8.53\left(\mathrm{~d}, J=5.6, \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right), 8.01-7.93(\mathrm{~m}, \mathrm{H}-$ $\mathrm{C}\left(8^{\prime}\right)$), 7.83-7.71 (m, 2H, H-C(5') and H-C(7)), 7.70-7.50 (m, 3H, H-C(7'), H-C(4) and H-C(2)), 7.45-7.34 (m, H-C(6^{\prime})), 7.21-7.08 (m, H-C(6)), $6.40\left(\mathrm{~d}, J=5.6, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right.$), 5.72 (bs, $H-\mathrm{N}$), 3.78 (s , $2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}-\mathrm{Ar}$), 3.41-3.29 (m, 2H, $\mathrm{ArNHCH}_{2}-$), 2.98-2.87 (m, $2 \mathrm{H}, \mathrm{ArNH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{2}-$), 2.01$1.68\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArNHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\right.$ and $\left.H-\mathrm{N}\right) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 161.21 (d, $J=$ 241.9), 150.66, 150.04, 147.99, 134.12, 131.93, 129.50, 129.05, 124.53, 123.82 (d, $J=9.0$), $119.62,118.74,117.95,113.99(\mathrm{~d}, J=25.3), 111.78,108.52(\mathrm{~d}, J=23.5), 98.55,90.30,76.47$, 48.12, 43.18, 39.11, 27.57, 26.43. HRMS: $m / z 404.15750$ corresponds to molecular formula $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{FN}_{3} \mathrm{SH}^{+}$(error in ppm -4.00). HPLC purity $(\lambda=254 \mathrm{~nm})$: method A: RT 10.106, area 96.11%; method B: RT 8.432, area 95.69%.

N^{1}, N^{1}-diethyl- N^{3}-(5,6,7,8-tetrahydroquinolin-4-yl)propane-1,3-diamine (22).

Compound 22 was prepared by procedure E , using $\mathrm{Pd}(\mathrm{OAc})_{2}(1.4 \mathrm{mg}$, $0.0064 \mathrm{mmol})$, SPhos ($5.2 \mathrm{mg}, 0.013 \mathrm{mmol}$), $45(26.8 \mathrm{mg}, 0.159 \mathrm{mmol})$, N, N-diethylpropane-1,3-diamine ($38 \mu \mathrm{~L}, 0.24 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(84.6 \mathrm{mg}$, 0.398 mmol) and dioxane (1.3 mL). Final product 22 was obtained as colorless oil ($18 \mathrm{mg}, 43$ \%). IR (ATR): 3266w, 2968m, 2933m, 2873m, 2831m, 1591s, 1518m, 1452m, 1375w, 1343w, $1166 \mathrm{w}, 1139 \mathrm{w}, 1067 \mathrm{w}, 801 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 8.06 (d, $\left.J=5.6, \mathrm{H}-\mathrm{C}(2)\right), 6.26$ (d, $J=5.6, \mathrm{H}-\mathrm{C}(3)), 5.94$ (bs, H-N), 3.35-3.10 (m, 2H, $-\mathrm{CH}_{2} \mathrm{HN}$), 2.90-2.70 (m, 2H), 2.65-2.45 $(\mathrm{m}, 6 \mathrm{H}), 2.40-2.25(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.65(\mathrm{~m}, 6 \mathrm{H}), 1.03\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.0,-\mathrm{CH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (50 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 155.41,147.13,115.32,101.84,52.74,46.73,43.64,32.68,25.27,23.17$, 22.72, 22.54, 11.38. HRMS: $m / z 262.22666$ corresponds to molecular formula $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{H}^{+}$(error
in ppm -4.25). HPLC purity $(\lambda=290 \mathrm{~nm})$: method A: RT 1.353, area 96.66%; method E: RT 4.016, area 99.41%.
N^{1}, N^{1}-diethyl- N^{4}-(5,6,7,8-tetrahydroquinolin-4-yl)pentane-1,4-diamine (23).

Compound 23 was prepared by procedure E , using $\mathrm{Pd}(\mathrm{OAc})_{2}(1.1 \mathrm{mg}$, 0.0049 mmol), SPhos ($4.1 \mathrm{mg}, 0.0010 \mathrm{mmol}$), 45 ($21 \mathrm{mg}, 0.12 \mathrm{mmol}$), N^{1}, N^{1}-diethylpentane-1,4-diamine ($29.7 \mathrm{mg}, 0.188 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(66.5$ $\mathrm{mg}, 0.312 \mathrm{mmol}$) and dioxane $(1 \mathrm{~mL})$. Final product 23 was obtained as colorless oil ($9.9 \mathrm{mg}, 27$ \%). IR (ATR): 3314w, 2967s, 2932s, 2865m, $2802 \mathrm{~m}, 1589 \mathrm{~s}, 1513 \mathrm{~m}, 1452 \mathrm{~m}, 1371 \mathrm{w}, 1342 \mathrm{w}, 1165 \mathrm{w}, 805 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $8.07(\mathrm{~d}, J=5.6, \mathrm{H}-\mathrm{C}(2)), 6.32(\mathrm{~d}, J=5.6, \mathrm{H}-\mathrm{C}(3)), 3.85-3.70(\mathrm{~m}, \mathrm{H}-\mathrm{N}), 3.65-3.47\left(\mathrm{~m},-\mathrm{CH}-\mathrm{CH}_{3}\right)$, 2.95-2.71 (m, 2H), 2.60-2.25 (m, 8H), 1.95-1.75 (m, 4H), 1.63-1.44 (m, 4H), $1.22(\mathrm{~d}, 3 \mathrm{H}, J=$ 6.7, $-\mathrm{CH}-\mathrm{CH}_{3}$), $1.00\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=7.0,-\mathrm{CH}_{2} \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 155.88,150.68$, $146.96,114.97,102.50,52.75,47.75,46.79,34.85,32.75,23.76,22.79,22.61,22.52,20.74$, 11.56. HRMS: $m / z 290.25771$ corresponds to molecular formula $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{H}^{+}$(error in ppm 4.69). HPLC purity $(\lambda=290 \mathrm{~nm})$: method A: RT 8.644 , area 97.25%; method E: RT 4.084, area 97.18\%.

4-\{5-[4-(\{[8-(5,6,7,8-tetrahydroquinolin-4-ylamino)octyl]amino\}methyl)phenyl]-2thienyl\}benzonitrile (24).

yl]benzonitrile ${ }^{11}$ ($61 \mathrm{mg}, 0.21 \mathrm{mmol}$), amine $46(87 \mathrm{mg}, 0.32 \mathrm{mmol})$, glac. AcOH $(19 \mu \mathrm{~L}, 0.32$ $\mathrm{mmol}), \mathrm{NaBH}_{4}(47.9 \mathrm{mg}, 1.27 \mathrm{mmol})$ and $\mathrm{MeOH} / \mathrm{DCM}(9 \mathrm{~mL}, 2: 1, \mathrm{v} / \mathrm{v})$. The product was purified using column chromatography (dry flash, silica-gel, eluent $\mathrm{EtOAc} / \mathrm{MeOH}$ and flash, Biotage SP, NH column, eluent EtOAc/MeOH). Final product 24 was obtained as pale yellow solid ($37 \mathrm{mg}, 32 \%$). M.p. $=155-157^{\circ} \mathrm{C}$. IR (film): 3328m, 2930s, 2856s, 2869m, 2221m, $1701 \mathrm{w}, 1670 \mathrm{w}, 1653 \mathrm{~m}, 1590 \mathrm{~s}, 1524 \mathrm{~s}, 1494 \mathrm{~m}, 1452 \mathrm{~m}, 1347 \mathrm{~m}, 1310 \mathrm{~m}, 1277 \mathrm{~m}, 1166 \mathrm{~m}, 1098 \mathrm{w}$, $804 \mathrm{~m} \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 8.07(\mathrm{~d}, J=5.7, \mathrm{H}-\mathrm{C}(2)), 7.74-7.53(\mathrm{~m}, 6 \mathrm{H}, 4 \mathrm{H}-$

ArCN and $2 \mathrm{H}-\mathrm{Ar}$), 7.45-7.28 (m, 4H, $2 \mathrm{H}-\mathrm{Ar}$ and $2 \mathrm{H}-$ Thiophene), 6.30 (d, $J=5.7, \mathrm{H}-\mathrm{C}(3)$), 3.80 (s, $2 \mathrm{H}, \mathrm{ArCH}_{2}-$), 3.24-3.08 (m, $2 \mathrm{H}, \mathrm{ArNHCH}_{2}$) , 2.88-2.74 (m, 2 H), 2.70-2.55 (m, 2 H , $\mathrm{ArCH}_{2} \mathrm{NHCH}_{2}-$), 2.41-2.27 (m, 2H), 1.89-1.75 (m, 4H), 1.68-1.58 (m, 2H), 1.56-1.46 (m, 2H), $1.43-1.28\left(\mathrm{~m}, 8 \mathrm{H},-\left(\mathrm{CH}_{2}\right)_{4}\right) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $155.56,151.54,146.92,145.99$, $140.80,138.53,132.72,132.34,128.74,126.06,125.77,125.64,124.16,118.84,115.00,110.37$, 102.21, 53.68, 49.45, 42.96, 32.56, 30.08, 29.43, 29.27, 29.21, 27.24, 26.98, 22.69, 22.60, 22.48. HRMS: $m / z 549.30216$ corresponds to molecular formula $\mathrm{C}_{35} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{SH}^{+}$(error in ppm -4.52). HPLC purity ($\lambda=330 \mathrm{~nm}$): method A: RT 8.837, area 97.08\%; method B: RT 7.689, area 95.53\%.

4-\{5-[4-(\{methyl[8-(5,6,7,8-tetrahydroquinolin-4-ylamino)octyl]amino\}methyl)phenyl]-2thienyl\}benzonitrile (25).

To a stirred solution of $\mathbf{2 4}$ ($19 \mathrm{mg}, 0.035 \mathrm{mmol}$) in methanol (0.9 mL) containing 37% aqueous formaldehyde ($2.1 \mathrm{mg}, 0.069 \mathrm{mmol}$), mixture of $\mathrm{ZnCl}_{2}(9.4 \mathrm{mg}, 0.069 \mathrm{mmol})$ and $\mathrm{NaBH}_{3} \mathrm{CN}(8.7$ $\mathrm{mg}, 0.14 \mathrm{mmol})$ in methanol $(0.9 \mathrm{~mL})$ was added. The mixture was stirred at r . t. for 2 h . The solvent was removed under reduced pressure. The residue was dissolved in DCM and $2 \mathrm{M} \mathrm{NH}_{3}$, organic layer was washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The product was purified using column chromatography (flash, Biotage SP1, NH column, eluent MeOH). Final product 25 was obtained as pale yellow oil ($16.4 \mathrm{mg}, 84 \%$). IR (film): $3267 \mathrm{~m}, 3054 \mathrm{~m}, 2928 \mathrm{~s}$, $2855 \mathrm{~s}, 2225 \mathrm{~m}, 1634 \mathrm{~s}, 1600 \mathrm{~s}, 1567 \mathrm{~s}, 1537 \mathrm{~m}, 1454 \mathrm{~m}, 1374 \mathrm{~m}, 1274 \mathrm{~m}, 1175 \mathrm{~m}, 1114 \mathrm{w}, 837 \mathrm{~m}$, $806 \mathrm{~m}, 735 \mathrm{~m} \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $8.08(\mathrm{~d}, J=5.7, \mathrm{H}-\mathrm{C}(2)), 7.72-7.62(\mathrm{~m}, 4 \mathrm{H}$, H-ArCN), 7.60-7.55 (m, 2H, H-Ar), 7.41-7.27 (m, 4H, 2H-thiophene and 2H-Ar), 6.30 (d, $J=$ 6.3, H-C(3)), 3.49 (s, 2H, ArCH $2 \mathrm{NH}-$), 3.20-3.10 (m, 2H), 2.89-2.75 (m, 2H), 2.43-2.27 (m, 4H), $2.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\right), 1.90-1.78(\mathrm{~m}, 4 \mathrm{H}), 1.68-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.57-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.28(\mathrm{~m}, 8 \mathrm{H},-$ $\left(\mathrm{CH}_{2}\right)_{4}$). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 155.81, 151.40, 147.21, 146.07, 140.64, 139.70, $138.55,132.72,132.30,129.61,126.06,125.63,125.57,124.12,118.85,114.97,110.34,102.22$, 61.99, 57.48, 42.97, 42.31, 32.79, 29.42, 29.30, 29.23, 27.38, 27.29, 27.02, 22.72, 22.67, 22.54. HRMS: $m / z 563.31839$ corresponds to molecular formula $\mathrm{C}_{36} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{SH}^{+}$(error in ppm -3.38).

HPLC purity ($\lambda=330 \mathrm{~nm}$): method A: RT 8.651, area 96.45%; method B: RT 7.691, area 95.11\%.
tert-Butyl \{3-[(1-adamantylmethyl)amino]propyl\}carbamate (32).

1-Adamantylmethanol ($185.8 \mathrm{mg}, 1.118 \mathrm{mmol}$) was dissolved in DCM (15 mL) followed by addition of PCC ($361.3 \mathrm{mg}, 1.676$ mmol). The mixture was stirred at r.t. for 2 h and filtered through SiO_{2} column (eluent DCM) to afford the product. Adamantane-1-carbaldehyde was obtained as a white foam and used in the next step without characterization. Compound 32 was prepared by procedure D from S1 ($218.7 \mathrm{mg}, 1.255 \mathrm{mmol}$) and adamantane-1-carbaldehyde ($167.2 \mathrm{mg}, 1.018$ $\mathrm{mmol})$ using glac. $\mathrm{AcOH}(0.09 \mathrm{~mL}, 1.6 \mathrm{mmol})$ and $\mathrm{NaBH}_{4}(231.1 \mathrm{mg}, 6.109 \mathrm{mmol})$. The product was purified using column chromatography (dry-flash, SiO_{2}, eluent $\mathrm{DCM} / \mathrm{MeOH}$ gradient $4 / 6 \rightarrow$ 2/8). Final product 32 was obtained as a pale yellow oil ($134.8 \mathrm{mg}, 37 \%$ for both steps). IR (ATR): 3345s, 3054w, 3007w, 2977m, 2904s, 2847m, 2782w, 2738w, 2658w, 1674s, 1538s, $1479 \mathrm{~m}, 1450 \mathrm{~m}, 1427 \mathrm{w}, 1390 \mathrm{w}, 1364 \mathrm{~m}, 1341 \mathrm{w}, 1315 \mathrm{w}, 1281 \mathrm{~s}, 1253 \mathrm{~m}, 1227 \mathrm{w}, 1169 \mathrm{~m}, 1114 \mathrm{w}$, $1028 \mathrm{w}, 1000 \mathrm{w}, 948 \mathrm{w}, 897 \mathrm{w}, 866 \mathrm{w}, 800 \mathrm{w}, 781 \mathrm{w}, 754 \mathrm{w}, 719 \mathrm{w}, 654 \mathrm{w} \mathrm{cm}{ }^{-1} .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\mathrm{CDCl}_{3}, \delta$): 6.06 (bs, H-NBoc), 3.22 (q, 2H, $J=5.2,-\mathrm{CH}_{2} \mathrm{NHBoc}$), 2.69 (t, 2H, $J=6.0$, $\mathrm{CH}_{2} \mathrm{NHCH}_{2} \mathrm{Ad}$), 2.23 ($\mathrm{s}, 2 \mathrm{H},-\mathrm{NHCH}_{2} \mathrm{Ad}$), 1.97 (bs, $3 \mathrm{H},-\mathrm{Ad}$), 1.73-1.62 (m, $8 \mathrm{H},-$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NHBoc},-\mathrm{Ad}\right), 1.53(\mathrm{~d}, 6 \mathrm{H}, J=2.4,-\mathrm{Ad}), 1.43\left(\mathrm{~s}, 9 \mathrm{H},-\mathrm{NHCOOC}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $156.20,78.56,62.78,49.70,40.89,40.45,37.21,33.31,28.72,28.46$, 28.44. HRMS: $m / z 323.26898$ corresponds to molecular formula $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{H}^{+}$(error in ppm 1.01).

N-(1-adamantylmethyl)propane-1,3-diamine (33).

 Compound 33 was prepared from $32(10.0 \mathrm{mg}, 0.031 \mathrm{mmol})$ by procedure C. Final product 33 was obtained as a pale yellow oil (6.0 $\mathrm{mg}, 87 \%$). IR (ATR): $3290 \mathrm{w}, 2900 \mathrm{~s}$, 2845s, 2676w, 1571w, 1475m, 1408w, 1364w, 1341w, 1315w, 1222w, 1152w, 1100w, 1002w, 814w cm ${ }^{-1} .{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}, \delta\right): 2.76\left(\mathrm{t}, 2 \mathrm{H}, J=6.9,-\mathrm{CH}_{2} \mathrm{NH}_{2}\right.$), $2.64\left(\mathrm{t}, 2 \mathrm{H}, J=7.0,-\mathrm{CH}_{2} \mathrm{NHCH}_{2} \mathrm{Ad}\right), 2.24(\mathrm{~s}, 2 \mathrm{H},-$ $\mathrm{NHCH}_{2} \mathrm{Ad}$), 1.96 (bs, $3 \mathrm{H},-\mathrm{Ad}$), 1.73-1.60 (m, $8 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2},-\mathrm{Ad}$), 1.52 (d, $6 \mathrm{H}, J=2.4$, Ad). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 63.12, 49.03, 40.95, 40.74, 37.24, 33.72, 33.34, 28.48.

HRMS: $m / z 223.21604$ corresponds to molecular formula $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{H}^{+}$(error in ppm - 3.73); m / z 112.11222 corresponds to molecular formula $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{H}_{2}{ }^{2+}$ (error in ppm 1.28).

Di-tert-butyl [piperazine-1,4-diylbis(propane-3,1-diyl)]biscarbamate (35).

A 0.5 M solution of $\mathrm{Boc}_{2} \mathrm{O}(2.12 \mathrm{~g}, 9.71 \mathrm{mmol})$ in DCM was added dropwise over 2 h to a 0.25 M solution of 1,4-bis(3aminopropyl)piperazine 34 ($4 \mathrm{~mL}, 19 \mathrm{mmol}$) in DCM cooled with an ice-bath. The reaction mixture was stirred overnight at r.t., filtered and then concentrated in vacuo. The resulting oil was dissolved in EtOAc, washed with with half-saturated brine, dried over MgSO_{4} and solvent was evaporated under reduced pressure. Compound 35 was obtained after dry-flash chromatography: $\left(\mathrm{SiO}_{2}\right.$, eluent: $\left.\mathrm{DCM} / \mathrm{MeOH}\left(\mathrm{NH}_{3} \mathrm{satd}\right)=95 / 5\right)$ as a colorless solid ($1.79 \mathrm{~g}, 46 \%$); M.p. $=73-75{ }^{\circ} \mathrm{C}$ (hexane). IR (ATR): 3200m, 3008w, 2960m, 2869w, $2811 \mathrm{~m}, 2744 \mathrm{w}, 2020 \mathrm{w}, 1712 \mathrm{~s}, 1553 \mathrm{~m}, 1457 \mathrm{w}, 1387 \mathrm{w}, 1362 \mathrm{w}, 1272 \mathrm{~m}, 1169 \mathrm{~m}, 1114 \mathrm{w}, 1084 \mathrm{w}$, $1032 \mathrm{w}, 1005 \mathrm{w}, ~ 972 \mathrm{~m}, 888 \mathrm{w}, 856 \mathrm{w}, 819 \mathrm{w}, 764 \mathrm{w}, 733 \mathrm{w}, 693 \mathrm{w} \mathrm{cm}{ }^{-1} .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, CDCl_{3}): 3.30-3.05 (m, $2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{NHBoc}$), 2.75-2.25 (m, $12 \mathrm{H},-\mathrm{CH}_{2} \mathrm{~N}^{\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}-\text {, }-~}$ $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{~N}-\right), 1.85-1.55\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NHBoc}\right), 1.44$ (s, 18 H , $\left.-\mathrm{NHCOO}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 156.04; 78.74; 56.84; 53.20; 39.97; 28.42; 26.30. HRMS: m / z 401.31137 corresponds to molecular formula $\mathrm{C}_{15} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{H}^{+}$(error in ppm -2.15).

Tert-butyl [3-(4-\{3-[(7-chloroquinolin-4-yl)amino]propyl\}piperazin-1-yl)propyl]carbamate (36).

A mixture of 4,7 -dichloroquinoline ($1.75 \mathrm{~g}, 17.7 \mathrm{mmol}$) and
 protected diaminoalkane $35(5.32 \mathrm{~g}, 17.7 \mathrm{mmol})$ was gradually warmed to $80^{\circ} \mathrm{C}$ over 1 h with stirring and subsequently at $125^{\circ} \mathrm{C}$ for $6-8 \mathrm{~h}$. The reaction mixture was cooled to r.t. and taken up in DCM. The organic layer was washed with NaHCO_{3} and finally with brine. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvent was evaporated under reduced pressure to get a final product. Compound 36 was obtained after dry-flash chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent: $\left.\mathrm{DCM} / \mathrm{MeOH}\left(\mathrm{NH}_{3} \mathrm{satd}\right)=100 / 2\right)$ as
a colorless solid ($4.0 \mathrm{~g}, 63 \%$); M.p. $=148-150{ }^{\circ} \mathrm{C}$ (hexane). IR (ATR): $3215 \mathrm{~m}, 3032 \mathrm{w}, 2943 \mathrm{w}$, 2876w, 2807w, 2771w, 1709s, 1611w, 1582s, 1537m, 1487w, 1466w, 1447w, 1361w, 1333w, $1308 \mathrm{w}, 1274 \mathrm{~m}, 1252 \mathrm{w}, 1170 \mathrm{~m}, 1149 \mathrm{~m}, 1137 \mathrm{~m}, 1102 \mathrm{w}, 1078 \mathrm{w}, 1063 \mathrm{w}, 1032 \mathrm{w}, 987 \mathrm{w}, 974 \mathrm{w}$, $947 \mathrm{w}, 890 \mathrm{w}, 880 \mathrm{w}, 856 \mathrm{w}, 838 \mathrm{w}, 812 \mathrm{w}, 764 \mathrm{w}, 710 \mathrm{w}, 652 \mathrm{w}, 599 \mathrm{w}, 503 \mathrm{w}, 425 \mathrm{w} \mathrm{cm}{ }^{-1} .{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3} \mathrm{CD}_{3} \mathrm{OD}$): 8.40 (d, $1 \mathrm{H}, J=5.6 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(2)$), $7.95-7.80$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-\mathrm{C}(8)$ and H$\mathrm{C}(5)), 7.40-7.25(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(6))$, $6.34(\mathrm{~d}, 1 \mathrm{H}, J=5.6 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(3))$, $3.50-3.30(\mathrm{~m}, 2 \mathrm{H}$, ArNHCH 2_{2}), 3.30-3.10 (m, $\left.2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{NHBoc}\right), 3.00-2.30\left(\mathrm{~m}, 12 \mathrm{H},-\mathrm{CH}_{2} \mathrm{~N}^{2}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}-\right.$, $\left.\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{~N}-\right), 2.10-1.80\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArNHCH}_{2} \mathrm{CH}_{2}-\right), 1.80-1.60\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NHBoc}\right), 1.46$ (s, 9H, -NHCOO-C($\left.\mathrm{CH}_{3}\right)_{3}$). ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CH}_{3} \mathrm{OD}$): 156.26; 151.34; 150.68; 148.26; 134.84; 127.38; 124.68; 122.26; 117.11; 98.21; 78.93; 57.81; 57.56; 56.37; 53.22; 53.02; 52.89; 43.04; 39.07; 28.15; 26.22; 23.54. HRMS: $m / z 462.26263$ corresponds to molecular formula $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{ClN}_{5} \mathrm{O}_{2} \mathrm{H}^{+}$(error in ppm -0.87). $\left(\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{ClN}_{5} \mathrm{O}_{2} \times 1 / 3 \mathrm{H}_{2} \mathrm{O}\right)$ Calcd: C, $61.59 ; \mathrm{H}$, 7.90; N, 14.96. Found: C, 61.46; H, 7.75; N, 15.23.

N-\{3-[4-(3-aminopropyl)piperazin-1-yl]propyl\}-7-chloroquinolin-4-amine (37).

Compound 37 was prepared from 36 ($500 \mathrm{mg}, 1 \mathrm{mmol}$) by procedure C and was obtained as a yellow powder ($348 \mathrm{mg}, 89 \%$), softenes at $80-82^{\circ} \mathrm{C}$. IR (ATR): $3234 \mathrm{~m}, 3060 \mathrm{w}, 2934 \mathrm{~m}, 2816 \mathrm{~m}, 1610 \mathrm{w}, 1578 \mathrm{~s}$, $1538 \mathrm{~m}, 1489 \mathrm{w}, 1463 \mathrm{w}, 1447 \mathrm{w}, 1433 \mathrm{w}, 1403 \mathrm{w}, 1368 \mathrm{~m}, 1331 \mathrm{~m}$, $1283 \mathrm{w}, 1255 \mathrm{w}, 1201 \mathrm{w}, 1136 \mathrm{~m}, 1112 \mathrm{w}, 1080 \mathrm{w}, 1033 \mathrm{w}, 999 \mathrm{w}, 904 \mathrm{w}$, 878w, 854w, 819w, 806w, 764w, 730w, 649w, 621w, 598w, 539w, $494 \mathrm{w}, 430 \mathrm{w} \mathrm{cm}{ }^{-1} .{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}$): 8.40 ($\mathrm{d}, 1 \mathrm{H}$, $J=5.6 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(2)), 8.00-7.80(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-\mathrm{C}(8), \mathrm{H}-\mathrm{C}(5)), 7.50-7.40$ (br $\mathrm{s}, 1 \mathrm{H},-\mathrm{N} H), 7.29(\mathrm{dd}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}, J=9.0 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(6)), 6.30(\mathrm{~d}$, $1 \mathrm{H}, J=5.6 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(3)), 3.50-3.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArNHCH}_{2}-\right), 3.10-2.90\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{NH}_{2}\right), 2.90-2.40$ (s, $\left.12 \mathrm{H},-\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}-,-\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{~N}-\right), 2.10-1.80\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArNHCH}_{2} \mathrm{CH}_{2}-\right), 1.80-$ 1.60 (m, 2H, $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$). ${ }^{13} \mathrm{C}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}$): 151.40; 150.63; 148.28; 134.63; 127.43; 124.52; 122.30; 117.13; 98.16; 57.56; 56.24; 52.93; 43.06; 40.00; 29.35; 23.34. HRMS: $m / z 362.20995$ corresponds to molecular formula $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{ClN}_{5} \mathrm{H}^{+}$(error in ppm -1.80).
N-\{3-[4-(3-\{[2-(1-Adamantyl)ethyl]amino\}propyl)piperazin-1-yl]propyl\}-7-chloroquinolin4 -amine (38).

Compound 38 was prepared from amine 37 ($137 \mathrm{mg}, 0.38$ $\mathrm{mmol})$ and adamantane-1-acetaldehyde ($68 \mathrm{mg}, 0.38 \mathrm{mmol}$) using $\mathrm{NaBH}(\mathrm{OAc})_{3}(161 \mathrm{mg}, 0.76 \mathrm{mmol})$ by procedure D and was obtained after dry-flash chromatography $\left(\mathrm{SiO}_{2}\right.$, eluent: $\mathrm{DCM} / \mathrm{MeOH}\left(\mathrm{NH}_{3}\right.$ satd $\left.)=100 / 2\right)$ and flash chromatography (Biotage SP1 RP column, gradient: $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}=8 / 1 \rightarrow 95 / 5$) as a colorless foam (108 mg , 54%) softenes at $120-122{ }^{\circ} \mathrm{C}$. IR (ATR): $3235 \mathrm{~m}, 2899 \mathrm{~s}$, 2841m, 2806m, 1610w, 1586s, 1540m, 1486w, 1446m, 1368w, 1353w, 1332w, 1307w, 1283w, 1242w, 1198w, 1140m, 1074w, 1016w, 987m, 958m, 898w, 875w, 856w, 836w, 812m, 793, 759w, 728m, 596m, $501 \mathrm{~m}, 428 \mathrm{w} \mathrm{cm}{ }^{-1} .{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $8.50(\mathrm{~d}, 1 \mathrm{H}, J=5.0 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(2)$), 8.00-7.80 (m, $2 \mathrm{H}, \mathrm{H}-\mathrm{C}(8), \mathrm{H}-\mathrm{C}(5)$), 7.58 (br s, $1 \mathrm{H},-\mathrm{NH}$), 7.30 (dd, $1 \mathrm{H}, J=1.9 \mathrm{~Hz}, J=9.0 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(6)$), 6.30 $(\mathrm{d}, 1 \mathrm{H}, J=5.6 \mathrm{~Hz}, \mathrm{H}-\mathrm{C}(3)), 3.45-3.25\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArNHCH}_{2}-\right.$), $3,00-2,20(\mathrm{~m}, 16 \mathrm{H},-$ $\mathrm{CH}_{2} \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{Ad},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ad},-\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{~N}$-, $\left.-\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NCH}_{2}-\right)$, 2.10-1.40 (m, $19 \mathrm{H}, \mathrm{ArNHCH}_{2} \mathrm{CH}_{2}-,-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{Ad},-\mathrm{Ad}$), 1.40-1.35 (m, 2H, - $\mathrm{CH}_{2} \mathrm{Ad}$). ${ }^{13} \mathrm{C}$ NMR (50 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): 152.12; $150.54 ; 148.99 ; 134.54 ; 128.44 ; 124.54 ; 122.43 ; 117.40 ; 98.38 ; 58.74$; 57.25; 53.46; 53.28; 48.72; 44.17; 42.50; 37.00; 31.76; 28.51; 26.51; 23.27. Anal. $\left(\mathrm{C}_{31} \mathrm{H}_{46} \mathrm{ClN}_{5} \times\right.$ $3 / 2 \mathrm{H}_{2} \mathrm{O}$) Calcd: C, 67.55 ; H, 8.96; N, 12.71. Found: C, 67.86; H, 9.22; N, 12.89.

N-(prop-2-yn-1-yl)- N^{\prime}-(quinolin-4-yl)butane-1,4-diamine (41).

According to the procedure described in literature ${ }^{12}$, AQ8 7 (203.6 $\mathrm{mg}, 0.9457 \mathrm{mmol})$ was dissolved in $\mathrm{EtOH}_{\text {aps }}(10 \mathrm{~mL}), \mathrm{K}_{2} \mathrm{CO}_{3}$ was added ($130.7 \mathrm{mg}, 0.9457 \mathrm{mmol}$), and then propargyl bromide ($36 \mu \mathrm{~L}$, $0.47 \mathrm{mmol})$. The mixture was stirred at r.t. for 24 h . Solvent was evaporated under the reduced pressure, and crude product was purified using column chromatography (dry-flash, SiO_{2}, eluent $\mathrm{DCM}, \mathrm{DCM} / \mathrm{MeOH}$ gradient $7 / 3 \rightarrow 3 / 7$). Final product 41 was obtained as colorless oil ($59 \mathrm{mg}, 49 \%$). IR (ATR): 3287m, 3066m, 2931m, 2856m, $1617 \mathrm{w}, 1579 \mathrm{~s}, 1540 \mathrm{~m}, 1457 \mathrm{w}, 1438 \mathrm{w}, 1395 \mathrm{w}, 1373 \mathrm{w}, 1339 \mathrm{~m}, 1281 \mathrm{w}, 1251 \mathrm{w}, 1225 \mathrm{w}, 1170 \mathrm{w}$,
$1127 \mathrm{w}, 1036 \mathrm{w}, 867 \mathrm{w}, 808 \mathrm{w}, 763 \mathrm{~m}, 651 \mathrm{w} \mathrm{cm}{ }^{-1} .{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 8.54 (d, $J=5.6$, H-C(2)), 8.01-7.93 (m, H-C(8)), 7.82-7.75 (m, H-C(5)), 7.66-7.55 (m, H-C(7)), 7.45-7.34 (m, H$\mathrm{C}(6)), 6.38(\mathrm{~d}, J=5.6, \mathrm{H}-\mathrm{C}(3)), 5.88-5.74(\mathrm{~m}, H-\mathrm{N}), 3.46-3.43\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH}\right), 3.36-3.23$ (m, 2H, ArNHCH 2_{2}), 2.82-2.72 (m, 2H, ArNHCH ${ }_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 2.27-2.20 (m, 1H, -C $\equiv \mathrm{CH}$), 1.93-1.77 (m, 2H, ArNHCH CH_{2}) , 1.75-1.59 (m, 2H, ArNHCH $\mathrm{CH}_{2} \mathrm{CH}_{2}-$). ${ }^{13} \mathrm{C}$ NMR (50 MHz , $\left.\mathrm{CDCl}_{3}, \delta\right): 151.01,149.85,148.37,129.74,128.85,124.37,119.64,118.80,98.50,81.82,71.50$, $47.85,43.01,38.05,27.39,26.24$. HRMS: $m / z 254.16429$ corresponds to molecular formula $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{H}^{+}$(error in ppm -3.47).

N-(7-chloroquinolin-4-yl)acetamide (42). ${ }^{10}$

A solution of $\mathbf{S} 2(844 \mathrm{mg}, 4.73 \mathrm{mmol})$ in acetic anhydride (3.4 mL) was
 refluxed for 2 h . After cooling to r.t. brine and 10% aqueous NaOH were added. The mixture was extracted with ethyl acetate and organic extracts were dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The product was purified using column chromatography (dry-flash, SiO_{2}, eluent $\mathrm{EtOAc} / \mathrm{MeOH}$ and flash, Biotage SP1, RP column, eluent $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$). Final product 42 was obtained as white solid ($799 \mathrm{mg}, 91 \%$). M.p. $=169-$ $172{ }^{\circ} \mathrm{C}$. IR (KBr): 3434s, 3267s, 3048m, 2924m, 2852m, 1662s, 1614s, 1594m, 1570s, 1528s, $1491 \mathrm{~s}, 1444 \mathrm{~m}, 1422 \mathrm{~m}, 1384 \mathrm{~m}, 1371 \mathrm{~m}, 1311 \mathrm{~s}, 1274 \mathrm{~m}, 1244 \mathrm{~m}, 1187 \mathrm{w}, 1167 \mathrm{w}, 1104 \mathrm{w}, 1081 \mathrm{w}$, $1041 \mathrm{w}, 1016 \mathrm{w}, ~ 959 \mathrm{w}, ~ 970 \mathrm{w}, 918 \mathrm{w}, ~ 854 \mathrm{~m}, ~ 833 \mathrm{~m}, ~ 818 \mathrm{~m}, ~ 765 \mathrm{w}, 714 \mathrm{~m}, ~ 668 \mathrm{w}, ~ 636 \mathrm{w}, ~ 615 \mathrm{w}$, $587 \mathrm{w}, 557 \mathrm{w}, 519 \mathrm{w}, 502 \mathrm{w}, 474 \mathrm{w}, 433 \mathrm{w}, 420 \mathrm{w}, 403 \mathrm{w} \mathrm{cm}{ }^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta\right):$ 8.79-8.68 (m, H-C(2)), 8.26-8.19 (m, H-C(5)), 8.18-8.11 (m, H-C(8)), 8.30-7.92 (m, H-C(3)), 2.33 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$-). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta$): $172.74,153.10,150.25,144.14,137.05$, 128.55, 128.39, 124.95, 121.12, 113.90, 24.30. HRMS: $m / z 221.04691$ corresponds to molecular formula $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{ClN}_{2} \mathrm{OH}^{+}$(error in ppm -3.19).

N-(5,6,7,8-tetrahydroquinolin-4-yl)acetamide (43).

Compound 42 ($551 \mathrm{mg}, 2.49 \mathrm{mmol}$) was hydrogenated using $\mathrm{PtO}_{2}(55 \mathrm{mg}, 10 \mathrm{wt}$. $\%$) as catalyst under hydrogen (50 psi) in glac. $\mathrm{AcOH}(48 \mathrm{~mL})$ and perchloric acid $(0.3 \mathrm{~mL})$. The mixture was shaken at r.t. for 64 h . The catalyst was filtered off, 10% NaOH in water was added to filtrate, extracted with DCM and dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The product was purified using column chromatography (dry-flash, SiO_{2}, eluent

EtOAc/MeOH). Final product 43 was obtained as white solid ($310 \mathrm{mg}, 65 \%$). M.p. $=148-151$ ${ }^{\circ} \mathrm{C} . ~ I R ~(A T R): ~ 3352 \mathrm{~m}, 3147 \mathrm{~m}, 3069 \mathrm{~m}, 2934 \mathrm{~s}, 2860 \mathrm{~m}, 1702 \mathrm{~s}, 1682 \mathrm{~s}, 1583 \mathrm{~s}, 1514 \mathrm{~s}, 1459 \mathrm{~m}$, $1435 \mathrm{~m}, 1406 \mathrm{~m}, 1369 \mathrm{~m}, 1337 \mathrm{~m}, 1297 \mathrm{~s}, 1254 \mathrm{~m}, 1166 \mathrm{w}, 1002 \mathrm{w}, 845 \mathrm{w}, 736 \mathrm{w} \mathrm{cm}{ }^{-1} .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta\right): 8.17(\mathrm{~d}, J=5.5, \mathrm{H}-\mathrm{C}(2)), 7.72(\mathrm{~d}, J=5.5, \mathrm{H}-\mathrm{C}(3)), 2.92-2.82(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-$ $\mathrm{C}(8))$, 2.72-2.65 (m, 2H, H-C(5)), $2.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.91-1.79(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-\mathrm{C}(6)$ and $\mathrm{H}-\mathrm{C}(7)) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta\right): 172.45,158.64,146.69,146.37,125.22,116.29,33.14,24.81$, 24.00, 23.47, 23.41. HRMS: $m / z 191.11758$ corresponds to molecular formula $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OH}^{+}$ (error in ppm -1.64).

5,6,7,8-Tetrahydroquinolin-4-amine (44).

 The solution of 43 in 2 M HCl was stirred for 3 h at $70^{\circ} \mathrm{C}$. After cooling to r. t., ammonia was added. The mixture was extracted with DCM and dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Final product 44 was obtained after evaporation of organic layer as pale yellow solid ($182 \mathrm{mg}, 89$ \%). M.p. $=125-126^{\circ} \mathrm{C} . ~ I R ~(A T R): ~ 3336 \mathrm{~s}, 3194 \mathrm{~s}, 2933 \mathrm{~s}, 2860 \mathrm{~m}$, $1637 \mathrm{~s}, 1590 \mathrm{~s}, 1481 \mathrm{~m}, 1451 \mathrm{~m}, 1351 \mathrm{~m}, 1274 \mathrm{w}, 1190 \mathrm{w}, 1164 \mathrm{w}, 1102 \mathrm{w}, 899 \mathrm{w}, 818 \mathrm{~m}, 736 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 8.02 (d, $J=5.5, \mathrm{H}-\mathrm{C}(2)$), 6.38 (d, $J=5.5, \mathrm{H}-\mathrm{C}(3)$), 4.05 (bs, NH_{2}), 2.95-2.73 (m, 2H, H-C(5)), 2.59-2.33 (m, 2H, H-C(8)), 2.10-1.76 (m, 4H, H-C(6) and H$\mathrm{C}(7)) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 157.03, 150.83, 146.74, 115.84, 107.10, 32.71, 22.87, 22.75, 22.48. HRMS: $m / z 149.10661$ corresponds to molecular formula $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{H}^{+}$(error in ppm -4.78).

4-Chloro-5,6,7,8-tetrahydroquinoline (45).

To a stirring solution of $44(380 \mathrm{mg}, 2.6 \mathrm{mmol})$ in glac. AcOH $(2.3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, $28 \% \mathrm{HCl}(1.5 \mathrm{~mL})$ and aqueous solution of $\mathrm{NaNO}_{2}(257 \mathrm{mg}, 0.85 \mathrm{~mL})$ were added dropwise, respectively. After 10 minutes at $0{ }^{\circ} \mathrm{C}$, resulting mixture was added dropwise to a solution of $\mathrm{CuCl}(659 \mathrm{mg}, 6.66 \mathrm{mmol})$ in $28 \% \mathrm{HCl}(1.2 \mathrm{~mL})$ at same temperature. The stirring was continued at r . t. After 17 h , solution of NaOH in water was added and extracted with DCM. Organic layer was dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product was purified using colum chromatography (dry-flash, SiO_{2}, eluent $\mathrm{EtOAc} / \mathrm{MeOH}$). Final product 45 was obtained as a coroless oil ($226 \mathrm{mg}, 53 \%$). IR (ATR): 3041w, 2937s, 2863s, 1734w, 1674w, 1553s, 1451s, $1432 \mathrm{~m}, 1400 \mathrm{~s}, 1332 \mathrm{w}, 1230 \mathrm{w}, 1194 \mathrm{w}, 1161 \mathrm{w}, 1082 \mathrm{w}, 1061 \mathrm{w}, 953 \mathrm{w}, 834 \mathrm{~m}, 787 \mathrm{~m}, 672 \mathrm{w} \mathrm{cm}{ }^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 7,77-7,65 (m, H-C(2)), 7,58-7,48 (m, H-C(3)), 1,88-1,20 (m, 8H, $\mathrm{H}-\mathrm{C}(5), \mathrm{H}-\mathrm{C}(6), \mathrm{H}-\mathrm{C}(7)$ and $\mathrm{H}-\mathrm{C}(8))$. GC/MS (m/z (\%)): 165.9 ([M $\left.\left.{ }^{+}\right], 100\right)$; 132.0 (33).

$N^{1 \mathbf{1}}$-(5,6,7,8-tetrahydroquinolin-4-yl)octane-1,8-diamine (46).

Compound 46 was prepared by procedure E , using $\mathrm{Pd}(\mathrm{OAc})_{2}$ $(9.9 \mathrm{mg}, 0.044 \mathrm{mmol}), \mathrm{SPhos}(36.3 \mathrm{mg}, 0.0883 \mathrm{mmol}), 45$ (185 $\mathrm{mg}, 1.10 \mathrm{mmol}$), 1,8 -diaminooctane ($239 \mathrm{mg}, 1.66 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(587 \mathrm{mg}, 2.76 \mathrm{mmol})$ and dioxane (9.3 mL). Final product 46 was obtained as colorless oil ($200 \mathrm{mg}, 66 \%$). IR (ATR): $3299 \mathrm{~m}, 2928 \mathrm{~s}, 2855 \mathrm{~s}, 1592 \mathrm{~s}$, $1523 \mathrm{~m}, 1456 \mathrm{~m}, 1344 \mathrm{~m}, 1165 \mathrm{w}, 808 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 8.08 (d, $J=5.7, \mathrm{H}-$ $\mathrm{C}(2)), 6.31(\mathrm{~d}, J=5.7, \mathrm{H}-\mathrm{C}(3)), 3.93\left(\mathrm{~s}, \mathrm{H}-\mathrm{N}\right.$, exchangable with $\left.\mathrm{D}_{2} \mathrm{O}\right), 3.25-3.05(\mathrm{~m}, 2 \mathrm{H}), 2.90$ - $2.75(\mathrm{~m}, 2 \mathrm{H}), 2.68(\mathrm{t}, J=7.0,2 \mathrm{H}), 2.41-2.26(\mathrm{~m}, 2 \mathrm{H}), 1.94-1.76(\mathrm{~m}, 4 \mathrm{H}), 1.74-1.54(\mathrm{~m}$, $4 \mathrm{H}), 1.50-1.25(\mathrm{~m}, 8 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 155.72, 151.44, 147.10, 114.97, 102.21, 42.95, 42.19, 33.75, 32.71, 29.37, 29.31, 29.21, 26.99, 26.79, 22.70, 22.64, 22.50. HRMS: $m / z 276.24282$ corresponds to molecular formula $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{H}^{+}$(error in ppm -2.19).

Table S1. In vitro activities against L. infantum and L. tropica promastigotes and cytotoxicity against THP-1 human cells ${ }^{a}$

Comp.	$\underset{\substack{\text { infantum } \mathrm{IC}_{50} \\(\mu \mathrm{M})^{b}}}{ }$	$\begin{gathered} \mathrm{L} . \\ {\text { tropica } \mathrm{IC}_{50}}_{(\mu \mathrm{M})^{b}} \end{gathered}$	$\begin{gathered} \text { THP-1 } \\ \text { IC }_{50}(\mu \mathrm{M})^{c} \end{gathered}$	$\begin{gathered} \text { SI } \\ (\mathrm{THP} / \text { L.i. })^{d} \end{gathered}$	$\begin{gathered} \text { SI } \\ {\text { (THP/ L.t. })^{d}}^{\text {d }} \end{gathered}$	Ref. of comp.
1	8.67	2.77	23.66	2.7	8.5	new
2	6.49	2.96	>109.6	>16.9	>37.0	new
3	16.60	9.35	>65.2	>3.9	>7.0	new
4	16.60	6.63	>59.7	>3.6	>9.0	new
5	1.91	2.24	12.59	6.6	5.6	new
6	1.77	1.30	6.39	3.6	4.9	new
7	0.73	0.66	1.81	2.5	2.7	14
8	2.46	1.84	3.29	1.3	1.8	14
9	2.40	2.35	4.90	2.0	2.1	14
10	0.52	0.51	1.00	1.9	2.0	new
11	1.14	1.31	2.96	2.6	2.3	7
12	0.64	0.68	3.76	5.8	5.5	7
13	1.23	1.24	4.25	3.4	3.4	7
14	0.51	0.50	1.91	3.8	3.8	7
15	0.48	0.43	4.73	9.9	10.9	new
16	1.03	0.81	2.31	2.2	2.8	11
17	1.02	0.85	4.28	4.2	5.0	13
18	1.24	1.02	2.35	1.9	2.3	15
19	0.98	0.91	2.44	2.5	2.7	11
20	1.55	1.22	2.79	1.8	2.3	11
21	1.02	1.37	7.11	7.0	5.2	new
22	>76.5	>76.5	>76.5	>1	>1	new
23	>69.1	>69.1	>69.1	>1	>1	new
24	0.72	0.75	2.31	3.2	3.1	new
25	0.83	0.80	3.68	4.4	4.6	new
26	2.30	1.94	5.01	2.2	2.6	11
27	1.22	1.54	2.80	2.3	1.8	11
28	5.42	7.11	8.10	1.5	1.1	11
29	0.35	0.30	1.38	4.0	4.6	11
30	0.80	1.06	3.85	4.8	3.6	11
Control ${ }^{\text {f }}$	0.13	0.14	>10.8	>83.1	>77.1	1

${ }^{\mathrm{a}}$ Antileishmanial IC_{50} values against promastigote stages ($\mu \mathrm{M}$), MTT assay; ${ }^{\mathrm{b}}$ All in vitro experiments were performed in duplicate, mean values are given; ${ }^{\text {c }}$ Cytotoxicity against differentiated THP-1, human monocytic cell line derived from an acute monocytic leukemia patient. ${ }^{\mathrm{d}}$ Selectivity index; ${ }^{\mathrm{e}}$ The syntheses of compounds are presented in our previous papers ${ }^{7,11,13,14,15}$. ${ }^{\mathrm{f}}$ Control drug: amphotericin B

Table S2. In vitro activities against intramacrophage L. infantum amastigotes

Compound	In Vitro Antiamastigote Activity at $0.5 \boldsymbol{\mu M}^{\text {a }}$	In Vitro Antiamastigote Activity $\mathbf{I C}_{50}(\mu \mathbf{M})^{, b}$	$\begin{gathered} \text { THP-1 } \mathbf{1}^{\text {c }} \\ \mathbf{I C}_{50}(\boldsymbol{\mu M}) \end{gathered}$	$\begin{gathered} \text { SI } \\ (\mathbf{T H P / I P T})^{\mathrm{d}} \end{gathered}$
1	8.9		23.7	
2	0.2		>109.6	
3	18.3		>65.2	
4	0		>59.7	
5	13.9		12.6	
6	23.3		6.40	
7	15.8		1.80	
8	29.6	1.91	3.29	1.72
9	22		4.90	
10	72.2	0.31	1.00	3.22
11	26.4	1.85	2.96	1.60
12	0		3.76	
13	38.9	1.29	4.25	3.29
14	26.4	>1	1.91	< 1.91
15	47.6	0.58	4.73	8.15
16	10.4		2.31	
17	14.4		4.28	
18	42.7	0.65	2.35	3.61
19	36.9	0.73	2.44	3.34
20	42.2	0.79	2.79	3.51
21	21		7.11	
22	1.1		>76.5	
23	11.8		>69.1	
24	29.6	>1	2.31	<2.3
25	20.5		3.68	
26	2.4		5.01	
27	12.7		2.80	
28	13.8		8.10	
29	13.5		1.38	
30	23.6		3.85	
Control ${ }^{\text {e }}$	95.5	0.21	>10.8	>51.4

${ }^{\mathrm{a}}$ Mean value of two or three experiments. ${ }^{\text {b }}$ Mean value of two experiments. ${ }^{\mathrm{c}}$ Cytotoxicity against differentiated THP-1, human monocytic cell line derived from an acute monocytic leukemia patient. ${ }^{\mathrm{d}}$ Selectivity Index $\left(\mathrm{IC}_{50}\right.$ against $\mathrm{THP}-1 / \mathrm{IC}_{50}$ against intracellular amastigotes); ${ }^{\mathrm{e}}$ Control drug: amphotericin B.

Table S3. Antileishmanial activity in vivo.

Control (PBS)	Liver weight in mg $\mathbf{(W)}$	Amastigotes/Liver cell (A/C)	Relative load $\mathbf{W} \mathbf{x ~ A / C ~}$
1	930	$40 / 503$	74.0
2	1000	$44 / 502$	87.6
3	700	$49 / 507$	67.6
4	630	$35 / 506$	43.6
5	622	$47 / 500$	58.5
Mean		$\mathbf{6 6 . 3}$	

Comp. 10 $(100 \mathrm{mg} / \mathrm{kg} \times 4$ days, p.o.)	Liver weight in mg (W)	Amastigotes/Liver cell (A/C)	Relative load $\mathbf{W} \mathbf{~ X ~ A / C ~}$
1	672	$0 / 500$	0
2	636	$0 / 500$	0
3	798	$0 / 500$	0
Mean			$\mathbf{0}$
Reduction from control (\%)		$\mathbf{1 0 0}$	

Note: signs of toxicity; 1 mouse died on D10; 1 mouse died on D12

Comp. 10 $(60 \mathrm{mg} / \mathrm{kg} \times 4$ days, p.o. $)$	Liver weight in mg (W)	Amastigotes/Liver cell (A/C)	Relative load $\mathbf{W} \mathbf{~ x ~ A / C ~}$
1	655	$2 / 505$	2.6
2	482	$2 / 500$	1.9
3	653	$3 / 507$	3.9
4	753	$1 / 500$	1.5
5	756	$2 / 503$	3.0
Mean			$\mathbf{2 . 6}$
Reduction from control (\%)		$\mathbf{9 6 . 1}$	

Comp. 10 $(10 \mathrm{mg} / \mathrm{kg} \times 4$ days, s.c. $)$	Liver weight in mg (W)	Amastigotes/Liver cell (A/C)	Relative load W x A/C
1	575	$10 / 500$	11.5
2	544	$12 / 510$	12.8
3	666	$12 / 507$	15.7
4	528	$9 / 500$	9.5
5	609	$10 / 508$	12.0
Mean			$\mathbf{1 2 . 3}$
Reduction from control (\%)		$\mathbf{8 1 . 4}$	

Comp. 15 $(100 \mathrm{mg} / \mathrm{kg} \times 4$ days, p.o. $)$	Liver weight in mg (W)	Amastigotes/Liver cell (A/C)	Relative load $\mathbf{W} \mathbf{~ x ~ A / C ~}$
1	638	$1 / 500$	1.3
2	630	$2 / 503$	2.5
3	747	$0 / 500$	0
4	830	$0 / 508$	0
5	513	$0 / 503$	0
Mean		$\mathbf{0 . 7 6}$	

Comp. 15 $(50 \mathrm{mg} / \mathrm{kg} \times 4$ days, p.o. $)$	Liver weight in mg (W)	Amastigotes/Liver cell (A/C)	Relative load W x A/C
1	838	$2 / 506$	3.3
2	730	$2 / 510$	2.9
3	695	$3 / 500$	4.2
4	725	$2 / 502$	2.9
5	572	$3 / 503$	3.4
Mean			3.3
Reduction from control (\%)		$\mathbf{9 5 . 0}$	

Table S4. Antileishmanial activity in vivo.

Control (PBS)	Liver weight in mg $\mathbf{(W)}$	Amastigotes/Liver cell (A/C)	Relative load $\mathbf{W} \mathbf{~ x ~ A / C ~}$
1	720	$50 / 503$	71.6
2	820	$56 / 500$	91.8
3	950	$48 / 513$	90.7
4	570	$50 / 548$	52.0
5	510	$46 / 500$	46.9
Mean relative load			$\mathbf{7 0 . 6}$

Comp. 10 $(5 \mathrm{mg} / \mathrm{kg} \times 5$ days, s.c. $)$	Liver weight in mg (W)	Amastigotes/Liver cell $(\mathbf{A} / \mathbf{C})$	Relative load $\mathbf{W} \mathbf{~ x ~ A / C ~}$
1	680	$24 / 500$	32.6
2	780	$20 / 510$	30.6
3	750	$18 / 500$	27.0
4	720	$25 / 500$	36.0
5	600	$22 / 515$	25.6
Mean relative load			$\mathbf{3 0 . 4}$
Reduction from control (\%)		$\mathbf{5 6 . 9}$	

Comp. 15 $(10 \mathrm{mg} / \mathrm{kg} \times 5$ days, s.c. $)$	Liver weight in mg (W)	Amastigotes/Liver cell $(\mathbf{A} / \mathbf{C})$	Relative load $\mathbf{W} \mathbf{x ~ A / C ~}$
1	920	$22 / 500$	40.5
2	720	$23 / 510$	32.5
3	810	$23 / 500$	37.3
4	890	$21 / 520$	35.9
5	740	$25 / 515$	35.9
Mean relative load			$\mathbf{3 6 . 4}$
Reduction from control (\%)		$\mathbf{4 8 . 4}$	

Comp. 15 $(5 \mathrm{mg} / \mathrm{kg} \times 5$ days, s.c. $)$	Liver weight in mg (W)	Amastigotes/Liver cell (A/C)	Relative load $\mathbf{W} \mathbf{~ x ~ A / C ~}$
1	1080	$28 / 500$	60.5
2	830	$30 / 510$	48.8
3	680	$38 / 500$	51.7

4	600	$40 / 500$	48.0
5	570	$38 / 500$	43.3
Mean relative load			$\mathbf{5 0 . 5}$
Reduction from control (\%)		$\mathbf{2 8 . 5}$	

Comp. 15 $(1 \mathrm{mg} / \mathrm{kg} \times 5$ days, s.c. $)$	Liver weight in mg $\mathbf{(W)}$	Amastigotes/Liver cell $(\mathbf{A} / \mathbf{C})$	Relative load $\mathbf{W} \mathbf{~ x ~ A / C ~}$
1	670	$44 / 506$	58.3
2	780	$42 / 510$	64.2
3	600	$45 / 500$	54.0
4	800	$43 / 500$	68.8
5	500	$44 / 500$	44.0
Mean relative load			$\mathbf{5 7 . 9}$
Reduction from control (\%)		$\mathbf{1 8 . 0}$	

Figure S1. Nitric oxide production by BMDM treated with $\mathbf{1 0}$ or 15. BMDM were primed with IFN- γ for 2 h , and then treated with different concentrations of $\mathbf{1 0}$ or 15. Levels of nitrite were measured into the supernatants after 24 h by Griess assay. Data are the mean $\pm \mathrm{SD}$ of three independent experiments in triplicate. ${ }^{*} \mathrm{p}<0.01$ versus control

Figure S2. ROS production by BMDM treated with 10 or 15. BMDM were primed with IFN- γ for 2 h , and then treated with different concentrations of $\mathbf{1 0}$ or $\mathbf{1 5}$. Levels of ROS were measured into the supernatants after 24 h by H_{2} DCFDA. Data are the mean $\pm \mathrm{SD}$ of three independent experiments in triplicate. $* \mathrm{p}<0.01$ versus control; ${ }^{* *} \mathrm{p}<0.001$ versus control

1. Baiocco, P.; Ilari, A.; Ceci, P.; Orsini, S.; Gramiccia, M.; Di Muccio, T.; Colotti, G. Inhibitory Effect of Silver Nanoparticles on Trypanothione Reductase Activity and Leishmania infantum Proliferation. ACS Med. Chem. Lett. 2011, 2, 230-233.
2. D'Alessandro, S.; Gelati, M.; Basilico, N.; Parati, E. A.; Haynes, R. K.; Taramelli, D. Differential Effects on Angiogenesis of Two Antimalarial Compounds, Dihydroartemisinin and Artemisone: Implications for Embryotoxicity. Toxicology 2007, 241, 66-74.
3. Hornung, V.; Bauernfeind, F.; Halle, A.; Samstad, E. O.; Kono, H.; Rock, K. L.; Fitzgerald, K. A.; Latz, E. Silica Crystals and Aluminum Salts Activate the NALP3 Inflammasome through Phagosomal Destabilization. Nat. Imтипol. 2008, 9, 847-856.
4. Corbett, Y.; Parapini, S.; D'Alessandro, S.; Scaccabarozzi, D.; Rocha, B. C.; Egan, T. J.; Omar, A.; Galastri, L.; Fitzgerald, K. A.; Golenbock, D. T.; Taramelli, D.; Basilico, N. Involvement of Nod2 in the Innate Immune Response Elicited by Malarial Pigment Hemozoin. Microbes Infect. 2015, 17, 184-194.
5. Gatta, F.; Perotti, F.; Gradoni, L.; Gramiccia, M.; Orsini, S.; Palazzo, G.; Rossi, V. Synthesis of Some 1(Dihydroxypropyl)pyrazolo [3,4 d] pyrimidines and In Vivo Evaluation of their Antileishmanial and Antitrypanosomal Activity. Eur. J. Med. Chem. 1990, 25, 419-424.
6. Gerster, J. F.; Lindstrom, K. J.; Miller, R. L.; Tomai, M. A.; Birmachu, W.; Bomersine, S. N.; Gibson, S. J.; Imbertson, L. M.; Jacobson, J. R.; Knafla, R. T.; Maye, P. V.; Nikolaides, N.; Oneyemi, F. Y.; Parkhurst, G. J.; Pecore, S. E.; Reiter, M. J.; Scribner, L. S.; Testerman, T. L.; Thompson, N. J.; Wagner, T. L.; Weeks, C. E.; Andre, J.-D.; Lagain, D.; Bastard, Y.; Lupu, M. Synthesis and Structure-Activity-Relationships of $1 H$-Imidazo[4,5c]quinolines That Induce Interferon Production. J. Med. Chem., 2005, 48, 3481-3491.
7. Terzić, N.; Konstantinović, J.; Tot, M.; Burojević, J.; Djurković-Djaković, O.; Srbljanović, J.; Štajner, T.; Verbić, T.; Zlatović, M.; Machado, M.; Albuquerque, I. S.; Prudêncio, M.; Sciotti, R. J.; Pecic, S.; D’Alessandro, S.; Taramelli, D.; Šolaja, B. A. Reinvestigating Old Pharmacophores: Are 4-Aminoquinolines and Tetraoxanes Potential Two-Stage Antimalarials? J. Med. Chem. 2016, 59, 264-281.
8. Margolis, B. J.; Long, K. A.; Laird, D. L. T.; Ruble, J. C.; Pulley, S. R. Assembly of 4-Aminoquinolines via Palladium Catalysis: A Mild and Convenient Alternative to SNAr Methodology.J. Org. Chem.2007, 72, 2232-2235. 9. Morrell, A.; Placzek, M. S.; Steffen, J. D.; Antony, S.; Agama, K.; Pommier, Y.; Cushman, M. Investigation of the Lactam Side Chain Length Necessary for Optimal Indenoisoquinoline Topoisomerase I Inhibition and Cytotoxicity in Human Cancer Cell Cultures. J. Med. Chem., 2007, 50, 2040-2048.
9. Korotchenko, V.; Sathunuru, R.; Gerena, L.; Caridha, D.; Li, Q.; Kreishman-Deitrick, M.; Smith,P. L.; and Lin, A. J. Antimalarial Activity of 4-Amidinoquinoline and 10-Amidinobenzonaphthyridine Derivatives. J. Med. Chem. 2015, 58, 3411-3431.
10. Konstantinović, J.; Videnović, M.; Srbljanović, J.; Djurković-Djaković, O.; Bogojević, K.; Sciotti, R.; Šolaja, B. Antimalarials with Benzothiophene Moieties as Aminoquinoline Partners. Molecules 2017, 22, 343.
11. Antinarelli, L. M. R.; Carmo, A. M. L.; Pavan, F. R.; Leite, C. Q. F.; Da Silva, A. D.; Coimbra, E. S.; Salunke, D. B. Increase of Leishmanicidal and Tubercular Activities Using Steroids Linked to Aminoquinoline. Org. Med. Chem. Lett. 2012, 2:16.
12. Konstantinović, J.; Kiris, E.; Kota, K.; Kugelman-Tonos, J.; Videnović, M.; Cazares, L. H.; Terzić, N.; Verbić, T. Ž.; Andjelković, B.; Duplantier, A. J.; Bavari, S.; Šolaja, B. A. New Steroidal 4-Aminoquinolines Antagonize Botulinum Neurotoxin Serotype A in Mouse Embryonic Stem Cell Derived Motor Neurons in Post-intoxication Model. J. Med. Chem. 2018, 61, 1595-1608.
13. Šolaja, B. A.; Opsenica, D.; Smith, K. S.; Milhous, W. K.; Terzic, N.; Opsenica, I.; Burnett, J. C.; Nuss, J.; Gussio, R.; Bavari, S. Novel 4-Aminoquinolines Active against Chloroquine-Resistant and Sensitive P. falciparum Strains that also Inhibit Botulinum Serotype A. J. Med. Chem. 2008, 51, 4388-4391.
14. Marković, O. S.; Cvijetić, I. N.; Zlatović, M. V.; Opsenica, I. M.; Konstantinović, J. M.; Terzić Jovanović, N. V.; Šolaja, B. A.; Verbić, T. Ž. Human Serum Albumin Binding of Certain Antimalarials. Spectrochim. Acta Mol. Biomol. Spectrosc. 2018, 192, 128-139.

Supporting Information - II

Novel aminoquinoline derivatives significantly reduce parasite load in Leishmania infantum infected mice

Jelena Konstantinovićt ${ }^{\text {II }}$, Milica Videnović ${ }^{\#}$, Stefania Orsini ${ }^{\dagger}$, Katarina Bogojevićll , Sarah D’Alessandro ${ }^{¥}$, Diletta Scaccabarozzi ${ }^{\Psi}$, Nataša Terzić Jovanović ${ }^{\text {T, Luigi Gradoni }}{ }^{\dagger}$, Nicoletta Basilico*, ${ }^{*}$, Bogdan A. Šolaja*, ${ }^{\text {Ill }}$
${ }^{q}$ University of Belgrade, Faculty of Chemistry, Studentski trg 12-16, P.O. Box 51, 11158, Belgrade, Serbia
\# Faculty of Chemistry Innovative Centre, Studentski trg 12-16, 11158 Belgrade, Serbia
${ }^{\nabla}$ University of Belgrade, Institute of Chemistry, Technology, and Metallurgy, Njegoševa 12, 11000 Belgrade, Serbia
${ }^{\text {§ }}$ Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11158 Belgrade, Serbia
${ }^{¥}$ Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, Milan, Italy
${ }^{4}$ Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
${ }^{\dagger}$ Unit of Vector-borne Diseases, Istituto Superiore di Sanità, Rome, Italy

Table of contents

NMR spectra of synthesized compounds

II-S3-II-S16

HPLC analyses for purity

NMR spectra of synthesized compounds
N^{\prime}-(7-chloro-3-nitroquinolin-4-yl)- N, N-diethylpropane-1,3-diamine (1)

N4-(7-chloro-3-nitroquinolin-4-yl)- $\mathbf{N}^{1}, \mathbf{N} 1$-diethylpentane-1,4-diamine (2)

тाт $\begin{array}{lll}129 & 128 & 127\end{array}$ Chemical Shift (ppm)

7-chloro-N4-[4-(diethylamino)-1-methylbutyl]quinoline-3,4-diamine (4)

N4-\{3-[(1-adamantylmethyl)amino]propyl\}-7-chloroquinoline-3,4-diamine (6)

4-(\{3-[4-(3-\{[2-(1-adamantyl)ethyl]ammonio\}propyl)piperazinediium-1-yl]propyl\}amino)-7-chloroquinolinium tetrachloride (10)

N-(7-chloroquinolin-4-yl)- N-[4-(5-fluoro-1-benzothien-3-yl)benzyl]propane-1,3-diamine (15)

Chloroform-d

N-[3-(5-fluoro-1-benzothien-3-yl)prop-2-yn-1-yl]- N-quinolin-4-ylbutane-1,4-diamine (21)

Chloroform-d

$\stackrel{\infty}{\circ}$
N, N-diethyl- \boldsymbol{N}-(5,6,7,8-tetrahydroquinolin-4-yl)propane-1,3-diamine (22)

4-\{5-[4-(\{methyl[8-(5,6,7,8-tetrahydroquinolin-4-ylamino)octyl]amino\}methyl)phenyl]-2-thienyl\}benzonitrile (25)

Chloroform-d

HPLC analyses for purity

Compound: 1

Method A

DAD1 C, Sig=330,4 Ref=off (JELENAIKB50 2016-01-25 13-05-07.D)

Signal 3: DAD1 C, $\operatorname{Sig}=330,4$ Ref=off

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	1.573	BV	0.1036	105.40859	13.96111	0.4439
2	1.685	VB	0.1366	152.66585	14.41371	0.6430
3	8.191	BB	0.0147	5.69913e-2	5.70250e-2	$2.400 \mathrm{e}-4$
4	9.669	BB	0.0107	4.45698e-2	6.36685e-2	$1.877 e-4$
5	9.953	BV	0.2998	2.34859 e 4	1103.46313	98.9127

Totals : $\quad 2.37441 \mathrm{e} 41131.95866$

Method B

DAD1 C, Sig=330,4 Ref=off (JELENAIKB50 2016-01-25 14-24-25.D)

Signal 2: DAD1 C, Sig=330,4 Ref=off

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	1.561	BV	0.1057	184.85255	23.14280	1.1092
2	1.687	VV	0.1447	348.73328	34.72594	2.0926
3	2.282	VB	3.8846	76.79463	2.30754e-1	0.4608
4	7.671	BV	0.0482	7.93518e-1	2.00216e-1	4.762e-3
5	7.705	VB	0.0262	2.14119e-1	$1.05508 \mathrm{e}-1$	$1.285 \mathrm{e}-3$
6	8.598	BV	0.1665	1.59055 e 4	1454.88940	95.4426
7	9.164	VV	0.1729	111.48343	7.58695	0.6690
8	9.537	VB	0.1611	33.36453	2.46150	0.2002
9	13.426	VB	0.0739	3.25362	5.24656e-1	0.0195

Compound: 2

Method A

DAD1 C, Sig=330,4 Ref=off (JELENAIKB49 2016-01-25 12-30-38.D)

Signal 3: DAD1 C, Sig=330,4 Ref=off

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	1.356	BB	0.0762	17.26062	3.28890	0.0830
2	1.574	BV	0.0928	88.62122	12.80265	0.4264
3	1.685	VB	0.1320	154.20041	15.25146	0.7419
4	10.947	VB	0.2979	2.05254 e 4	987.72833	98.7487
Totals	S :			2.07855 e 4	1019.07135	

Method B

Signal 2: DAD1 C, Sig=330,4 Ref=off

Compound: 3

Method A

DAD1 B, Sig=270,4 Ref=off (JELENAIKB52 2016-03-15 12-32-08.D)

Signal 2: DAD1 B, Sig=270,4 Ref=off

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	1.425	VB	0.0797	28.13734	4.19775	0.1199
2	1.599	BV	0.0751	80.66073	16.92988	0.3437
3	1.684	VV	0.0831	98.39760	15.49618	0.4193
4	1.798	VB	0.1281	109.27438	10.40016	0.4656
5	9.241	BB	0.2547	2.28007 e 4	1373.25891	97.1549
6	10.453	BV	0.1554	95.82644	7.43150	0.4083
7	10.596	VB	0.0894	25.37045	3.48489	0.1081
8	11.856	BB	0.3464	230.03264	7.79287	0.9802

Totals :
$2.34684 \mathrm{e} 4 \quad 1438.99214$

Method B

Signal 3: DAD1 G, Sig=270,4 Ref=off

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	```RetTime [min]```	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	1.500	BV	0.0828	144.21815	27.90996	0.6996
2	1.695	VV	0.1525	339.94757	29.60406	1.6490
3	7.692	BV	0.1750	1.97402 e 4	1718.59253	95.7563
4	8.534	VV	0.1318	111.12260	9.99130	0.5390
5	8.845	VB	0.2075	105.68089	5.99840	0.5126
6	9.365	VV	0.1728	80.66315	5.50875	0.3913
7	9.601	VB	0.1474	93.21310	7.55732	0.4522
Total				2.06151 e 4	1805.16232	

Compound: 4

Method A

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	1.572	BV	0.1081	173.18770	22.18152	0.5128
2	8.866	BV	0.2139	3.22791 e 4	2010.08569	95.5675
3	9.927	VB	0.1748	431.68842	30.36716	1.2781
4	10.579	VB	0.1694	464.05820	35.06033	1.3739
5	11.305	BB	0.1598	428.19977	37.19765	1.2678

Totals : $\quad 3.37762 \mathrm{e} 4$ 2134.89236

Method B

Signal 3: DAD1 G, Sig=270,4 Ref=off

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$
1	7.883	BV	0.1291	2.51235 e 4	2333.72437	95.5612
2	8.568	VV	0.1407	242.59225	20.32733	0.9227
3	8.803	VV	0.3236	924.39185	35.64532	3.5161
Totals				2.62905 e 4	2389.69701	

Compound: 5

Method A

DAD1 B, Sig=270,4 Ref=off (JELENAIKB57 2016-04-07 14-52-45.D)

Signal 2: DAD1 B, Sig=270,4 Ref=off

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	11.811		0.2465	2.05500 e 4	1248.69263	95.5095
2	15.712	VB	0.2762	966.18292	43.83290	4.4905
Totals				2.15162 e 4	1292.52553	

Method B

DAD1 C, Sig=330,4 Ref=off (JELENAIKB57 2016-04-07 18-22-41.D)

Signal 2: DAD1 C, Sig=330,4 Ref=off

Peak \#	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \text { *s }]} \end{gathered}$	Height [mAU]	Area \%
1	10.020	VB	0.1620	42.47963	3.15679	1.3850
2	10.885	BB	0.2165	3001.71289	207.20801	97.8644
3	17.517	BB	0.1214	23.02526	2.24897	0.7507
Total	s :			3067.21778	212.61377	

Compound: 6

Method A

DAD1 A, Sig=254,4 Ref=off (JELENAIKB58 2016-04-07 15-31-22.D)

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	10.495	BB	0.2137	3.40220 e 4	1902.29553	96.0275
2	11.532	VV	0.1148	240.47559	27.96380	0.6787
3	11.753	VB	0.1193	207.88483	25.17498	0.5868
4	12.057	BB	0.1772	959.07672	76.53194	2.7070

Totals : $3.54294 \mathrm{e} 4 \quad 2031.96626$

Method B

DAD1 G, Sig=270,4 Ref=off (JELENAIKB58 2016-04-07 17-52-20.D)

Signal 3: DAD1 G, Sig=270,4 Ref=off

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	8.099	BV	0.3515	40.44973	1.35017	0.2329
2	9.379	VB	0.0824	8.81246	1.29542	0.0507
3	9.666	BV	0.1809	1.71276 e 4	1459.74524	98.6289
4	10.232		0.1388	94.94499	8.09829	0.5467
5	10.594		0.1184	93.89258	9.45137	0.5407

Totals : $\quad 1.73657 \mathrm{e} 41479.94048$

Compound: 10

Method A

Signal 2: DAD1 C, Sig=330,4 Ref=off

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	8.737	BV	0.1365	40.78170	3.53764	0.2911
2	9.603	BB	0.1154	84.12697	9.09872	0.6006
3	9.973	BV	0.1964	1.37720 e 4	1089.88208	98.3134
4	10.751	VV	0.1651	111.35114	7.96709	0.7949

Method B

Signal 2: DAD1 C, Sig=330,4 Ref=off

Compound: 15

Method C

DAD1 B, Sig=330,4 Ref=off (JELENAISEKV 6 JELENA MEOH 2014-01-15 10-35-06ITEST0000006.D)

Signal 2: DAD1 B, Sig=330,4 Ref=off

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	3.666	VV	0.0499	5.86679	1.61452	0.0725
2	3.770	VV	0.0615	6.42468	1.46846	0.0794
3	7.822	BB	0.0736	91.23423	19.33337	1.1270
4	9.118	BV	0.0771	43.22337	8.24990	0.5339
5	9.283	VV	0.0691	12.93283	2.44820	0.1598
6	9.741	BV	0.0899	7817.75244	1383.93896	96.5682
7	10.363	VB	0.0935	14.27669	1.80958	0.1764
8	10.721	BV	0.0606	14.11273	3.25163	0.1743
9	10.798	VB	0.0923	39.79552	5.57518	0.4916
10	12.958	BB	0.0878	49.95594	7.73735	0.6171

Totals : 8095.575231435 .42716

Method D

Signal 1: DAD1 A, Sig=254,4 Ref=off

Compound: 21

Method A

Signal 1: DAD1 A, Sig=254,4 Ref=off

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$		Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}{ }^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	1.553	BV	0.0776	91.92958	18.79401	0.2130
2	1.639	VB	0.1344	198.15492	19.69478	0.4591
3	8.618	VB	0.1283	111.68575	11.30480	0.2587
4	9.129	BV	0.1354	174.10493	16.66947	0.4033
5	9.386	VB	0.1657	145.31332	10.35561	0.3366
6	9.771	BV	0.1552	355.89175	36.51839	0.8245
7	10.106	VB	0.2107	4.14863e4	2319.59961	96.1112
8	11.553	VV	0.1670	213.49384	16.01798	0.4946
9	11.831	VB	0.1244	47.32322	4.58520	0.1096
10	12.122	BV	0.0835	16.24580	2.32430	0.0376
11	12.372	VB	0.1667	292.75635	21.06087	0.6782
12	13.939	BB	0.1293	31.70451	3.01281	0.0734
Total	s :			4.31649e4	2479.93781	

Method B

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$		Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	7.970	BV	0.1311	279.44455	32.74783	1.0427
2	8.262	VV	0.0693	176.40025	40.87649	0.6582
3	8.432	VB	0.1655	2.56459 e 4	2383.74829	95.6892
4	9.513	BV	0.2027	347.04858	21.80587	1.2949
5	9.898	VB	0.0984	16.29854	2.05749	0.0608
6	10.126	BV	0.0821	16.34438	2.36577	0.0610
7	10.332	VV	0.0655	22.35339	4.87294	0.0834
8	10.429	VV	0.1072	61.95589	7.24741	0.2312
9	10.774	VV	0.1491	39.22920	3.11046	0.1464
10	11.069	VB	0.0946	14.12029	1.81806	0.0527
11	11.496	BB	0.1218	160.73245	21.35513	0.5997
12	12.546	BB	0.1077	21.43447	2.42209	0.0800
Total	s :			2.68013 e 4	2524.42784	

Compound: 22

Method A

Signal 4: DAD1 D, Sig=290,4 Ref=off

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	0.141	VV	0.1171	247.75066	29.47381	1.8894
2	0.422	VB	0.0820	55.16560	9.61117	0.4207
3	1.353	BB	0.1484	1.26743 e 4	1298.76404	96.6572
4	7.577	BB	0.1037	21.18176	2.44210	0.1615
5	8.820	BV	0.6545	114.23597	2.04417	0.8712
Totals	s :			1.31126 e 4	1342.33529	

Method E

Signal 4: DAD1 D, Sig=290,4 Ref=off

Compound: 23

Method A

Signal 4: DAD1 D, Sig=290,4 Ref=off

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	Area \%
1	0.362	BB	0.0787	7.39480	1.11772	0.0387
2	1.619	BB	0.1825	307.33722	21.53188	1.6077
3	8.644	BV	0.1402	1.85912 e 4	1581.15515	97.2543
4	9.499	VV	0.1675	55.64240	3.95747	0.2911
5	9.934	BB	0.1335	90.59611	8.09747	0.4739
6	11.400	BBA	0.1606	63.90107	4.73127	0.3343

Totals :
1.91160 e 41620.59096

Method E

Compound: 24

Method A

Signal 3: DAD1 C, Sig=330,4 Ref=off

Method B

Signal 3: DAD1 C, Sig=330,4 Ref=off

| Peak
 RetTime Type | Width
 [min] | Area
 [min] | Height
 [mAU*s] | Area |
| :---: | :---: | :---: | :---: | :---: | :---: |
| [mAU] | $\%$ | | | |

Totals :
$1.21180 \mathrm{e} 4 \quad 1451.74013$

Compound: 25

Method A

Signal 3: DAD1 C, Sig=330,4 Ref=off

Method B

Signal 2: DAD1 B, Sig=330,4 Ref=off

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \text { s }]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	7.691	MM	0.1576	2.65599 e 4	2808.66309	95.1146
2	8.497	MM	0.1368	1364.21326	166.19298	4.8854
Totals				2.79241 e 4	2974.85606	

