Supporting Information - I

Novel aminoquinoline derivatives significantly reduce parasite load in *Leishmania infantum* infected mice

Jelena Konstantinović[¶], Milica Videnović[#], Stefania Orsini[†], Katarina Bogojević[¶], Sarah D'Alessandro[¥], Diletta Scaccabarozzi^Ψ, Nataša Terzić Jovanović[⊽], Luigi Gradoni[†], Nicoletta Basilico^{*,[¥]}, Bogdan A. Šolaja^{*,¶,§}

[¶]University of Belgrade, Faculty of Chemistry, Studentski trg 12-16, P.O. Box 51, 11158, Belgrade, Serbia

[#]Faculty of Chemistry Innovative Centre, Studentski trg 12-16, 11158 Belgrade, Serbia

⁷ University of Belgrade, Institute of Chemistry, Technology, and Metallurgy, Njegoševa 12, 11000 Belgrade, Serbia [§] Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11158 Belgrade, Serbia

^{*}Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, Milan, Italy

^{^wDipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy}

[†]Unit of Vector-borne Diseases, Istituto Superiore di Sanità, Rome, Italy

Table of contents

Biological assays	S3-S5
Methods for HPLC purity analyses	S6-S8
Synthetic procedures	S9-S26
In vitro activities against L. infantum and L. tropica promastigotes and	S27
cytotoxicity against THP-1 human cells (Table S1)	
In vitro activities against intramacrophage L. infantum amastigotes	S28
(Table S2)	
Antileishmanial activity in vivo (Table S3, Table S4)	S29-S31
Nitric oxide and ROS production (Figure S1, Figure S2)	S31

Biological assays

In vitro antileishmanial activity – assay on promastigotes. Promastigote stage of L. infantum strain MHOM/TN/80/IPT1 and L. tropica (MHOM/IT/2012/ISS3130) were cultured in Schneider's Drosophila medium (Lonza) supplemented with 10% heat-inactivated fetal calf serum (HyClone) at 22 °C. The complete medium used for antileishmanial activity assay was RPMI (EuroClone) supplemented with 10% heat-inactivated fetal calf serum (EuroClone), 20 mM Hepes, and 2 mM L-glutamine. To estimate the 50 % inhibitory concentration (IC₅₀), the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) method was used with modifications.¹ Compounds were dissolved in DMSO and then diluted with medium to achieve the required concentrations. Drugs were placed in 96 wells round-bottom microplates and seven serial dilutions made. Amphotericin B was used as the reference anti-Leishmania drug. Parasites were diluted in complete medium to 5×10^6 parasites/mL and 100 µL of the suspension was seeded into the plates, incubated at 22 °C for 72 h and then 20 µL of MTT solution (5 mg/mL) was added into each well for 3 h. The plates were then centrifuged, the supernatants discarded and the resulting pellets dissolved in 100 μ L of lysing buffer consisting of 20% (w/v) of a solution of SDS (Sigma), 40% of N,N-dimethylformamide (Merck) in H₂O. The absorbance was measured spectrophotometrically at a test wavelength of 550 nm and a reference wavelength of 650 nm. The results are expressed as IC_{50} which is the dose of compound necessary to inhibit parasite growth by 50%; each IC₅₀ value is the mean \pm standard deviation of separate experiments performed in duplicate.

In vitro intracellular amastigote susceptibility assays. THP-1 cells (human acute monocytic leukemia cell line) were maintained in RPMI supplemented with 10% FBS (EuroClone), 50 μ M 2-mercaptoethanol, 20 mM Hepes, 2 mM glutamine, at 37 °C in 5% CO₂. For *Leishmania* infections, THP-1 cells were plated at 5×10⁵ cells/mL in 16-chamber Lab-Tek culture slides (Nunc) and treated with 0.1 μ M phorbol myristate acetate (PMA, Sigma) for 48 h to achieve differentiation into macrophages. Cells were washed and infected with metacyclic *L. infantum* promastigotes at a macrophage/promastigote ratio of 1/10 for 24 h. Cell monolayers were then washed and incubated in the presence of test compounds for 72 h. Slides were fixed with metaanol and stained with Giemsa. The results are expressed as the percentage of infected

macrophages in treated and non-treated cells determined by light microscopyand as IC_{50} which is the dose of compound necessary to inhibit parasite growth by 50%; each IC_{50} value is the mean \pm standard deviation of separate experiments performed in duplicate.

Cytotoxicity against differentiated THP-1 cells. THP-1 cells were plated at 5×10^5 cells/mL in 96 wells flat bottom microplates and treated with 0.1 μ M PMA for 48 h to achieve differentiation into macrophages. Cells were then treated for 72 hours with serial dilutions of test compounds and cell viability evaluated using the MTT assay already described.² The results are expressed as IC₅₀, which is the dose of compound necessary to inhibit cell growth by 50%.

Nitric oxide and ROS production. Immortalized mouse C57Bl/6 bone marrow derived macrophages (BMDM) were generated as described³ and maintained in Dulbecco's minimal essential medium, DMEM (Euroclone, Italy) supplemented with 10% FBS (EuroClone), 2 mM L-glutamine, 20 mM HEPES at 37 °C in 5% CO₂. For NO and ROS production, BMDM were seeded (96-well plates; 1×10^5 cells/well) and incubated overnight. Cells were then primed with 50 U/ml of Interferon-gamma (IFN-y) for 2h, and treated for 24 hours with different concentrations of **15** (5, 2.5, 1.25 µM) or **10** (2.5, 1.25, 0.625 µM). LPS (100 ng/mL) was used as positive control. Cell viability was determined by MTT assay. Nitric oxide production was measured in cell supernatants by Griess reaction.⁴ The Griess reagents consisted in a mixture of equal parts of Reagent A (1% [w/v] sulphanilamide), and Reagent B (0.1% [w/v] naphthylethylenediamine dihydrochloride, and 2.5% [w/v] phosphoric acid). Fifty microliters of supernatants were mixed with an equal volume of Griess mixture and the nitrite levels were quantified by extrapolation from NaNO2 standard curve. Absorbance was measured at 540 nm using a microplate reader (Synergy 4 microplate reader, Biotek, GE). ROS production was measured using the H₂DCFDA dye. After treatment of BMDM (as described above), the medium was discarded, the macrophages were washed with PBS, and incubated with H₂DCFDA (20µM in PBS) for 30 min in the dark at 37 °C in 5% CO₂. The supernatants were transferred into a flatbottom black plate and fluorescence was measured spectrofluorometrically using an excitation wavelength of 485 nm and an emission wavelength of 528 nm by a Synergy 4, Biotek®. Statistical analyses were performed with GraphPad Prism 5 software by using 1-way ANOVA test followed by Bonferroni's post hoc test.

Tolerability studies in mice. Groups of four or five healthy female C57Bl/6 mice were treated per os (p.o.) or subcutaneous (s.c.) in a single dose with aminoquinolines suspended in 0.5% hydroxyethylcellulose-0.1% Tween 80 previously dissolved in DMSO (for p.o.) or dissolved in sunflower oil (for s.c.). Individual mouse behavior and appearance was monitored two times a day for 30 days. Compounds proved to be tolerable in mice if all mice survived 30 days after administration and showed normal appearance and behavior. The study followed the International Guiding Principles for biomedical research involving animals, and was reviewed by a local Ethics Committee and approved by the Veterinary Directorate at the Ministry of Agriculture and Environmental Protection of Serbia (decision no. 323-07-02444/2014-05/1).

Antileishmanial activity in vivo. A standard protocol using a short-term infection of Balb/c mice with *Leishmania infantum* was employed.⁵ Briefly, a semi-purified suspension of 2×10^6 Leishmania infantum amastigotes (WHO reference strain: MHOM/TN/1980/IPT-1), was inoculated via the tail vein in groups of Balb/c mice weighing 18-20 g. On day 7 after infection the increase in parasite load was monitored by killing one animal from the control group. Liver was weighed, from which imprints were made and parasites counted against 500 liver cell nuclei. Their numbers were expressed as arbitrary units, i.e. the number of parasites per liver cell nucleus multiplied by the weight of the organ in mg. The compounds were dissolved and administered per os (15 in 0.1%Tween/0.5%HEC in water; 10 in water) or s.c. (15 in sunflower oil; 10 in water), for 4 or 5 consecutive days from day 9 after infection. A group of mice was left untreated and served as control. On days 13 or 14, the parasite load of killed mice was assessed as described above, and the mean parasite count of each treated group was expressed as a percentage of the mean parasite count of the control group. The study followed the International Guiding Principles for biomedical research involving animals (European Directive 2010/63/UE), and it was reviewed by a local Ethics Committee. The study was approved by the Directorate of Animal Health and Veterinary Drugs at the Ministry of Health of Italy (authorization no. 120/2015-PR).

Chemistry. Melting points were determined on a Boetius PMHK apparatus and were not corrected. IR spectra were recorded on a Thermo-Scientific Nicolet 6700 FT-IR diamond crystal spectrophotometer. ¹H and ¹³C NMR spectra were recorded on a Varian Gemini-200 spectrometer (at 200 and 50 MHz, respectively), and a Bruker Ultrashield Advance III spectrometer (at 500 and 125 MHz, respectively) in the indicated solvent (vide infra) using TMS as the internal standard. Chemical shifts are expressed in ppm (δ) values and coupling constants (J) in Hz. ESI-MS (HRMS) spectra of the synthesized compounds were acquired on a Agilent Technologies 1200 Series instrument equipped with Zorbax Eclipse Plus C18 ($100 \times 2.1 \text{ mm i.d.}$ 1.8 µm) column and DAD detector (190-450 nm) in combination with a 6210 Time-of-Flight LC/MS instrument in positive and negative ion mode. The samples were dissolved in MeOH (HPLC grade). The selected values were as follows: capillary voltage 4 kV; gas temperature 350 °C; drying gas 12 L min⁻¹; nebulizer pressure 45 psig; fragmentator voltage: 70 V. Mass spectral analyses were done using electrospray ionization in positive ion mode on a Surveyor separations module coupled to a ThermoFinnigan TSQ AM triple quadrupole mass spectrometer. Gas chromatography tandem mass spectrometry (GC-MS) analyses were performed on an Agilent 7890A GC (Agilent) system equipped with a 5975C inert XL EI/CI MSD and a flame ionization detector (FID) connected by capillary flow technology through a 2-way splitter with make-up gas. An HP-5 MS capillary column (Agilent Technologies, 25 mm i.d., 30 m length, 0.25 µm film thickness) was used. The flash chromatography was performed on Biotage SP1 system equipped with UV detector and FLASH 12+, FLASH 25+ or FLASH 40+ columns charged with KP-SIL ($40 - 63 \mu m$, pore diameter 60 Å), KP-C18-HS ($40 - 63 \mu m$, pore diameter 90 Å) or KP-NH (40 – 63 μ m, pore diameter 100 Å) as an adsorbent. Elemental analyses were realized with an Elemental Vario EL III microanalyser. All tested compounds were fully characterized and their purity was >95% (as determined by HPLC).

Methods for HPLC purity analyses

Compounds were analyzed for purity (HPLC) using a Agilent 1200 HPLC system equipped with Quat Pump (G1311B), Injector (G1329B) 1260 ALS, TCC 1260 (G1316A) and Detector 1260 DAD VL+ (G1315C). HPLC analysis was performed in two diverse systems for each compound. **Method A:** Zorbax Eclipse Plus C18 2.1 x 100 mm, 1.8μ , S.N. USUXU04444 was used as the stationary phase. Eluent was made from the following solvents: 0.2% formic acid in water (A)

and methanol (B). The analysis were performed at the UV max of the compounds (at 254 nm for compounds 4, 6 and 21, 270 nm for compounds 3 and 5, 290 nm for 22 and 23 and 330 nm for compounds 1, 2, 10, 24 and 25) to maximize selectivity. Compounds were dissolved in methanol, final concentrations were ~1 mg/mL. Flow rate was 0.2 mL/min.

Compounds 1-6 and 21 were eluted using gradient protocol: 0-1 min 95%A, 1-6 min 95%A \rightarrow 5%A, 6-11 min 5%A, 11-14 min 5%A \rightarrow 95%A, 14-20 min 95%A.

Compound **10** was eluted using gradient protocol: 0-1.5 min 95%A, 1.5-5 min 95%A \rightarrow 5%A, 5-16 min 5%A, 16-18 min 5%A \rightarrow 95%A, 18-20 min 95%A.

Compound 22 was eluted using gradient protocol: 0-1 min 95%A, 1-3 min 95%A \rightarrow 5%A, 3-7 min 5%A, 7-8 min 5%A \rightarrow 95%A, 8-9 min 95%A.

Compound 23 was eluted using gradient protocol: 0-2 min 95%A, 2-4 min 95%A \rightarrow 5%A, 4-10 min 5%A, 10-11 min 5%A \rightarrow 95%A, 11-12 min 95%A.

Compounds 24 and 25 were eluted using gradient protocol: 0-1 min 95%A, 1-2 min 95%A \rightarrow 5%A, 2-10 min 5%A, 10-11 min 5%A \rightarrow 95%A, 11-12 min 95%A.

Method B: Zorbax Eclipse Plus C18 2.1 x 100 mm, 1.8μ , S.N. USUXU04444 was used as the stationary phase. Eluent was made from the following solvents: 0.2% formic acid in water (A) and acetonitrile (B). The analysis were performed at the UV max of the compounds (at 254 nm for compound 21, 270 nm for compounds 3, 4 and 6 and 330 nm for compounds 1, 2, 5, 10, 24 and 25) to maximize selectivity. Compounds were dissolved in methanol, final concentrations were ~1 mg/mL. Flow rate was 0.2 mL/min.

Compounds 1-6 and 21 were eluted using gradient protocol: 0-1 min 95%A, 1-6 min 95%A \rightarrow 5%A, 6-11 min 5%A, 11-14 min 5%A \rightarrow 95%A, 14-20 min 95%A.

Compound **10** was eluted using gradient protocol: 0-1.5 min 95%A, 1.5-5 min 95%A \rightarrow 5%A, 5-16 min 5%A, 16-18 min 5%A \rightarrow 95%A, 18-20 min 95%A.

Compound 24 was eluted using gradient protocol: 0-1 min 95%A, 1-3 min 95%A \rightarrow 5%A, 3-8 min 5%A, 8-10 min 5%A \rightarrow 95%A, 10-11 min 95%A.

Compound 25 was eluted using gradient protocol: 0-1 min 95%A, 1-3 min 95%A \rightarrow 5%A, 3-8 min 5%A, 8-10 min 5%A \rightarrow 95%A.

Method C: Zorbax Eclipse Plus C18 4.6 x 150mm, 1.8μ , S.N. USWKY01594 was used as the stationary phase. Eluent was made from the following solvents: 0.2% formic acid in water (A) and methanol (B). The analysis were performed at the UV max of the compounds (at 330 nm for

compound **15**) to maximize selectivity. Compounds were dissolved in methanol, final concentrations were ~1 mg/mL. Flow rate was 0.5 mL/min.

Compound 15 was eluted using gradient protocol: 0-1 min 95%A, 1-6 min 95%A \rightarrow 5%A, 6-11 min 5%A, 11-14 min 5%A \rightarrow 95%A, 14-16 min 95%A.

Method D: Poroshell 120 EC-C18, 4.6 x 50mm, 2.7μ , S.N. USCFU07797 was used as the stationary phase. Eluent was made from the following solvents: 0.2% formic acid in water (A) and acetonitrile (B). The analysis were performed at the UV max of the compounds (at 254 nm for compound **15**) to maximize selectivity. Compounds were dissolved in methanol, final concentrations were ~1 mg/mL. Flow rate was 0.5 mL/min.

Compound 15 was eluted using gradient protocol: 0-1 min 95%A, 1-6 min 95%A \rightarrow 5%A, 6-11 min 5%A, 11-13 min 5%A \rightarrow 95%A, 13-17 min 95%A.

Method E: Poroshell 120 EC-C18, 4.6 x 50mm, 2.7μ , S.N. USCFU07797 was used as the stationary phase. Eluent was made from the following solvents: 0.2% formic acid in water (A) and methanol (B). The analysis was performed at the UV max of the compounds (290 nm for compounds 22 and 23) to maximize selectivity. Compound was dissolved in methanol, final concentration was ~1 mg/mL. Flow rate was 0.5 mL/min.

Compounds 22 and 23 were eluted using gradient protocol: 0-1 min 95%A, 1-1.5 min 95%A \rightarrow 5%A, 1.5-6min 5%A, 6-7 min 5%A \rightarrow 95%A, 7-8 min 95%A.

Synthetic procedures

Procedure A: General procedure for nucleophilic substitution.⁶

A solution of 31^7 (1 equiv) in DCM was cooled to 0 °C, followed by addition of amine (1.5 equiv) and Et₃N (1.5 equiv). The reaction mixture was stirred on ice bath for 15 minutes, warmed to r.t. and after another 15 minutes heated to reflux for 1h. The mixture was transferred to a separation funnel, water was added and desired product extracted with DCM. Combined organic layers were dried over anh. MgSO₄ and the solvent was removed under reduced pressure. **Procedure B: General procedure for reduction using tin(II)-chloride.**

Using slightly modified procedure from literature⁷, a mixture of 3-nitroquinoline derivative (1 equiv) and SnCl₂ (5 equiv) in EtOH was stirred at r.t. under Ar atmosphere for 2 h. Solvent was removed under reduced pressure, followed by addition of sat. NaHCO₃. Crude product was extracted several times with EtOAc. Combined extracts were washed with brine, dried over anh. MgSO₄ and the solvent was evaporated under reduced pressure.

Procedure C: General procedure for Boc-protecting group removal with TFA.

A solution of amine in TFA/DCM mixture (v:v; 1:10) was stirred at r.t. overnight. Solvents were evaporated under reduced pressure and the residue was dissolved in DCM. The organic layer was washed several times with 2.5M NaOH and finally with water, dried over anh. MgSO₄ and the solvent was removed under reduced pressure.

Procedure D: General procedure for reductive amination.

Amine (1.2-1.5 equiv) and appropriate aldehyde (1 equiv) were dissolved in MeOH/DCM mixture (v:v; 2:1), glac. AcOH (1.5 equiv) was added, and the mixture was stirred under Ar atmosphere at r.t. After 3 h, NaBH₄ (6 equiv) was added, and stirring was continued for another 18 h. Solvent was removed under reduced pressure, and the residue was dissolved in DCM. The organic layer was washed with 2M aqueous NH_3 and extracted with DCM. The combined organic layers were washed with brine and dried over anh. Na_2SO_4 . Finally, the solvent was evaporeted under reduced pressure.

Procedure E: General procedure for Buchwald-Hartwig amination⁸

A suspension of $Pd(OAc)_2$ (4.00 mol %) and SPhos (8.00 mol %) in dioxane was purged with Ar and stirred at r.t. After three minutes, solution of **45** (1 equiv) in dioxane, an appropriate amine (1.5 equiv) and K₃PO₄ (2.5 equiv) were added. The mixture was heated at 85 °C for 24 h in a

sealed tube. After filtration the crude product was purified using column chromatography (dry flash, SiO₂, eluent EtOAc/MeOH and flash, Biotage SP1, NH column, elunet EtOAc/MeOH).

N-(7-chloroquinolin-4-yl)propane-1,3-diamine (**AQ3**) and *N*-(quinolin-4-yl)butane-1,4-diamine (**AQ8**) were prepared according to known procedures.

tert-Butyl (3-aminopropyl)carbamate (S1).

H₂N NHBoc According to the procedure described in literature⁹, a solution of Boc₂O (518.2 mg, 2.374 mmol) in DCM (10 mL) was added dropwise to a solution of propane-1,3-diamine (1 mL, 12 mmol) in DCM (40 mL). Reaction mixture was stirred at r.t. for 24h. Thereafter the solvent was removed under reduced pressure and the product was purified using column chromatography (dry-flash, SiO₂, eluent DCM/MeOH gradient 6/4 \rightarrow MeOH). Final product **S1** was obtained as a yellowish oil (228.0 mg, 55%). IR (ATR): 3350m, 2976s, 2934m, 1692s, 1525s, 1391m, 1366m, 1277m, 1252m, 1173s, 1060w, 871w, 780w cm⁻¹. ¹H NMR (500 MHz, CDCl₃, δ): 4.95 (bs, H-N), 3.24-3.20 (m, 2H, NH₂CH₂CH₂CH₂-), 2.79 (t, 2H, *J* = 6.7, NH₂CH₂-), 1.98 (bs, -NH₂), 1.66-1.61 (m, 2H, NH₂CH₂CH₂-), 1.44 (s, 9H, -NHCOOC(CH₃)₃). ¹³C NMR (125 MHz, CDCl₃, δ): 156.19, 79.11, 39.47, 38.30, 33.01, 28.39. HRMS: *m/z* 175.14407 corresponds to molecular formula C₈H₁₈N₄O₂H⁺ (error in ppm -0.20).

7-Chloroquinolin-4-amine (S2).¹⁰

NH₂ To the solution of 4,7-dichloroquinoline (676 mg, 3.41 mmol) in phenol (3.2 g, 34 mmol) stirring in two-necked flask at 110 °C, ammonium-carbonate (1.64 g, 17.1 mmol) was added in portions in a manner determined by intensity of foam developing in the flask. When addition was completed, the mixture was stirred at 165 °C for 3h. After cooling to r.t. diethylether was added. The solution was washed with 10% aqueous NaOH, extracted with diethylether and dried over anh. Na₂SO₄. The product was purified using column chromatography (dry-flash, SiO₂, eluent DCM /MeOH). Final product **S2** was obtained as white solid (602 mg, 99%). M.p. = 137 – 139 °C. IR (KBr): 3459s, 3358s, 3241s, 2460m, 1698m, 1639s, 1612s, 1576s, 1508s, 1445s, 1378m, 1327m, 1284m, 1201m, 1130m, 1078m, 910m, 879m, 855m, 839m, 813m, 761m, 675w, 644w cm⁻¹. ¹H NMR (500 MHz, CD₃OD, δ): 8.26 (d, *J* = 5.5, H-C(2)), 8.05 (d, *J* = 8.9, H-C(5), 7.77 (d, *J* = 2.1, H-C(8)), 7.37 (dd, *J*₁ = 9.0, *J*₂ = 2.2, H- C(6)), 6.62 (d, J = 5.3, H-C(3)). ¹³C NMR (125 MHz, CD₃OD, δ): 155.55, 152.11, 150.18, 136.66, 127.55, 125.93, 125.14, 118.48, 104.03. HRMS: m/z 179.03700 corresponds to molecular formula C₉H₇ClN₂H⁺ (error in ppm -0.32).

N'-(7-Chloro-3-nitroquinolin-4-yl)-N,N-diethylpropane-1,3-diamine (1).

Compound 1 was synthesized from 31 (50.0 mg, 0.206 mmol) and ΗN 3-diethylamino-1-propilamine (0.05 mL, 0.32 mmol) by procedure NO A. The product was purified using column chromatography (dryflash, SiO₂, eluent MeOH, EtOAc/(MeOH/NH₃=9/1) gradient $9/1 \rightarrow 1/1$ and flash chromatography, Biotage SP1, NH column, eluent EtOAc/Hex gradient 8/2). Final product 1 was obtained as a bright vellow solid (53.8 mg, 78%); softens at 50 °C. IR (ATR): 3122m, 2968s, 2876m, 2839m, 1566s, 1517s, 1448m, 1396m, 1342m, 1284m, 1254s, 1215m, 1191m, 1157m, 1116m, 1088w, 1021w, 980w, 958w, 924w, 892w, 819m, 774w, 719w, 596w cm⁻¹. ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3, \delta)$: 9.97 (s, H-N), 9.26 (s, H-C(2)), 8.19 (d, J = 8.9, H-C(5)), 7.95 (d, J = 2.3, H-C(8)), 7.40 (dd, $J_1 = 9.0$, $J_2 = 2.2$, H-C(6)), 3.85 (q, 2H, J = 6.0, ArNHC H_2 -), 2.66 (t, 2H, J =6.2, $-CH_2N(CH_2CH_3)_2$), 2.59 (g, 4H, J = 7.1, $-N(CH_2CH_3)_2$), 1.94-1.89 (m, 2H, ArNHCH₂CH₂-), 1.04 (t, 6H, J = 7.1, -N(CH₂CH₃)₂). ¹³C NMR (125 MHz, CDCl₃, δ): 150.88, 149.73, 148.64, 138.32, 129.31, 127.38, 126.12, 125.82, 118.07, 50.72, 48.57, 46.98, 27.60, 11.31. HRMS: m/z 337.14259 corresponds to molecular formula $C_{16}H_{21}CIN_4O_2H^+$ (error in ppm 0.03); m/z169.07533 corresponds to molecular formula $C_{16}H_{21}CIN_4O_2H_2^{2+}$ (error in ppm 2.39). HPLC purity ($\lambda = 330$ nm) method A: RT 9.953 min, area 98.91%; method B: RT 8.598 min, area 95.44%.

N^4 -(7-Chloro-3-nitroquinolin-4-yl)- N^1 , N^1 -diethylpentane-1,4-diamine (2).

Compound **2** was synthesized from **31** (75 mg, 0.31 mmol) and 2amino-5-diethylaminopentane (0.09 mL, 0.46 mmol) by procedure A. The product was purified using column chromatography (dryflash, SiO₂, eluent EtOAc/(MeOH/NH₃=9/1) gradient $8/2 \rightarrow 1/1$ and

flash chromatography, Biotage SP1, NH column, eluent EtOAc/MeOH gradient EtOAc \rightarrow 97/3). Final product **2** was obtained as a bright yellow oil (88.0 mg, 78%). IR (ATR): 3272w, 2968m, 2930m, 2870w, 2804w, 1606m, 1578s, 1530m, 1450m, 1410m, 1382m, 1276m, 1249m, 1228m, 1189w, 1155m, 1110w, 950w, 883w, 822w, 778w cm⁻¹. ¹H NMR (500 MHz, CDCl₃, δ): 9.46 (d, J = 8.7, H-N), 9.35 (s, H-C(2)), 8.13 (d, J = 9.2, H-C(5)), 7.97 (d, J = 2.0, H-C(8)), 7.43 (dd, $J_1 = 9.2$, $J_2 = 2.3$, H-C(6)), 4.4.-4.32 (m, 1H, ArNHCH(CH₃)-), 2.46 (q, 4H, J = 7.1, -N(CH₂CH₃)₂), 2.38 (t, 2H, J = 7.3, -CH₂N(CH₂CH₃)₂), 1.82-1.69 (m, 2H, ArNHCH(CH₃)CH₂-), 1.58-1.46 (m, 5H, -CH₂CH₂N(CH₂CH₃)₂, ArNHCH(CH₃)-), 0.96 (t, 6H, J = 7.2, -N(CH₂CH₃)₂). ¹³C NMR (125 MHz, CDCl₃, δ): 151.27, 150.38, 148.56, 138.71, 129.56, 127.75, 126.52, 126.19, 117.79, 54.63, 52.24, 46.74, 36.77, 23.73, 22.12, 11.51. HRMS: *m/z* 365.17392 corresponds to molecular formula C₁₈H₂₅ClN₄O₂H⁺ (error in ppm 0.10); *m/z* 183.09120 corresponds to molecular formula C₁₈H₂₅ClN₄O₂H²⁺ (error in ppm 3.42). HPLC purity ($\lambda = 330$ nm) method A: RT 10.947 min, area 98.75%; method B: RT 8.985 min, area 97.28%.

7-Chloro- N^4 -[3-(diethylamino)propyl]quinoline-3,4-diamine (3).

Compound **3** was prepared by procedure B using **1** (10.3 mg, 0.0306 ΗN mmol) and SnCl₂ (29.0 mg, 0.153 mmol). The product was purified column chromatography (dry-flash, SiO₂, using eluent DCM/(MeOH/NH₃=9/1) = 9/1). Final product **3** was obtained as a brown oil (3.8 mg, 40%). IR (ATR): 3313s, 2969s, 2930s, 2817m, 1596s, 1564s, 1468m, 1380s, 1344s, 1198m, 1166w, 1133m, 1075m, 988w, 897w, 815m, 767w, 673w, 548w, 436w cm⁻¹. ¹H NMR (500 MHz, CDCl₃, δ): 8.41 (s, H-C(2)), 7.92 (d, J = 2.1, H-C(8)), 7.85 (d, J = 9.2, H-C(5)), 7.35 (dd, $J_I =$ 9.2, $J_2 = 2.1$, H-C(6)), 4.77 (bs, H-N), 4.08 (bs, -NH₂), 3.38 (t, 2H, J = 6.0, ArNHCH₂), 2.73-2.68 (m, 6H, -CH₂N(CH₂CH₃)₂, -N(CH₂CH₃)₂), 1.90-1.85 (m, 2H, ArNHCH₂CH₂-), 1.12 (t, 6H, $J = 7.2, -N(CH_2CH_3)_2$. ¹³C NMR (125 MHz, CDCl₃, δ): 144.58, 144.24, 135.92, 131.03, 130.74, 128.58, 126.21, 122.17, 121.93, 51.14, 46.38, 45.27, 26.88, 10.66. HRMS: m/z 307.16817 corresponds to molecular formula $C_{16}H_{23}ClN_4H^+$ (error in ppm -0.76); m/z 154.08791 corresponds to molecular formula $C_{16}H_{23}CIN_4H_2^{2+}$ (error in ppm 0.48). HPLC purity ($\lambda = 270$ nm) method A: RT 9.241 min, area 97.15%; method B: RT 7.692 min, area 95.76%.

$\label{eq:2.1} 7-Chloro-N^4-[4-(diethylamino)-1-methylbutyl] quinoline-3, 4-diamine (4).$

Compound **4** was prepared by procedure B using **2** (64.7 mg, 0.177 mmol) and SnCl₂ (168.1 mg, 0.8865 mmol). The product was purified using column chromatography (dry-flash, SiO₂, eluent DCM/(MeOH/NH₃=9/1) = 9/1). Final product **4** was obtained as a

Cl⁻/N⁻ DCM/(MeOH/NH₃=9/1) = 9/1). Final product 4 was obtained as a brown oil (35.8 mg, 60%). IR (ATR): 3323s, 2968s, 2816m, 1597s, 1564s, 1488m, 1378s, 1347s, 1196w, 1131m, 984w, 900w, 876w, 820m, 767m, 548w, 429w cm⁻¹. ¹H NMR (500 MHz, CDCl₃, δ): 8.45 (s, H-C(2)), 7.94 (d, J = 2.3, H-C(8)), 7.73 (d, J = 8.9, H-C(5)), 7.37 (dd, $J_I =$ 8.9, $J_2 = 2.3$, H-C(6)), 3.78 (bs, -NH₂ exchangeable with D₂O), 3.56 (bs, H-N exchangeable with D₂O), 2.57-2.37 (m, 7H, ArNHCH(CH₃)-, -CH₂N(CH₂CH₃)₂, -N(CH₂CH₃)₂), 1.68-1.49 (m, 4H, ArNHCH(CH₃)CH₂-, ArNHCH(CH₃)CH₂CH₂-), 1.14 (d, 3H, J = 6.2, ArNHCH(CH₃)-), 1.00 (t, 6H, J = 7.1, -N(CH₂CH₃)₂). ¹³C NMR (125 MHz, CDCl₃, δ): 144.64, 144.42, 134.89, 131.52, 131.18, 128.75, 126.56, 122.89, 121.77, 52.90, 51.18, 46.87, 36.42, 23.97, 21.94, 11.47. HRMS: m/z 335.19970 corresponds to molecular formula C₁₈H₂₇ClN₄H⁺ (error in ppm 0.00); m/z168.10399 corresponds to molecular formula C₁₈H₂₇ClN₄H^{2²⁺} (error in ppm 2.97). HPLC purity method A ($\lambda = 254$ nm): RT 8.866 min, area 95.57%; method B ($\lambda = 270$ nm): RT 7.883 min, area 95.56%.

N-(1-adamantylmethyl)-N'-(7-chloro-3-nitroquinolin-4-yl)propane-1,3-diamine (5).

A solution of **33** (62.0 mg, 0.279 mmol) in DCM (3 mL) was cooled to 0 °C. Then, **31** (45.2 mg, 0.186 mmol) was added and stirring continued at same temperature for 15 min. Mixture was allowed to warm to r.t. and after another 15 minutes heated to reflux for 2h. Water was added and product

extracted several times with DCM. Combined organic layers were dried over anh. NaSO₄ and the solvent was evaporated under reduced pressure. The product was purified using column chromatography (dry-flash, SiO₂, eluent EtOAc \rightarrow EtOAc/MeOH = 1/1 and flash chromatography, Biotage SP1, NH column, eluent EtOAc/Hex gradient 6/4 \rightarrow 8/2). Final product **5** was obtained as a bright yellow oil (57.5 mg, 72%). IR (ATR): 3334w, 3246w, 2901s, 2844s, 1582s, 1530m, 1449m, 1416m, 1342m, 1279m, 1248m, 1218m, 1187m, 1155m, 1118m, 952w, 899w, 826w, 775w, 704w, 626w cm⁻¹. ¹H NMR (500 MHz, CDCl₃, δ): 9.74 (bs, H-N

exchangeable with D₂O), 9.32 (s, H-C(2)), 8.26 (d, J = 9.2, H-C(5)), 7.96 (d, J = 2.1, H-C(8)), 7.41 (dd, $J_1 = 9.0$, $J_2 = 2.2$, H-C(6)), 3.98-3.95 (m, 2H, ArNHCH₂-), 2.80 (t, 2H, J = 6.3, -CH₂NHCH₂Ad), 2.24 (s, 2H, -CH₂Ad), 1.97-1.92 (m, 5H, ArNHCH₂CH₂-, -Ad), 1.72-1.70 (m, 3H, -Ad), 1.63-1.60 (m, 3H, -Ad), 1.48 (d, 6H, J = 2.1, -Ad). ¹³C NMR (125 MHz, CDCl₃, δ): 151.20, 150.38, 148.63, 138.59, 129.39, 127.96, 126.14, 125.90, 118.00, 62.96, 48.14, 47.89, 40.86, 37.16, 33.47, 30.73, 28.41. HRMS: *m/z* 429.20526 corresponds to molecular formula C₂₃H₂₉ClN₄O₂H⁺ (error in ppm 0.20); *m/z* 215.10664 corresponds to molecular formula C₂₃H₂₉ClN₄O₂H₂²⁺ (error in ppm 1.92). HPLC purity method A ($\lambda = 270$ nm): RT 11.811 min, area 95.51%; method B ($\lambda = 330$ nm): RT 10.885 min, area 97.86%.

N^{4} -{3-[(1-adamantylmethyl)amino]propyl}-7-chloroquinoline-3,4-diamine (6).

Compound **6** was synthesized by procedure B using **5** (36.7 mg, 0.086 mmol) and $SnCl_2$ (81.2 mg, 0.428 mmol). The product was purified using column chromatography (dry-flash, SiO₂, eluent DCM/(MeOH/NH₃=9/1) = 9/1). Final product **6** was obtained as a yellowish foam (24.2 mg, 71%);

softens at 30-32 °C. IR (ATR): 3312m, 2901s, 2845s, 1597m, 1564m, 1453m, 1344m, 1198w, 1119w, 897w, 814w, 734w, 548w cm⁻¹. ¹H NMR (500 MHz, CDCl₃, δ): 8.43 (s, H-C(2)), 7.93 (d, J = 2.1, H-C(8)), 7.84 (d, J = 9.2, H-C(5)), 7.34 (dd, $J_1 = 9.2$, $J_2 = 2.1$, H-C(6)), 4.03 (bs, H-N exchangeable with D₂O), 3.33 (t, 2H, J = 6.1, ArNHCH₂-), 2.86 (t, 2H, J = 6.0, -CH₂NHCH₂Ad), 2.32, (s, 2H, -CH₂Ad), 1.98 (bs, 3H, -Ad), 1.86-1.81 (m, 2H, ArNHCH₂CH₂-), 1.74-1.72 (m, 3H, -Ad), 1.66-1.63 (m, 3H, -Ad), 1.56 (d, 6H, J = 2.4, -Ad). ¹³C NMR (125 MHz, CDCl₃, δ): 144.54, 144.30, 135.88, 131.32, 131.01, 128.63, 126.37, 122.34, 122.11, 63.53, 49.65, 46.01, 41.09, 37.15, 33.32, 29.84, 28.40. HRMS: *m/z* 399.22992 corresponds to molecular formula C₂₃H₃₁ClN₄H⁺ (error in ppm - 2.71); *m/z* 200.11926 corresponds to molecular formula C₂₃H₃₁ClN₄H₂²⁺ (error in ppm 0.62). HPLC purity method A (λ = 254 nm): RT 10.495 min, area 96.03%; method B (λ = 270 nm): RT 9.666 min, area 98.63%.

4-({3-[4-(3-{[2-(1-adamantyl)ethyl]ammonio}propyl)piperazinediium-1-yl]propyl}amino)-7-chloroquinolinium tetrachloride (10).

Cľ

Amine **38** (50 mg, 0.098 mmol) was suspended in 0.5 mL EtOH, followed by addition of EtOH/HCl solution (2 mL, 25%) and the reaction mixture was vigorously stirred 24h at r.t. Formed solid was filtered and washed well with 96% EtOH (5 mL) and Et₂O (5 mL). Upon drying at r.t. under reduced pressure desired salt was obtained (55 mg, 85%). M.p. > 280 °C. IR (ATR): 3383s, 3107w, 2902s, 2846m, 2657w, 2516w, 2437w, 2367w, 2325w, 2191w, 2121w, 2029w, 2006w, 1988w, 1965w, 1922w, 1615s, 1451s,

1362m, 1246w, 1216m, 1170w, 1141w, 1097w, 1052w, 1022w, 954m, 905m, 815m, 766m, 656w, 602w cm⁻¹. ¹H NMR (500 MHz, D₂O): 8.36 (d, 1H, J = 7.0 Hz, H-C(2)), 8.20 (d, 1H, J =9.3 Hz, H-C(5)), 7.90 (d, 1H, J = 1.6 Hz, H-C(8)), 7.69 (dd, 1H, J = 1.9 Hz, J = 9.0 Hz, H-C(6)), 6.87 (d, 1H, J = 7.0 Hz, H-C(3)), 3.80-3.70 (m, 2H, ArNHCH₂-), 3,70-3,55 (m, 8H, -NH⁺(CH₂CH₂)₂NH⁺-), 3,50-3,40 (m, 2H, ArNHCH₂CH₂CH₂CH₂NH⁺(CH₂CH₂)₂NH⁺-), 3,35-3,25 (m. 2H. -NH(CH₂CH₂)₂NH⁺CH₂CH₂CH₂CH₂NH₂⁺CH₂CH₂Ad), 3,20-3,05 (m, 4H. -CH₂NH₂⁺CH₂CH₂Ad, -CH₂CH₂Ad), 2.35-2.25 (m, 2H, ArNHCH₂CH₂-), 2.20-2.10 (m, 2H, -CH₂CH₂NH₂⁺CH₂CH₂Ad), 2.00-1.90 (m, 3H, -Ad), 1.80-1.60 (m, 6H, -Ad), 1.60-1.50 (m, 6H, -Ad), 1.50-1.40 (m, 2H, -CH₂Ad). ¹³C NMR (125 MHz, D₂O): 156.11; 142.34; 139.40; 138.06; 127.56; 124.02; 119.16; 115.34; 98.32; 54.28; 53.53; 49.25; 49.06; 44.20; 43.56; 41.34; 40.02; 39.37; 36.26; 31.06; 28,14, 22.50, 21.01. HRMS: m/z 524.35077 corresponds to molecular formula $C_{31}H_{46}CIN_5H^+$ (error in ppm -1.30). HPLC purity (λ =330 nm): method A: RT 9.973, area 98.31%; method B: RT 8.296, area 95.32%. Anal. (C₃₁H₄₆ClN₅ × 4HCl × 3.5H₂O) Calcd: C, 50.79; H, 7.84; N, 9.55. Found: C, 50.89; H, 7.80; N, 9.62.

N-(7-chloroquinolin-4-yl)-*N*'-[4-(5-fluoro-1-benzothiophene-3-yl)benzyl]propane-1,3diamine (15).

Compound **15** was prepared by procedure D, using aldehyde **39**¹¹ (118 mg, 0.460 mmol), amine **AQ3** (162.8 mg, 0.6906 mmol), glac. AcOH (40 μ L, 0.7 mmol), NaBH₄ (104.5 mg, 2.762 mmol) and MeOH/ DCM (18 mL, 2:1,

v/v). The product was purified using column chromatography (flash, Biotage SP1, NH column, eluent hexane/EtOAc gradient $2/8 \rightarrow$ EtOAc, EtOAc/MeOH gradient $95/5 \rightarrow 1/1$, MeOH; flash, Biotage SP1, SiO2 column, eluent DCM /MeOH+NH₃ (9/1) gradient $95/5 \rightarrow 3/7$). Final product 15 was obtained as a pale yellow foam (156.5 mg, 71%). M.p. = 39 - 40 °C. IR (ATR): 3239w, 3062w, 2935w, 2844w, 1583s, 1537m, 1492w, 1437m, 1368w, 1332w, 1282w, 1251w, 1197w, 1138w, 1114w, 883w, 853w, 806m, 784w, 650w cm⁻¹. ¹H NMR (500MHz, CDCl₃): 8.50 (d, J =5.3, H-C(2')), 7.92-7.90 (m, H-C(8')), 7.84 (dd, $J_1 = 4.8$, $J_2 = 8.9$, H-C(7)), 7.59-7.53 (m, 5H, 2H-Ar, H-C(4), H-C(5') and H-N exchangeable with D₂O), 7.50 (s, H-C(2)), 7.48-7.44 (m, 2H-Ar), 7.19-7.11 (m, 2H, H-C(6) and H-C(6')), 6.32 (d, J = 5.2, H-C(3')), 3.92 (s, 2H, ArCH₂NH-), 3.45-3.40 (m, 2H, ArNHCH2-), 3.05-3.01 (m, 2H, ArCH2NHCH2-), 2.02-1.95 (m, 2H ArCH₂NHCH₂CH₂-), 1.86 (bs. H-N exchangeable with D₂O), ¹³C NMR (125 MHz, CDCl₃); 161.13 (d, J = 240.7), 152.13, 150.40, 149.15, 139.14, 138.98, 137.37 (d, J = 4.7), 136.03, 134.70, 134.58, 128.83, 128.74, 128.53, 125.86, 124.79, 124.05 (d, J = 8.5), 122.04, 117.50, 113.40 (d, J = 25.6), 108.45 (d, J = 23.7), 98.32, 54.01, 49.32, 43.97, 27.45. HRMS: m/z476.13504 corresponds to molecular formula $C_{27}H_{23}CIN_3SFH^+$ (error in ppm -1.60), m/z238.57136 corresponds to molecular formula $C_{27}H_{23}CIN_3SFH_2^{2+}$ (error in ppm -0.75). HPLC purity: method C (λ = 330 nm): RT 9.741, area 96.57%; method D (λ = 254 nm): RT 5.816, area 95.63%.

N-[3-(5-fluoro-1-benzothien-3-yl)prop-2-yn-1-yl]-*N*'-quinolin-4-ylbutane-1,4-diamine (21).

Solution of **40** (11.7 mg, 0.0507 mmol) in DMF (0.1 mL), PdCl₂(PPh₃)₂ (2.1 mg, 6.0 mol%), PPh₃ (2.6 mg, 20 mol%), solution of **41** (10.7 mg, 0.0422 mmol) in DMF (0.1 mL), CuI (0.6 mg, 6 mol%) and

Et₂NH (78 µL, 0.71 mmol) were added to a dry microwave tube (0.2-0.5 mL) under Ar atmosphere. The mixture was heated in microwave reactor (Biotage Initiator 2.5 apparatus) at 120 °C for 25 minutes. After cooling to r.t. the reaction mixture was transferred to the separation funnel and DCM was added. Organic layer was washed with brine (with addition of 1 drop of aqueous NH₃) and dried over anh. Na₂SO₄. Crude product was purified using column chromatography (flash, Biotage SP, NH column, 12+M, eluent hexane/EtOAc gradient $2/8 \rightarrow$ EtOAc, EtOAc/MeOH gradient $9/1 \rightarrow 1/1$). Final product **21** was obtained as yellow oil (5.4 mg, 27%). IR (ATR): 3440w, 3250m, 3067m, 2930m, 2858m, 1582s, 1542m, 1442m, 1396w, 1374w, 1340m, 1298w, 1248w, 1196w, 1129w, 1100w, 1036w, 947w, 874w, 808w, 764m, 736w, 650w cm⁻¹. ¹H NMR (200 MHz, CDCl₃, δ): 8.53 (d, J = 5.6, H-C(2')), 8.01-7.93 (m, H-C(8')), 7.83-7.71 (m, 2H, H-C(5') and H-C(7)), 7.70-7.50 (m, 3H, H-C(7'), H-C(4) and H-C(2)), 7.45-7.34 (m, H-C(6')), 7.21-7.08 (m, H-C(6)), 6.40 (d, J = 5.6, H-C(3')), 5.72 (bs, H-N), 3.78 (s, 2H, -CH₂C=C-Ar), 3.41-3.29 (m, 2H, ArNHCH₂-), 2.98-2.87 (m, 2H, ArNH(CH₂)₃CH₂-), 2.01-1.68 (m, 5H, ArNHCH₂CH₂CH₂- and H-N). ¹³C NMR (125 MHz, CDCl₃, δ): 161.21 (d, J = 241.9), 150.66, 150.04, 147.99, 134.12, 131.93, 129.50, 129.05, 124.53, 123.82 (d, J = 9.0), 119.62, 118.74, 117.95, 113.99 (d, J = 25.3), 111.78, 108.52 (d, J = 23.5), 98.55, 90.30, 76.47, 48.12, 43.18, 39.11, 27.57, 26.43. HRMS: m/z 404.15750 corresponds to molecular formula $C_{24}H_{22}FN_3SH^+$ (error in ppm -4.00). HPLC purity ($\lambda = 254$ nm): method A: RT 10.106, area 96.11%; method B: RT 8.432, area 95.69%.

N^{1} , N^{1} -diethyl- N^{3} -(5,6,7,8-tetrahydroquinolin-4-yl)propane-1,3-diamine (22).

Compound **22** was prepared by procedure E, using Pd(OAc)₂ (1.4 mg, 0.0064 mmol), SPhos (5.2 mg, 0.013 mmol), **45** (26.8 mg, 0.159 mmol), *N*,*N*-diethylpropane-1,3-diamine (38 μL, 0.24 mmol), K₃PO₄ (84.6 mg, 0.398 mmol) and dioxane (1.3 mL). Final product **22** was obtained as colorless oil (18 mg, 43 %). IR (ATR): 3266w, 2968m, 2933m, 2873m, 2831m, 1591s, 1518m, 1452m, 1375w, 1343w, 1166w, 1139w, 1067w, 801 cm⁻¹. ¹H NMR (200 MHz, CDCl₃, δ): 8.06 (d, J = 5.6, H-C(2)), 6.26 (d, J = 5.6, H-C(3)), 5.94 (bs, H-N), 3.35-3.10 (m, 2H, -CH₂HN-), 2.90-2.70 (m, 2H), 2.65-2.45 (m, 6H), 2.40-2.25 (m, 2H), 1.95-1.65 (m, 6H), 1.03 (t, 3H, J = 7.0, -CH₂CH₃). ¹³C NMR (50 MHz, CDCl₃, δ): 155.41, 147.13, 115.32, 101.84, 52.74, 46.73, 43.64, 32.68, 25.27, 23.17, 22.72, 22.54, 11.38. HRMS: *m/z* 262.22666 corresponds to molecular formula C₁₆H₂₇N₃H⁺ (error in ppm -4.25). HPLC purity ($\lambda = 290$ nm): method A: RT 1.353, area 96.66%; method E: RT 4.016, area 99.41%.

N^{1} , N^{1} -diethyl- N^{4} -(5,6,7,8-tetrahydroquinolin-4-yl)pentane-1,4-diamine (23).

Compound **23** was prepared by procedure E, using $Pd(OAc)_2$ (1.1 mg, 0.0049 mmol), SPhos (4.1 mg, 0.0010 mmol), **45** (21 mg, 0.12 mmol), N^1 , N^1 -diethylpentane-1,4-diamine (29.7 mg, 0.188 mmol), K₃PO₄ (66.5 mg, 0.312 mmol) and dioxane (1 mL). Final product **23** was obtained as colorless oil (9.9 mg, 27 %). IR (ATR): 3314w, 2967s, 2932s, 2865m,

2802m, 1589s, 1513m, 1452m,1371w, 1342w, 1165w, 805 cm⁻¹. ¹H NMR (200 MHz, CDCl₃, δ): 8.07 (d, J = 5.6, H-C(2)), 6.32 (d, J = 5.6, H-C(3)), 3.85-3.70 (m, H-N), 3.65-3.47 (m, -CH-CH₃), 2.95-2.71 (m, 2H), 2.60-2.25 (m, 8H), 1.95-1.75 (m, 4H), 1.63-1.44 (m, 4H), 1.22 (d, 3H, J =6.7, -CH-CH₃), 1.00 (t, 6H, J = 7.0, -CH₂CH₃). ¹³C NMR (125 MHz, CDCl₃, δ): 155.88, 150.68, 146.96, 114.97, 102.50, 52.75, 47.75, 46.79, 34.85, 32.75, 23.76, 22.79, 22.61, 22.52, 20.74, 11.56. HRMS: *m*/*z* 290.25771 corresponds to molecular formula C₁₈H₃₁N₃H⁺ (error in ppm -4.69). HPLC purity ($\lambda = 290$ nm): method A: RT 8.644, area 97.25%; method E: RT 4.084, area 97.18%.

4-{5-[4-({[8-(5,6,7,8-tetrahydroquinolin-4-ylamino)octyl]amino}methyl)phenyl]-2thienyl}benzonitrile (24).

Compound **24** was prepared by procedure D, using aldehyde 4-[5-(4formylphenyl)thiophen-2-

yl]benzonitrile¹¹ (61 mg, 0.21 mmol), amine **46** (87 mg, 0.32 mmol), glac. AcOH (19 μ L, 0.32 mmol), NaBH₄ (47.9 mg, 1.27 mmol) and MeOH/ DCM (9 mL, 2:1, v/v). The product was purified using column chromatography (dry flash, silica-gel, eluent EtOAc/MeOH and flash, Biotage SP, NH column, eluent EtOAc/MeOH). Final product **24** was obtained as pale yellow solid (37 mg, 32%). M.p. = 155 – 157 °C. IR (film): 3328m, 2930s, 2856s, 2869m, 2221m, 1701w, 1670w, 1653m, 1590s, 1524s, 1494m, 1452m, 1347m, 1310m, 1277m, 1166m, 1098w, 804m cm⁻¹. ¹H NMR (500 MHz, CDCl₃, δ): 8.07 (d, *J* = 5.7, H-C(2)), 7.74-7.53 (m, 6H, 4H-

ArCN and 2H-Ar), 7.45-7.28 (m, 4H, 2H-Ar and 2H-Thiophene), 6.30 (d, J = 5.7, H-C(3)), 3.80 (s, 2H, Ar*CH*₂-), 3.24-3.08 (m, 2H, ArNH*CH*₂-), 2.88-2.74 (m, 2H), 2.70-2.55 (m, 2H, ArCH₂NH*CH*₂-), 2.41-2.27 (m, 2H), 1.89-1.75 (m, 4H), 1.68-1.58 (m, 2H), 1.56-1.46 (m, 2H), 1.43-1.28(m, 8H, -(CH₂)₄-). ¹³C NMR (125 MHz, CDCl₃, δ): 155.56, 151.54, 146.92, 145.99, 140.80, 138.53, 132.72, 132.34, 128.74, 126.06, 125.77, 125.64, 124.16, 118.84, 115.00, 110.37, 102.21, 53.68, 49.45, 42.96, 32.56, 30.08, 29.43, 29.27, 29.21, 27.24, 26.98, 22.69, 22.60, 22.48. HRMS: *m*/*z* 549.30216 corresponds to molecular formula C₃₅H₄₀N₄SH⁺ (error in ppm -4.52). HPLC purity (λ = 330 nm): method A: RT 8.837, area 97.08%; method B: RT 7.689, area 95.53%.

4-{5-[4-({methyl[8-(5,6,7,8-tetrahydroquinolin-4-ylamino)octyl]amino}methyl)phenyl]-2thienyl}benzonitrile (25).

To a stirred solution of **24** (19 mg, 0.035 mmol) in methanol (0.9 mL) containing 37% aqueous

formaldehyde (2.1 mg, 0.069 mmol), mixture of ZnCl₂ (9.4 mg, 0.069 mmol) and NaBH₃CN (8.7 mg, 0.14 mmol) in methanol (0.9 mL) was added. The mixture was stirred at r. t. for 2h. The solvent was removed under reduced pressure. The residue was dissolved in DCM and 2M NH₃, organic layer was washed with brine and dried over anhydrous Na₂SO₄. The product was purified using column chromatography (flash, Biotage SP1, NH column, eluent MeOH). Final product **25** was obtained as pale yellow oil (16.4 mg, 84%). IR (film): 3267m, 3054m, 2928s, 2855s, 2225m, 1634s, 1600s, 1567s, 1537m, 1454m, 1374m, 1274m, 1175m, 1114w, 837m, 806m, 735m cm⁻¹. ¹H NMR (500 MHz, CDCl₃, δ): 8.08 (d, *J* = 5.7, H-C(2)), 7.72-7.62 (m, 4H, H-ArCN), 7.60-7.55 (m, 2H, H-Ar), 7.41-7.27 (m, 4H, 2H-thiophene and 2H-Ar), 6.30 (d, *J* = 6.3, H-C(3)), 3.49 (s, 2H, Ar*CH*₂NH-), 3.20-3.10 (m, 2H), 2.89-2.75 (m, 2H), 1.43-1.28 (m, 8H, - (CH₂)₄-). ¹³C NMR (125 MHz, CDCl₃, δ): 155.81, 151.40, 147.21, 146.07, 140.64, 139.70, 138.55, 132.72, 132.30, 129.61, 126.06, 125.63, 125.57, 124.12, 118.85, 114.97, 110.34, 102.22, 61.99, 57.48, 42.97, 42.31, 32.79, 29.42, 29.30, 29.23, 27.38, 27.29, 27.02, 22.72, 22.67, 22.54. HRMS: *m/z* 563.31839 corresponds to molecular formula C₃₆H₄₂N₄SH⁺ (error in ppm -3.38).

HPLC purity ($\lambda = 330$ nm): method A: RT 8.651, area 96.45%; method B: RT 7.691, area 95.11%.

tert-Butyl {3-[(1-adamantylmethyl)amino]propyl}carbamate (32).

BocHN H 1-Adamantylmethanol (185.8 mg, 1.118 mmol) was dissolved in DCM (15 mL) followed by addition of PCC (361.3 mg, 1.676 mmol). The mixture was stirred at r.t. for 2h and filtered through

SiO₂ column (eluent DCM) to afford the product. Adamantane-1-carbaldehyde was obtained as a white foam and used in the next step without characterization. Compound **32** was prepared by procedure D from **S1** (218.7 mg, 1.255 mmol) and adamantane-1-carbaldehyde (167.2 mg, 1.018 mmol) using glac. AcOH (0.09 mL, 1.6 mmol) and NaBH₄ (231.1 mg, 6.109 mmol). The product was purified using column chromatography (dry-flash, SiO₂, eluent DCM/MeOH gradient $4/6 \rightarrow 2/8$). Final product **32** was obtained as a pale yellow oil (134.8 mg, 37% for both steps). IR (ATR): 3345s, 3054w, 3007w, 2977m, 2904s, 2847m, 2782w, 2738w, 2658w, 1674s, 1538s, 1479m, 1450m, 1427w, 1390w, 1364m, 1341w, 1315w, 1281s, 1253m, 1227w, 1169m, 1114w, 1028w, 1000w, 948w, 897w, 866w, 800w, 781w, 754w, 719w, 654w cm⁻¹. ¹H NMR (500 MHz, CDCl₃, δ): 6.06 (bs, H-NBoc), 3.22 (q, 2H, J = 5.2, $-CH_2$ NHBoc), 2.69 (t, 2H, J = 6.0, $-CH_2$ NHCH₂Ad), 2.23 (s, 2H, -NHCH₂Ad), 1.97 (bs, 3H, -Ad), 1.73-1.62 (m, 8H, $-CH_2$ CH₂NHBoc, -Ad), 1.53 (d, 6H, J = 2.4, -Ad), 1.43 (s, 9H, -NHCOOC(CH₃)₃). ¹³C NMR (125 MHz, CDCl₃, δ): 156.20, 78.56, 62.78, 49.70, 40.89, 40.45, 37.21, 33.31, 28.72, 28.46, 28.44. HRMS: *m/z* 323.26898 corresponds to molecular formula C₁₉H₃₄N₂O₂H⁺ (error in ppm - 1.01).

N-(1-adamantylmethyl)propane-1,3-diamine (33).

Compound **33** was prepared from **32** (10.0 mg, 0.031 mmol) by procedure C. Final product **33** was obtained as a pale yellow oil (6.0 mg, 87%). IR (ATR): 3290w, 2900s, 2845s, 2676w, 1571w, 1475m,

1408w, 1364w, 1341w, 1315w, 1222w, 1152w, 1100w, 1002w, 814w cm⁻¹. ¹H NMR (500 MHz, CDCl₃, δ): 2.76 (t, 2H, *J* = 6.9, -C*H*₂NH₂), 2.64 (t, 2H, *J* = 7.0, -C*H*₂NHCH₂Ad), 2.24 (s, 2H, -NHC*H*₂Ad), 1.96 (bs, 3H, -Ad), 1.73-1.60 (m, 8H, -C*H*₂CH₂NH₂, -Ad), 1.52 (d, 6H, *J* = 2.4, -Ad). ¹³C NMR (125 MHz, CDCl₃, δ): 63.12, 49.03, 40.95, 40.74, 37.24, 33.72, 33.34, 28.48.

HRMS: m/z 223.21604 corresponds to molecular formula $C_{14}H_{26}N_2H^+$ (error in ppm - 3.73); m/z 112.11222 corresponds to molecular formula $C_{14}H_{26}N_2H_2^{2+}$ (error in ppm 1.28).

Di-tert-butyl [piperazine-1,4-diylbis(propane-3,1-diyl)]biscarbamate (35).

A 0.5 M solution of Boc_2O (2.12 g, 9.71 mmol) in DCM was added dropwise over 2 h to a 0.25 M solution of 1,4-bis(3aminopropyl)piperazine **34** (4 mL, 19 mmol) in DCM cooled with an ice-bath. The reaction mixture was stirred overnight at r.t., filtered and then concentrated in vacuo. The resulting oil was dissolved in EtOAc, washed with with half-saturated brine, dried over MgSO₄ and solvent was evaporated under reduced pressure. Compound **35** was obtained

after dry-flash chromatography: (SiO₂, eluent: DCM/MeOH(NH₃ satd) = 95/5) as a colorless solid (1.79 g, 46%); M.p. = 73-75 °C (hexane). IR (ATR): 3200m, 3008w, 2960m, 2869w, 2811m, 2744w, 2020w, 1712s, 1553m, 1457w, 1387w, 1362w, 1272m, 1169m, 1114w, 1084w, 1032w, 1005w, 972m, 888w, 856w, 819w, 764w, 733w, 693w cm⁻¹. ¹H NMR (500 MHz, CDCl₃): 3.30-3.05 (m, 2H, -*CH*₂NHBoc), 2.75-2.25 (m, 12H, -*CH*₂N(CH₂CH₂)₂NC*H*₂-, -N(*CH*₂C*H*₂)₂N-), 1.85-1.55 (m, 2H, -*CH*₂CH₂NHBoc), 1.44 (s, 18H, -NHCOO-C(*CH*₃)₃). ¹³C NMR (125 MHz, CDCl₃): 156.04; 78.74; 56.84; 53.20; 39.97; 28.42; 26.30. HRMS: *m/z* 401.31137 corresponds to molecular formula $C_{15}H_{32}N_4O_2H^+$ (error in ppm -2.15).

Tert-butyl [3-(4-{3-[(7-chloroquinolin-4-yl)amino]propyl}piperazin-1-yl)propyl]carbamate (36).

A mixture of 4,7-dichloroquinoline (1.75 g, 17.7 mmol) and protected diaminoalkane **35** (5.32 g, 17.7 mmol) was gradually warmed to 80 °C over 1h with stirring and subsequently at 125 °C for 6-8 h. The reaction mixture was cooled to r.t. and taken up in DCM. The organic layer was washed with NaHCO₃ and finally with brine. The organic layer was dried over anhydrous Na₂SO₄ and solvent was evaporated under reduced pressure to get a final product. Compound **36** was obtained after dry-flash chromatography (SiO₂, eluent: DCM/MeOH(NH₃ satd) = 100/2) as a colorless solid (4.0 g, 63%); M.p. = 148-150 °C (hexane). IR (ATR): 3215m, 3032w, 2943w, 2876w, 2807w, 2771w, 1709s, 1611w, 1582s, 1537m, 1487w, 1466w, 1447w, 1361w, 1333w, 1308w, 1274m, 1252w, 1170m, 1149m, 1137m, 1102w, 1078w, 1063w, 1032w, 987w, 974w, 947w, 890w, 880w, 856w, 838w, 812w, 764w, 710w, 652w, 599w, 503w, 425w cm⁻¹. ¹H NMR (200 MHz, CDCl₃/CD₃OD): 8.40 (d, 1H, J = 5.6 Hz, H-C(2)), 7.95-7.80 (m, 2H, H-C(8) and H-C(5)), 7.40-7.25 (m, 1H, H-C(6)), 6.34 (d, 1H, J = 5.6 Hz, H-C(3)), 3.50-3.30 (m, 2H, ArNHC*H*₂-), 3.30-3.10 (m, 2H, -C*H*₂NHBoc), 3.00-2.30 (m, 12H, -C*H*₂N(CH₂CH₂)₂NC*H*₂-, -N(C*H*₂C*H*₂)₂N-), 2.10-1.80 (m, 2H, ArNHCH₂C*H*₂-), 1.80-1.60 (m, 2H, -C*H*₂CH₂NHBoc), 1.46 (s, 9H, -NHCOO-C(C*H*₃)₃). ¹³C NMR (50 MHz, CDCl₃/CH₃OD): 156.26; 151.34; 150.68; 148.26; 134.84; 127.38; 124.68; 122.26; 117.11; 98.21; 78.93; 57.81; 57.56; 56.37; 53.22; 53.02; 52.89; 43.04; 39.07; 28.15; 26.22; 23.54. HRMS: *m/z* 462.26263 corresponds to molecular formula C₂₄H₃₆ClN₅O₂H⁺ (error in ppm -0.87). (C₂₄H₃₆ClN₅O₂×1/3H₂O) Calcd: C, 61.59; H, 7.90; N, 14.96. Found: C, 61.46; H, 7.75; N, 15.23.

N-{3-[4-(3-aminopropyl)piperazin-1-yl]propyl}-7-chloroquinolin-4-amine (37).

Compound **37** was prepared from **36** (500 mg, 1 mmol) by procedure C and was obtained as a yellow powder (348 mg, 89%), softenes at 80-82°C. IR (ATR): 3234m, 3060w, 2934m, 2816m, 1610w, 1578s, 1538m, 1489w, 1463w, 1447w, 1433w, 1403w, 1368m, 1331m, 1283w, 1255w, 1201w, 1136m, 1112w, 1080w, 1033w, 999w, 904w, 878w, 854w, 819w, 806w, 764w, 730w, 649w, 621w, 598w, 539w, 494w, 430w cm⁻¹. ¹H NMR (200 MHz, CDCl₃/CD₃OD): 8.40 (d, 1H, J = 5.6 Hz, H-C(2)), 8.00-7.80 (m, 2H, H-C(8), H-C(5)), 7.50-7.40 (br s, 1H, -N*H*), 7.29 (dd, 1H, J = 2.4 Hz, J = 9.0 Hz, H-C(6)), 6.30 (d,

1H, J = 5.6 Hz, H-C(3)), 3.50-3.20 (m, 2H, ArNHC H_2 -), 3.10-2.90 (m, 2H, -C H_2 NH $_2$), 2.90-2.40 (s, 12H, -C H_2 N(CH $_2$ CH $_2$)₂NC H_2 -, -N(C H_2 CH $_2$)₂N-), 2.10-1.80 (m, 2H, ArNHCH $_2$ C H_2 -), 1.80-1.60 (m, 2H, -C H_2 CH $_2$ NH $_2$). ¹³C NMR (50 MHz, CDCl₃/CD₃OD): 151.40; 150.63; 148.28; 134.63; 127.43; 124.52; 122.30; 117.13; 98.16; 57.56; 56.24; 52.93; 43.06; 40.00; 29.35; 23.34. HRMS: m/z 362.20995 corresponds to molecular formula C₁₉H₂₈ClN₅H⁺ (error in ppm -1.80).

N-{3-[4-(3-{[2-(1-Adamantyl)ethyl]amino}propyl)piperazin-1-yl]propyl}-7-chloroquinolin-4-amine (38).

Compound **38** was prepared from amine **37** (137 mg, 0.38 mmol) and adamantane-1-acetaldehyde (68 mg, 0.38 mmol) using NaBH(OAc)₃ (161 mg, 0.76 mmol) by procedure D and was obtained after dry-flash chromatography (SiO₂, eluent: DCM/MeOH(NH₃ satd) = 100/2) and flash chromatography (Biotage SP1 RP column, gradient: MeOH/H₂O = $8/1 \rightarrow 95/5$) as a colorless foam (108 mg, 54%) softenes at 120-122 °C. IR (ATR): 3235m, 2899s, 2841m, 2806m, 1610w, 1586s, 1540m, 1486w, 1446m, 1368w, 1353w, 1332w, 1307w, 1283w, 1242w, 1198w,

1140m, 1074w, 1016w, 987m, 958m, 898w, 875w, 856w, 836w, 812m, 793, 759w, 728m, 596m, 501m, 428w cm⁻¹. ¹H NMR (200 MHz, CDCl₃): 8.50 (d, 1H, J = 5.0 Hz, H-C(2)), 8.00-7.80 (m, 2H, H-C(8), H-C(5)), 7.58 (br s, 1H, -N*H*), 7.30 (dd, 1H, J = 1.9 Hz, J = 9.0 Hz, H-C(6)), 6.30 (d, 1H, J = 5.6 Hz, H-C(3)), 3.45-3.25 (m, 2H, ArNHCH₂-), 3,00-2,20 (m, 16H, - CH₂NHCH₂CH₂Ad, -CH₂CH₂Ad, -N(CH₂CH₂)₂N-, -CH₂ N(CH₂CH₂)₂NCH₂-), 2.10-1.40 (m, 19H, ArNHCH₂CH₂-, -CH₂CH₂NHCH₂CH₂Ad, -Ad), 1.40-1.35 (m, 2H, -CH₂Ad). ¹³C NMR (50 MHz, CDCl₃): 152.12; 150.54; 148.99; 134.54; 128.44; 124.54; 122.43; 117.40; 98.38; 58.74; 57.25; 53.46; 53.28; 48.72; 44.17; 42.50; 37.00; 31.76; 28.51; 26.51; 23.27. Anal. (C₃₁H₄₆ClN₅ × 3/2H₂O) Calcd: C, 67.55; H, 8.96; N, 12.71. Found: C, 67.86; H, 9.22; N, 12.89.

N-(prop-2-yn-1-yl)-N'-(quinolin-4-yl)butane-1,4-diamine (41).

According to the procedure described in literature¹², **AQ8**⁷ (203.6 mg, 0.9457 mmol) was dissolved in EtOH_{aps} (10 mL), K₂CO₃ was added (130.7 mg, 0.9457 mmol), and then propargyl bromide (36 μ L, 0.47 mmol). The mixture was stirred at r.t. for 24 h. Solvent was

evaporated under the reduced pressure, and crude product was purified using column chromatography (dry-flash, SiO₂, eluent DCM, DCM/MeOH gradient $7/3 \rightarrow 3/7$). Final product **41** was obtained as colorless oil (59 mg, 49%). IR (ATR): 3287m, 3066m, 2931m, 2856m, 1617w, 1579s, 1540m, 1457w, 1438w, 1395w, 1373w, 1339m, 1281w, 1251w, 1225w, 1170w,

1127w, 1036w, 867w, 808w, 763m, 651w cm⁻¹. ¹H NMR (200 MHz, CDCl₃, δ): 8.54 (d, J = 5.6, H-C(2)), 8.01-7.93 (m, H-C(8)), 7.82-7.75 (m, H-C(5)), 7.66-7.55 (m, H-C(7)), 7.45-7.34 (m, H-C(6)), 6.38 (d, J = 5.6, H-C(3)), 5.88-5.74 (m, H-N), 3.46-3.43 (m, 2H, -CH₂C=CH), 3.36-3.23 (m, 2H, ArNHCH₂-), 2.82-2.72 (m, 2H, ArNHCH₂CH₂CH₂CH₂-), 2.27-2.20 (m, 1H, -C=CH), 1.93-1.77 (m, 2H, ArNHCH₂CH₂-), 1.75-1.59 (m, 2H, ArNHCH₂CH₂CH₂-). ¹³C NMR (50 MHz, CDCl₃, δ): 151.01, 149.85, 148.37, 129.74, 128.85, 124.37, 119.64, 118.80, 98.50, 81.82, 71.50, 47.85, 43.01, 38.05, 27.39, 26.24. HRMS: m/z 254.16429 corresponds to molecular formula $C_{16}H_{19}N_{3}H^{+}$ (error in ppm -3.47).

N-(7-chloroquinolin-4-yl)acetamide (42).¹⁰

A solution of S2 (844 mg, 4.73 mmol) in acetic anhydride (3.4 mL) was refluxed for 2h. After cooling to r.t. brine and 10% aqueous NaOH were added. The mixture was extracted with ethyl acetate and organic extracts were dried over anh. Na₂SO₄. The product was purified using column chromatography (dry-flash, SiO₂, eluent EtOAc/MeOH and flash, Biotage SP1, RP column,

eluent MeOH/H₂O). Final product 42 was obtained as white solid (799 mg, 91 %). M.p. = 169 - 100172 °C. IR (KBr): 3434s, 3267s, 3048m, 2924m, 2852m, 1662s, 1614s, 1594m, 1570s, 1528s, 1491s, 1444m, 1422m, 1384m, 1371m, 1311s, 1274m, 1244m, 1187w, 1167w, 1104w, 1081w, 1041w, 1016w, 959w, 970w, 918w, 854m, 833m, 818m, 765w, 714m, 668w, 636w, 615w, 587w, 557w, 519w, 502w, 474w, 433w, 420w, 403w cm⁻¹. ¹H NMR (500 MHz, CD₃OD, δ): 8.79-8.68 (m, H-C(2)), 8.26-8.19 (m, H-C(5)), 8.18-8.11 (m, H-C(8)), 8.30-7.92 (m, H-C(3)), 2.33 (s, 3H, CH₃-). ¹³C NMR (125 MHz, CD₃OD, δ): 172.74, 153.10, 150.25, 144.14, 137.05, 128.55, 128.39, 124.95, 121.12, 113.90, 24.30. HRMS: m/z 221.04691 corresponds to molecular formula $C_{11}H_9ClN_2OH^+$ (error in ppm -3.19).

N-(5,6,7,8-tetrahydroquinolin-4-yl)acetamide (43).

Compound 42 (551 mg, 2.49 mmol) was hydrogenated using PtO₂ (55 mg, 10 wt. %) as catalyst under hydrogen (50 psi) in glac. AcOH (48 mL) and perchloric acid (0.3 mL). The mixture was shaken at r.t. for 64 h. The catalyst was filtered off, 10% NaOH in water was added to filtrate, extracted with DCM and dried over anh. Na₂SO₄. The product was purified using column chromatography (dry-flash, SiO₂, eluent EtOAc/MeOH). Final product **43** was obtained as white solid (310 mg, 65 %). M.p. = 148 – 151 °C. IR (ATR): 3352m, 3147m, 3069m, 2934s, 2860m, 1702s, 1682s, 1583s, 1514s, 1459m, 1435m, 1406m, 1369m, 1337m, 1297s, 1254m, 1166w, 1002w, 845w, 736w cm⁻¹. ¹H NMR (500 MHz, CD₃OD, δ): 8.17 (d, J = 5.5, H-C(2)), 7.72 (d, J = 5.5, H-C(3)), 2.92-2.82 (m, 2H, H-C(8)), 2.72-2.65 (m, 2H, H-C(5)), 2.20 (s, 3H, CH₃), 1.91-1.79 (m, 4H, H-C(6) and H-C(7)). ¹³C NMR (125 MHz, CD₃OD, δ): 172.45, 158.64, 146.69, 146.37, 125.22, 116.29, 33.14, 24.81, 24.00, 23.47, 23.41. HRMS: *m/z* 191.11758 corresponds to molecular formula C₁₁H₁₄N₂OH⁺ (error in ppm -1.64).

5,6,7,8-Tetrahydroquinolin-4-amine (44).

The solution of **43** in 2M HCl was stirred for 3 h at 70 °C. After cooling to r. t., ammonia was added. The mixture was extracted with DCM and dried over anh. Na₂SO₄. Final product **44** was obtained after evaporation of organic layer as pale yellow solid (182 mg, 89 %). M.p. = 125 - 126 °C. IR (ATR): 3336s, 3194s, 2933s, 2860m, 1637s, 1590s, 1481m, 1451m, 1351m, 1274w, 1190w, 1164w, 1102w, 899w, 818m, 736 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, δ): 8.02 (d, *J* = 5.5, H-C(2)), 6.38 (d, *J* = 5.5, H-C(3)), 4.05 (bs, NH₂), 2.95-2.73 (m, 2H, H-C(5)), 2.59-2.33 (m, 2H, H-C(8)), 2.10-1.76 (m, 4H, H-C(6) and H-C(7)). ¹³C NMR (125 MHz, CDCl₃, δ): 157.03, 150.83, 146.74, 115.84, 107.10, 32.71, 22.87, 22.75, 22.48. HRMS: *m/z* 149.10661 corresponds to molecular formula C₉H₁₂N₂H⁺ (error in ppm -4.78).

4-Chloro-5,6,7,8-tetrahydroquinoline (45).

CI To a stirring solution of 44 (380 mg, 2.6 mmol) in glac. AcOH (2.3 mL) at 0 °C, 28% HCl (1.5 mL) and aqueous solution of NaNO₂ (257 mg, 0.85 mL) were added dropwise, respectively. After 10 minutes at 0 °C, resulting mixture was added dropwise to a solution of CuCl (659 mg, 6.66 mmol) in 28 % HCl (1.2 mL) at same temperature. The stirring was continued at r. t. After 17 h, solution of NaOH in water was added and extracted with DCM. Organic layer was dried over anh. Na₂SO₄. The crude product was purified using colum chromatography (dry-flash, SiO₂, eluent EtOAc/MeOH). Final product **45** was obtained as a coroless oil (226 mg, 53%). IR (ATR): 3041w, 2937s, 2863s, 1734w, 1674w, 1553s, 1451s, 1432m, 1400s, 1332w, 1230w, 1194w, 1161w, 1082w, 1061w, 953w, 834m, 787m, 672w cm⁻¹. ¹H NMR (500 MHz, CDCl₃, δ): 7,77-7,65 (m, H-C(2)), 7,58-7,48 (m, H-C(3)), 1,88-1,20 (m, 8H, H-C(5), H-C(6), H-C(7) and H-C(8)). GC/MS (m/z (%)): 165.9 ([M⁺], 100); 132.0 (33).

N^{1} -(5,6,7,8-tetrahydroquinolin-4-yl)octane-1,8-diamine (46).

NH₂ Compound 46 was prepared by procedure E, using Pd(OAc)₂ (9.9 mg, 0.044 mmol), SPhos (36.3 mg, 0.0883 mmol), 45 (185 mg, 1.10 mmol), 1,8-diaminooctane (239 mg, 1.66 mmol), K₃PO₄ (587 mg, 2.76 mmol) and dioxane (9.3 mL). Final

product **46** was obtained as colorless oil (200 mg, 66%). IR (ATR): 3299m, 2928s, 2855s, 1592s, 1523m, 1456m, 1344m, 1165w, 808 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, δ): 8.08 (d, *J* = 5.7, H-C(2)), 6.31 (d, *J* = 5.7, H-C(3)), 3.93 (s, H-N, exchangable with D₂O), 3.25 – 3.05 (m, 2H), 2.90 – 2.75 (m, 2H), 2.68 (t, *J* = 7.0, 2H), 2.41 – 2.26 (m, 2H), 1.94 – 1.76 (m, 4H), 1.74 – 1.54 (m, 4H), 1.50 – 1.25 (m, 8H). ¹³C NMR (125 MHz, CDCl₃, δ): 155.72, 151.44, 147.10, 114.97, 102.21, 42.95, 42.19, 33.75, 32.71, 29.37, 29.31, 29.21, 26.99, 26.79, 22.70, 22.64, 22.50. HRMS: *m/z* 276.24282 corresponds to molecular formula C₁₇H₂₉N₃H⁺ (error in ppm -2.19).

Comp.	L. <i>infantum</i> IC ₅₀ (µM) ^b	L. <i>tropica</i> IC ₅₀ (µM) ^b	$\begin{array}{c} \textbf{THP-1}\\ \textbf{IC}_{50}\left(\mu\textbf{M}\right)^{c} \end{array}$	SI (THP/ <i>L.i.</i>) ^d	$\frac{\text{SI}}{(\text{THP}/L.t.)^d}$	Ref. of comp. ^e
1	8.67	2.77	23.66	2.7	8.5	new
2	6.49	2.96	>109.6	>16.9	>37.0	new
3	16.60	9.35	>65.2	>3.9	>7.0	new
4	16.60	6.63	>59.7	>3.6	>9.0	new
5	1.91	2.24	12.59	6.6	5.6	new
6	1.77	1.30	6.39	3.6	4.9	new
7	0.73	0.66	1.81	2.5	2.7	14
8	2.46	1.84	3.29	1.3	1.8	14
9	2.40	2.35	4.90	2.0	2.1	14
10	0.52	0.51	1.00	1.9	2.0	new
11	1.14	1.31	2.96	2.6	2.3	7
12	0.64	0.68	3.76	5.8	5.5	7
13	1.23	1.24	4.25	3.4	3.4	7
14	0.51	0.50	1.91	3.8	3.8	7
15	0.48	0.43	4.73	9.9	10.9	new
16	1.03	0.81	2.31	2.2	2.8	11
17	1.02	0.85	4.28	4.2	5.0	13
18	1.24	1.02	2.35	1.9	2.3	15
19	0.98	0.91	2.44	2.5	2.7	11
20	1.55	1.22	2.79	1.8	2.3	11
21	1.02	1.37	7.11	7.0	5.2	new
22	>76.5	>76.5	>76.5	>1	>1	new
23	>69.1	>69.1	>69.1	>1	>1	new
24	0.72	0.75	2.31	3.2	3.1	new
25	0.83	0.80	3.68	4.4	4.6	new
26	2.30	1.94	5.01	2.2	2.6	11
27	1.22	1.54	2.80	2.3	1.8	11
28	5.42	7.11	8.10	1.5	1.1	11
29	0.35	0.30	1.38	4.0	4.6	11
30	0.80	1.06	3.85	4.8	3.6	11
Control ^f	0.13	0.14	>10.8	>83.1	>77.1	/

Table S1. In vitro activities against L. infantum and L. tropica promastigotes and cytotoxicity against THP-1 human cells^a

human monocytic cell line derived from an acute monocytic leukemia patient. ^dSelectivity index; ^eThe syntheses of compounds are presented in our previous papers^{7,11,13,14,15}. ^fControl drug: amphotericin B

Compound	In Vitro Antiamastigote Activity at 0.5 µM ^a	In Vitro Antiamastigote Activity IC ₅₀ (µM) ^{.b}	THP-1 [°] IC ₅₀ (μM)	SI (THP/IPT) ^d
1	8.9		23.7	
2	0.2		>109.6	
3	18.3		>65.2	
4	0		>59.7	
5	13.9		12.6	
6	23.3		6.40	
7	15.8		1.80	
8	29.6	1.91	3.29	1.72
9	22		4.90	
10	72.2	0.31	1.00	3.22
11	26.4	1.85	2.96	1.60
12	0		3.76	
13	38.9	1.29	4.25	3.29
14	26.4	>1	1.91	< 1.91
15	47.6	0.58	4.73	8.15
16	10.4		2.31	
17	14.4		4.28	
18	42.7	0.65	2.35	3.61
19	36.9	0.73	2.44	3.34
20	42.2	0.79	2.79	3.51
21	21		7.11	
22	1.1		>76.5	
23	11.8		>69.1	
24	29.6	>1	2.31	< 2.3
25	20.5		3.68	
26	2.4		5.01	
27	12.7		2.80	
28	13.8		8.10	
29	13.5		1.38	
30	23.6		3.85	
Control ^e	95.5	0.21	>10.8	>51.4
^a Mean value of two o differentiated THP-1,	r three experiments. ^b Me human monocytic cell lin C_{50} against THP-1/IC ₅₀	e derived from an acut	eriments. ^c Cyto te monocytic le	eukemia patient.

Table S2. In vitro activities against intramacrophage L. infantum amastigotes

Control (PBS)	Liver weight in mg (W)	Amastigotes/Liver cell (A/C)	Relative load W x A/C
1	930	40/503	74.0
2	1000	44/502	87.6
3	700	49/507	67.6
4	630	35/506	43.6
5	622	47/500	58.5
Mean			66.3

Table S3. Antileishmanial activity in vivo.

Comp. 10 (100mg/kg × 4 days, p.o.)	Liver weight in mg (W)	Amastigotes/Liver cell (A/C)	Relative load W x A/C
1	672	0/500	0
2	636	0/500	0
3	798	0/500	0
Mean			0
Reduction from control (%)			100

Note: signs of toxicity; 1 mouse died on D10; 1 mouse died on D12

Comp. 10 (60mg/kg × 4 days, p.o.)	Liver weight in mg (W)	Amastigotes/Liver cell (A/C)	Relative load W x A/C
1	655	2/505	2.6
2	482	2/500	1.9
3	653	3/507	3.9
4	753	1/500	1.5
5	756	2/503	3.0
Mean			2.6
Reduction from control (%)			96.1

Comp. 10 (10mg/kg × 4 days, s.c.)	Liver weight in mg (W)	Amastigotes/Liver cell (A/C)	Relative load W x A/C
1	575	10/500	11.5
2	544	12/510	12.8
3	666	12/507	15.7
4	528	9/500	9.5
5	609	10/508	12.0
Mean			12.3
Reduction from control (%)			81.4

Comp. 15 (100mg/kg × 4 days, p.o.)	Liver weight in mg (W)	Amastigotes/Liver cell (A/C)	Relative load W x A/C
1	638	1/500	1.3
2	630	2/503	2.5
3	747	0/500	0
4	830	0/508	0
5	513	0/503	0
Mean			0.76

Reduction from control (%)			98.8
Comp. 15 (50mg/kg × 4 days, p.o.)	Liver weight in mg (W)	Amastigotes/Liver cell (A/C)	Relative load W x A/C
1	838	2/506	3.3
2	730	2/510	2.9
3	695	3/500	4.2
4	725	2/502	2.9
5	572	3/503	3.4
Mean			3.3
Reduction from control (%)			95.0

Table S4. Antileishmanial activity in vivo.

Control (PBS)	Liver weight in mg (W)	Amastigotes/Liver cell (A/C)	Relative load W x A/C
1	720	50/503	71.6
2	820	56/500	91.8
3	950	48/513	90.7
4	570	50/548	52.0
5	510	46/500	46.9
Mean relative load			70.6

Comp. 10 (5mg/kg × 5 days, s.c.)	Liver weight in mg (W)	Amastigotes/Liver cell (A/C)	Relative load W x A/C
1	680	24/500	32.6
2	780	20/510	30.6
3	750	18/500	27.0
4	720	25/500	36.0
5	600	22/515	25.6
Mean relative load			30.4
Reduction from control (%)			56.9

Comp. 15 (10mg/kg × 5 days, s.c.)	Liver weight in mg (W)	Amastigotes/Liver cell (A/C)	Relative load W x A/C
1	920	22/500	40.5
2	720	23/510	32.5
3	810	23/500	37.3
4	890	21/520	35.9
5	740	25/515	35.9
Mean relative load			36.4
Reduction from control (%)			48.4

Comp. 15 (5mg/kg × 5 days, s.c.)	Liver weight in mg (W)	Amastigotes/Liver cell (A/C)	Relative load W x A/C
1	1080	28/500	60.5
2	830	30/510	48.8
3	680	38/500	51.7

4	600	40/500	48.0
5	570	38/500	43.3
Mean relative load			50.5
Reduction from control (%)			28.5

Comp. 15 (1mg/kg × 5 days, s.c.)	Liver weight in mg (W)	Amastigotes/Liver cell (A/C)	Relative load W x A/C
1	670	44/506	58.3
2	780	42/510	64.2
3	600	45/500	54.0
4	800	43/500	68.8
5	500	44/500	44.0
Mean relative load			57.9
Reduction from control (%)			18.0

Figure S1. Nitric oxide production by BMDM treated with **10** or **15**. BMDM were primed with IFN- γ for 2 h, and then treated with different concentrations of **10** or **15**. Levels of nitrite were measured into the supernatants after 24h by Griess assay. Data are the mean \pm SD of three independent experiments in triplicate. *p < 0.01 versus control

Figure S2. ROS production by BMDM treated with **10** or **15**. BMDM were primed with IFN- γ for 2 h, and then treated with different concentrations of **10** or **15**. Levels of ROS were measured into the supernatants after 24h by H₂DCFDA. Data are the mean \pm SD of three independent experiments in triplicate. *p < 0.01 versus control; **p < 0.001 versus control

2. D'Alessandro, S.; Gelati, M.; Basilico, N.; Parati, E. A.; Haynes, R. K.; Taramelli, D. Differential Effects on Angiogenesis of Two Antimalarial Compounds, Dihydroartemisinin and Artemisone: Implications for Embryotoxicity. *Toxicology* **2007**, *241*, 66-74.

3. Hornung, V.; Bauernfeind, F.; Halle, A.; Samstad, E. O.; Kono, H.; Rock, K. L.; Fitzgerald, K. A.; Latz, E. Silica Crystals and Aluminum Salts Activate the NALP3 Inflammasome through Phagosomal Destabilization. *Nat. Immunol.* **2008**, *9*, 847-856.

4. Corbett, Y.; Parapini, S.; D'Alessandro, S.; Scaccabarozzi, D.; Rocha, B. C.; Egan, T. J.; Omar, A.; Galastri, L.; Fitzgerald, K. A.; Golenbock, D. T.; Taramelli, D.; Basilico, N. Involvement of Nod2 in the Innate Immune Response Elicited by Malarial Pigment Hemozoin. *Microbes Infect.* **2015**, *17*, 184-194.

5. Gatta, F.; Perotti, F.; Gradoni, L.; Gramiccia, M.; Orsini, S.; Palazzo, G.; Rossi, V. Synthesis of Some 1-(Dihydroxypropyl)pyrazolo [3,4 d] pyrimidines and In Vivo Evaluation of their Antileishmanial and Antitrypanosomal Activity. *Eur. J. Med. Chem.* **1990**, *25*, 419-424.

6. Gerster, J. F.; Lindstrom, K. J.; Miller, R. L.; Tomai, M. A.; Birmachu, W.; Bomersine, S. N.; Gibson, S. J.; Imbertson, L. M.; Jacobson, J. R.; Knafla, R. T.; Maye, P. V.; Nikolaides, N.; Oneyemi, F. Y.; Parkhurst, G. J.; Pecore, S. E.; Reiter, M. J.; Scribner, L. S.; Testerman, T. L.; Thompson, N. J.; Wagner, T. L.; Weeks, C. E.; Andre, J.-D.; Lagain, D.; Bastard, Y.; Lupu, M. Synthesis and Structure–Activity-Relationships of 1*H*-Imidazo[4,5*c*]quinolines That Induce Interferon Production. *J. Med. Chem.*, **2005**, *48*, 3481–3491.

7. Terzić, N.; Konstantinović, J.; Tot, M.; Burojević, J.; Djurković-Djaković, O.; Srbljanović, J.; Štajner, T.; Verbić, T.; Zlatović, M.; Machado, M.; Albuquerque, I. S.; Prudêncio, M.; Sciotti, R. J.; Pecic, S.; D'Alessandro, S.; Taramelli, D.; Šolaja, B. A. Reinvestigating Old Pharmacophores: Are 4-Aminoquinolines and Tetraoxanes Potential Two-Stage Antimalarials? *J. Med. Chem.* **2016**, *59*, 264–281.

8. Margolis, B. J.; Long, K. A.; Laird, D. L. T.; Ruble, J. C.; Pulley, S. R. Assembly of 4-Aminoquinolines via Palladium Catalysis: A Mild and Convenient Alternative to SNAr Methodology *J. Org. Chem.***2007**, *72*, 2232–2235.

9. Morrell, A.; Placzek, M. S.; Steffen, J. D.; Antony, S.; Agama, K.; Pommier, Y.; Cushman, M. Investigation of the Lactam Side Chain Length Necessary for Optimal Indenoisoquinoline Topoisomerase I Inhibition and Cytotoxicity in Human Cancer Cell Cultures. *J. Med. Chem.*, **2007**, *50*, 2040–2048.

10. Korotchenko, V.; Sathunuru, R.; Gerena, L.; Caridha, D.; Li, Q.; Kreishman-Deitrick, M.; Smith, P. L.; and Lin, A. J. Antimalarial Activity of 4-Amidinoquinoline and 10-Amidinobenzonaphthyridine Derivatives. *J. Med. Chem.* **2015**, *58*, 3411–3431.

11. Konstantinović, J.; Videnović, M.; Srbljanović, J.; Djurković-Djaković, O.; Bogojević, K.; Sciotti, R.; Šolaja, B. Antimalarials with Benzothiophene Moieties as Aminoquinoline Partners. *Molecules* **2017**, *22*, 343.

12. Antinarelli, L. M. R.; Carmo, A. M. L.; Pavan, F. R.; Leite, C. Q. F.; Da Silva, A. D.; Coimbra, E. S.; Salunke, D. B. Increase of Leishmanicidal and Tubercular Activities Using Steroids Linked to Aminoquinoline. *Org. Med. Chem. Lett.* **2012**, *2:16*.

13. Konstantinović, J.; Kiris, E.; Kota, K.; Kugelman-Tonos, J.; Videnović, M.; Cazares, L. H.; Terzić, N.; Verbić, T. Ž.; Andjelković, B.; Duplantier, A. J.; Bavari, S.; Šolaja, B. A. New Steroidal 4-Aminoquinolines Antagonize Botulinum Neurotoxin Serotype A in Mouse Embryonic Stem Cell Derived Motor Neurons in Post-intoxication Model. *J. Med. Chem.* **2018**, *61*, 1595-1608.

14. Šolaja, B. A.; Opsenica, D.; Smith, K. S.; Milhous, W. K.; Terzic, N.; Opsenica, I.; Burnett, J. C.; Nuss, J.; Gussio, R.; Bavari, S. Novel 4-Aminoquinolines Active against Chloroquine-Resistant and Sensitive P. falciparum Strains that also Inhibit Botulinum Serotype A. *J. Med. Chem.* **2008**, *51*, 4388–4391.

15. Marković, O. S.; Cvijetić, I. N.; Zlatović, M. V.; Opsenica, I. M.; Konstantinović, J. M.; Terzić Jovanović, N. V.; Šolaja, B. A.; Verbić, T. Ž. Human Serum Albumin Binding of Certain Antimalarials. *Spectrochim. Acta Mol. Biomol. Spectrosc.* **2018**, *192*, 128-139.

^{1.} Baiocco, P.; Ilari, A.; Ceci, P.; Orsini, S.; Gramiccia, M.; Di Muccio, T.; Colotti, G. Inhibitory Effect of Silver Nanoparticles on Trypanothione Reductase Activity and *Leishmania infantum* Proliferation. *ACS Med. Chem. Lett.* **2011**, 2, 230–233.

Supporting Information - II

Novel aminoquinoline derivatives significantly reduce parasite load in *Leishmania infantum* infected mice

Jelena Konstantinović[¶], Milica Videnović[#], Stefania Orsini[†], Katarina Bogojević[¶], Sarah D'Alessandro[¥], Diletta Scaccabarozzi^Ψ, Nataša Terzić Jovanović[⊽], Luigi Gradoni[†], Nicoletta Basilico^{*,¥}, Bogdan A. Šolaja^{*,¶§}

[¶]University of Belgrade, Faculty of Chemistry, Studentski trg 12-16, P.O. Box 51, 11158, Belgrade, Serbia

[#]Faculty of Chemistry Innovative Centre, Studentski trg 12-16, 11158 Belgrade, Serbia

^vUniversity of Belgrade, Institute of Chemistry, Technology, and Metallurgy, Njegoševa 12, 11000 Belgrade, Serbia

[§] Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11158 Belgrade, Serbia

[¥]Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, Milan, Italy

^{^ΨDipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy}

[†]Unit of Vector-borne Diseases, Istituto Superiore di Sanità, Rome, Italy

Table of contents

NMR spectra of synthesized compounds HPLC analyses for purity

II-S3-II-S16 II-S17-II-S30 NMR spectra of synthesized compounds

N'-(7-chloro-3-nitroquinolin-4-yl)-N,N-diethylpropane-1,3-diamine (1)

 N_4 -(7-chloro-3-nitroquinolin-4-yl)- N_1 , N_1 -diethylpentane-1,4-diamine (2)

7-chloro-N4-[3-(diethylamino)propyl]quinoline-3,4-diamine (3)

7-chloro-N4-[4-(diethylamino)-1-methylbutyl]quinoline-3,4-diamine (4)

N-(1-adamantylmethyl)-*N*'-(7-chloro-3-nitroquinolin-4-yl)propane-1,3-diamine (5)

*N*⁴-{3-[(1-adamantylmethyl)amino]propyl}-7-chloroquinoline-3,4-diamine (6)

4-({3-[4-(3-{[2-(1-adamantyl)ethyl]ammonio}propyl)piperazinediium-1-yl]propyl}amino)-7-chloroquinolinium tetrachloride (10)

N-(7-chloroquinolin-4-yl)-*N*'-[4-(5-fluoro-1-benzothien-3-yl)benzyl]propane-1,3-diamine (15)

Chemical Shift (ppm)

N,N-diethyl-N'-(5,6,7,8-tetrahydroquinolin-4-yl)propane-1,3-diamine (22)

*N*¹, *N*¹-diethyl-*N*⁴-(5,6,7,8-tetrahydroquinolin-4-yl)pentane-1,4-diamine (23)

4-{5-[4-({[8-(5,6,7,8-tetrahydroquinolin-4-ylamino)octyl]amino}methyl)phenyl]-2-thienyl}benzonitrile (24)

4-{5-[4-({methyl[8-(5,6,7,8-tetrahydroquinolin-4-ylamino)octyl]amino}methyl)phenyl]-2-thienyl}benzonitrile (25)

HPLC analyses for purity

Signal 3: DAD1 C, Sig=330,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.573	BV	0.1036	105.40859	13.96111	0.4439
2	1.685	VB	0.1366	152.66585	14.41371	0.6430
3	8.191	BB	0.0147	5.69913e-2	5.70250e-2	2.400e-4
4	9.669	BB	0.0107	4.45698e-2	6.36685e-2	1.877e-4
5	9.953	BV	0.2998	2.34859e4	1103.46313	98.9127

Totals : 2.37441e4 1131.95866

Method B

Signal 2: DAD1 C, Sig=330,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.561	BV	0.1057	184.85255	23.14280	1.1092
2	1.687	VV	0.1447	348.73328	34.72594	2.0926
3	2.282	VB	3.8846	76.79463	2.30754e-1	0.4608
4	7.671	BV	0.0482	7.93518e-1	2.00216e-1	4.762e-3
5	7.705	VB	0.0262	2.14119e-1	1.05508e-1	1.285e-3
6	8.598	BV	0.1665	1.59055e4	1454.88940	95.4426
7	9.164	VV	0.1729	111.48343	7.58695	0.6690
8	9.537	VB	0.1611	33.36453	2.46150	0.2002
9	13.426	VB	0.0739	3.25362	5.24656e-1	0.0195

Totals :

1.66650e4 1523.86772

Method A

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.356	BB	0.0762	17.26062	3.28890	0.0830
2	1.574	BV	0.0928	88.62122	12.80265	0.4264
3	1.685	VB	0.1320	154.20041	15.25146	0.7419
4	10.947	VB	0.2979	2.05254e4	987.72833	98.7487

Totals : 2.07855e4 1019.07135

Method B

Signal 2: DAD1 C, Sig=330,4 Ref=off

Peak RetTime Type Width Area Height Area [min] [mAU*s] [mAU] % # [min] ----| 1.553 BV 0.1005 178.95872 23.71483 0.7923 1 2 1.675 VV 0.1382 339.58795 35.47026 1.5035 3 2.280 VB 89.92261 2.84483e-1 3.6902 0.3981 8.985 BV 0.1792 2.19726e4 1796.24792 97.2827 4 5 11.489 VB 0.1091 5.25767 5.75538e-1 0.0233

Totals :

2.25863e4 1856.29304

Signal 2: DAD1 B, Sig=270,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.425	VB	0.0797	28.13734	4.19775	0.1199
2	1.599	BV	0.0751	80.66073	16.92988	0.3437
3	1.684	VV	0.0831	98.39760	15.49618	0.4193
4	1.798	VB	0.1281	109.27438	10.40016	0.4656
5	9.241	BB	0.2547	2.28007e4	1373.25891	97.1549
6	10.453	BV	0.1554	95.82644	7.43150	0.4083
7	10.596	VB	0.0894	25.37045	3.48489	0.1081
8	11.856	BB	0.3464	230.03264	7.79287	0.9802

Totals : 2.34684e4 1438.99214

Method B

Signal 3: DAD1 G, Sig=270,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.500	BV	0.0828	144.21815	27.90996	0.6996
2	1.695	VV	0.1525	339.94757	29.60406	1.6490
3	7.692	BV	0.1750	1.97402e4	1718.59253	95.7563
4	8.534	VV	0.1318	111.12260	9.99130	0.5390
5	8.845	VB	0.2075	105.68089	5.99840	0.5126
6	9.365	VV	0.1728	80.66315	5.50875	0.3913
7	9.601	VB	0.1474	93.21310	7.55732	0.4522

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.572	BV	0.1081	173.18770	22.18152	0.5128
2	8.866	BV	0.2139	3.22791e4	2010.08569	95.5675
3	9.927	VB	0.1748	431.68842	30.36716	1.2781
4	10.579	VB	0.1694	464.05820	35.06033	1.3739
5	11.305	BB	0.1598	428.19977	37.19765	1.2678

Totals : 3.37762e4 2134.89236

Method B

Signal 3: DAD1 G, Sig=270,4 Ref=off

Peak Re	etTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	7.883	BV	0.1291	2.51235e4	2333.72437	95.5612
2	8.568	VV	0.1407	242.59225	20.32733	0.9227
3	8.803	VV	0.3236	924.39185	35.64532	3.5161
Totals	:			2.62905e4	2389.69701	

Signal 2: DAD1 B, Sig=270,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	11.811	VB	0.2465	2.05500e4	1248.69263	95.5095
2	15.712	VB	0.2762	966.18292	43.83290	4.4905

Totals : 2.15162e4 1292.52553

Method B

Signal 2: DAD1 C, Sig=330,4 Ref=off

Peak	RetTime Ty	/pe Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	%
1	10.020 VE	0.1620	42.47963	3.15679	1.3850
2	10.885 BE	0.2165	3001.71289	207.20801	97.8644
3	17.517 BE	0.1214	23.02526	2.24897	0.7507
Total	s :		3067.21778	212.61377	

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	10.495	BB	0.2137	3.40220e4	1902.29553	96.0275
2	11.532	VV	0.1148	240.47559	27.96380	0.6787
3	11.753	VB	0.1193	207.88483	25.17498	0.5868
4	12.057	BB	0.1772	959.07672	76.53194	2.7070

Totals : 3.54294e4 2031.96626

Method B

Signal 3: DAD1 G, Sig=270,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.099	BV	0.3515	40.44973	1.35017	0.2329
2	9.379	VB	0.0824	8.81246	1.29542	0.0507
3	9.666	BV	0.1809	1.71276e4	1459.74524	98.6289
4	10.232	VV	0.1388	94.94499	8.09829	0.5467
5	10.594	VV	0.1184	93.89258	9.45137	0.5407

Totals : 1.73657e4 1479.94048

Method A

Signal 2: DAD1 C, Sig=330,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.737	BV	0.1365	40.78170	3.53764	0.2911
2	9.603	BB	0.1154	84.12697	9.09872	0.6006
3	9.973	BV	0.1964	1.37720e4	1089.88208	98.3134
4	10.751	VV	0.1651	111.35114	7.96709	0.7949
Total	.s :			1.40083e4	1110.48554	

Method B

Signal 2: DAD1 C, Sig=330,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.311	BB	0.0792	49.82119	9.34718	0.2319
2	1.614	BB	0.2088	841.34064	47.57282	3.9170
3	2.012	BV	0.2952	114.31578	4.57146	0.5322
4	8.296	BB	0.1421	2.04739e4	2230.87305	95.3189
Total	.s :			2.14793e4	2292.36451	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	3.666	VV	0.0499	5.86679	1.61452	0.0725
2	3.770	VV	0.0615	6.42468	1.46846	0.0794
3	7.822	BB	0.0736	91.23423	19.33337	1.1270
4	9.118	BV	0.0771	43.22337	8.24990	0.5339
5	9.283	VV	0.0691	12.93283	2.44820	0.1598
6	9.741	BV	0.0899	7817.75244	1383.93896	96.5682
7	10.363	VB	0.0935	14.27669	1.80958	0.1764
8	10.721	BV	0.0606	14.11273	3.25163	0.1743
9	10.798	VB	0.0923	39.79552	5.57518	0.4916
10	12.958	BB	0.0878	49.95594	7.73735	0.6171

Totals :

8095.57523 1435.42716

Method D

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak R	etTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
-						
1	1.167	BV	0.1030	153.61269	20.72488	0.9738
2	1.447	VB	0.1062	122.89980	13.82392	0.7791
3	4.242	BB	0.1556	56.76239	4.64547	0.3598
4	5.084	BV	0.0498	90.18621	27.49329	0.5717
5	5.191	VV	0.0515	6.70909	1.58050	0.0425
6	5.665	BV	0.0465	5.10729	1.61156	0.0324
7	5.816	VV	0.1028	1.50860e4	2290.39307	95.6341
8	6.105	VV	0.0573	18.89536	4.61160	0.1198
9	6.259	VB	0.0505	23.72610	7.00373	0.1504
10	6.780	VV	0.0526	8.14344	2.31199	0.0516
11	6.962	VB	0.1128	72.58609	9.32257	0.4601
12	8.205	VB	0.0589	26.87801	6.97987	0.1704
13	8.609	VB	0.0545	103.20499	29.03672	0.6542
Totals	:			1.57747e4	2419.53917	

Method A

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.553	BV	0.0776	91.92958	18.79401	0.2130
2	1.639	VB	0.1344	198.15492	19.69478	0.4591
3	8.618	VB	0.1283	111.68575	11.30480	0.2587
4	9.129	BV	0.1354	174.10493	16.66947	0.4033
5	9.386	VB	0.1657	145.31332	10.35561	0.3366
6	9.771	BV	0.1552	355.89175	36.51839	0.8245
7	10.106	VB	0.2107	4.14863e4	2319.59961	96.1112
8	11.553	VV	0.1670	213.49384	16.01798	0.4946
9	11.831	VB	0.1244	47.32322	4.58520	0.1096
10	12.122	BV	0.0835	16.24580	2.32430	0.0376
11	12.372	VB	0.1667	292.75635	21.06087	0.6782
12	13.939	BB	0.1293	31.70451	3.01281	0.0734
Total	s :			4.31649e4	2479.93781	

Method B

Signal 1: DAD1 B, Sig=254,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
		·				
1	7.970	BV	0.1311	279.44455	32.74783	1.0427
2	8.262	VV	0.0693	176.40025	40.87649	0.6582
3	8.432	VB	0.1655	2.56459e4	2383.74829	95.6892
4	9.513	BV	0.2027	347.04858	21.80587	1.2949
5	9.898	VB	0.0984	16.29854	2.05749	0.0608
6	10.126	BV	0.0821	16.34438	2.36577	0.0610
7	10.332	VV	0.0655	22.35339	4.87294	0.0834
8	10.429	VV	0.1072	61.95589	7.24741	0.2312
9	10.774	VV	0.1491	39.22920	3.11046	0.1464
10	11.069	VB	0.0946	14.12029	1.81806	0.0527
11	11.496	BB	0.1218	160.73245	21.35513	0.5997
12	12.546	BB	0.1077	21.43447	2.42209	0.0800

Totals : 2.68013e4 2524.42784

Method A

Signal 4: DAD1 D, Sig=290,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	0.141	VV	0.1171	247.75066	29.47381	1.8894
2	0.422	VB	0.0820	55.16560	9.61117	0.4207
3	1.353	BB	0.1484	1.26743e4	1298.76404	96.6572
4	7.577	BB	0.1037	21.18176	2.44210	0.1615
5	8.820	BV	0.6545	114.23597	2.04417	0.8712
Total	s :			1.31126e4	1342.33529	

Method E

Signal 4: DAD1 D, Sig=290,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.239	VV	0.0671	10.42186	1.86773	0.1533
2	1.361	VB	0.0689	17.28675	3.08195	0.2542
3	4.016	BV	0.0543	6759.96680	1885.48987	99.4120
4	4.626	VB	0.0886	12.27417	1.66243	0.1805
Total	s :			6799.94957	1892.10197	

Method A

Signal 4: DAD1 D, Sig=290,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	0.362	BB	0.0787	7.39480	1.11772	0.0387
2	1.619	BB	0.1825	307.33722	21.53188	1.6077
3	8.644	BV	0.1402	1.85912e4	1581.15515	97.2543
4	9.499	VV	0.1675	55.64240	3.95747	0.2911
5	9.934	BB	0.1335	90.59611	8.09747	0.4739
6	11.400	BBA	0.1606	63.90107	4.73127	0.3343
Tota]	s :			1.91160e4	1620.59096	

Method E

Signal 4: DAD1 D, Sig=290,4 Ref=off

Peak R	etTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
-						
1	1.228	VB	0.0712	10.64459	1.96605	0.0999
2	1.364	BV	0.0846	17.77066	2.89378	0.1667
3	4.084	BV	0.0690	1.03580e4	2046.91760	97.1763
4	4.419	VV	0.1378	161.83618	14.11464	1.5183
5	4.628	VB	0.1022	84.30206	10.55695	0.7909
6	4.865	BV	0.0477	5.33605	1.34785	0.0501
7	4.895	VB	0.0677	8.40072	1.49150	0.0788
8	5.176	BB	0.0640	12.68676	2.42771	0.1190
Totals	:			1.06590e4	2081.71608	

Method A

Signal 3: DAD1 C, Sig=330,4 Ref=off

					Height [mAU]	
-						
1	8.517	MM	0.1654	121.68285	12.26426	0.8893
2	8.837	MM	0.2204	1.32844e4	1004.56268	97.0859
3	11.107	MM	0.1651	277.05350	19.78963	2.0248
Totals	:			1.36831e4	1036.61658	

Method B

Signal 3: DAD1 C, Sig=330,4 Ref=off

					Height [mAU]	
1	7.516	BV	0.1245	288.66171	34.02340	2.3821
2	7.689	VV	0.1286	1.15766e4	1390.29077	95.5321
3	10.174	BB	0.1275	252.75702	27.42595	2.0858

Totals : 1.21180e4 1451.74013

Method A

Signal 3: DAD1 C, Sig=330,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.651	MM	0.2323	1.79927e4	1290.94250	96.4519
2	9.989	MM	0.1925	464.99719	40.25417	2.4927
3	10.947	MM	0.1337	196.89345	24.54042	1.0555

Totals : 1.86546e4 1355.73710

Method B

Signal 2: DAD1 B, Sig=330,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	7.691	MM	0.1576	2.65599e4	2808.66309	95.1146
2	8.497	MM	0.1368	1364.21326	166.19298	4.8854

Totals : 2.79241e4 2974.85606