
Double Coating for the Enhancement of the Performance in $a\ MA_{0.7}FA_{0.3}PbBr_3\ Photodetector$

Hai Zhou,^{†,‡} Zhaoning Song,[†] Changlei Wang,[†] Corey R. Grice,[†] Zehao Song,[‡] Dewei Zhao,[†] Hao Wang^{‡, *}and Yanfa Yan^{†, *}

[†]Department of Physics and Astronomy and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, Ohio, 43606, USA.

[‡]Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, Faculty of Physics & Electronic Science, Hubei University, Wuhan, 430062, P.R. China.

*Corresponding author: nanoguy@126.com; Yanfa. Yan@utoledo.edu

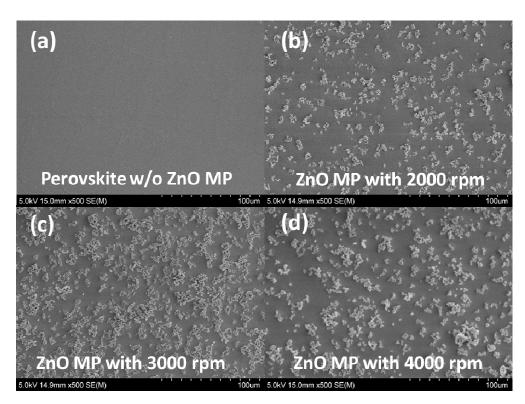


Figure S2 SEM images of perovskite without ZnO MP (a), with ZnO MP at (b) 2000 rpm, (c) 3000 rpm and (d) 4000 rpm.

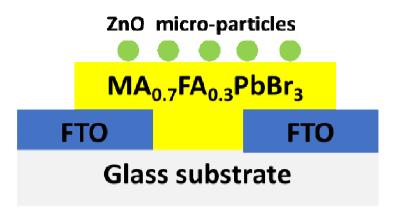


Figure S3 Schematic illustration of a perovskite PD coated by ZnO MPs.

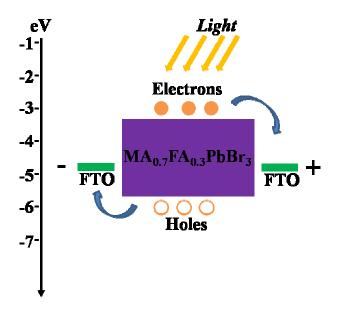


Figure S4 The band alignment of a perovskite PD.

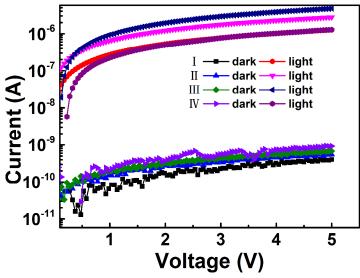


Figure S5 The *I-V* characteristics in semilogarithmic coordinates of the devices modified by ZnO MP with various spin-coating rpm.

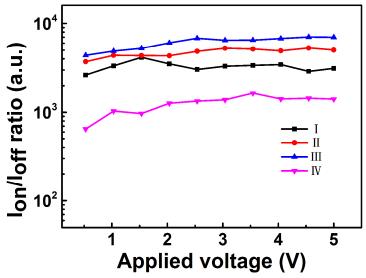


Figure S6 I_{on}/I_{off} ratio curves of the devices modified by ZnO MP with various spin-coating rpm.

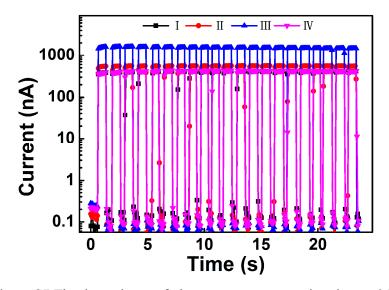


Figure S7 The dependence of photocurrent on operating time at 2 V.

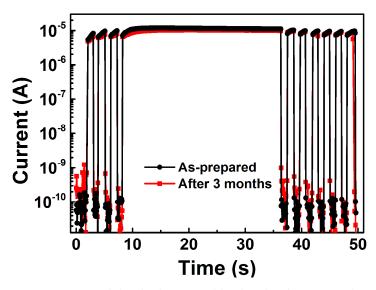


Figure S8 I-T curve of the device stored in the air after 3 months at 2 V.

Table S1 The performance parameters of perovskite-based PDs in this and previously reported

work

Туре	Structure	Responsivity	Detectivity	LDR	On/off	References
		(A/W)	(× 10 ¹²	(dB)	ratio	
			Jones)			
Film	FTO/MA _{0.7} FA _{0.3} PbBr ₃ /FTO	0.51	4.0	100	~10 ⁵	This work
Film	ZnO/CsPbI ₃ /P3HT	0.035	1.8	85.6	-	26
Single	Ti/CH ₃ NH ₃ PbCl ₃ /Pt	6×10^4	10	-	~100	27
crystal						
Single	Au/CsPbBr ₃ /Pt	0.028	0.17	-	10^{5}	28
crystal						
nanowire	Au/MAPbI ₃ /Au	0.1	1.02	-	~300	29
Film	Pt/MAPbI ₃ /Pt	0.175	0.0967	-	10^4	30
Single	Au/CsPbBr ₃ /Au	0.028	0.18	-	100	31
crystal						