Supporting Information

Stereocontrolled Synthesis of 2-Deoxy-C-Glycopyranosyl

Arenes Using Glycals and Aromatic Amines

Shengbiao Tang, ${ }^{\dagger \dagger}{ }^{\ddagger}$ Qiannan Zheng, ${ }^{\dagger}$ De-Cai Xiong, ${ }^{, \dagger, \dagger, s}$ Shende Jiang, ${ }^{\ddagger}$ Qin Li, ${ }^{\dagger}$ and Xin-Shan $\mathrm{Ye}^{*, \dagger}$
\dagger State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China
\ddagger School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
§ State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences

Table of Contents

General information	S2
Optimization of the reaction (Tables S1-S3)	S2 - S5
Structure identification of compounds 7-9	S6 - S7
Experimental procedures and compound characterization data	S8 - S47
Reference	S47
Spectral data	S47 - S98

1) General information

All reagents were purchased as reagent grade and used without further purification unless otherwise indicated. The Pd-catalysts were purchased from Sigma-Aldrich company Ltd. THF ($99.5+\%$ extra pure) was purchased. Organic solutions were removed by rotary evaporation with a water bath temperature below $50^{\circ} \mathrm{C}$. Reactions were monitored by thin-layer chromatography (TLC) analysis, and stained by the solution of potassium permanganate or acidic ceric ammonium molybdate. Product purification was subjected by column chromatography on silica gel. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a 400 MHz spectrometer at $20^{\circ} \mathrm{C}$. The residual solvent of CDCl_{3} (7.26 ppm for ${ }^{1} \mathrm{H}$ NMR), TMS (0 ppm for ${ }^{1} \mathrm{H}$ NMR) was used as an internal standard for ${ }^{1} \mathrm{H}$ NMR spectra, and the residual solvent of CDCl_{3} (77.16 ppm for ${ }^{13} \mathrm{C}$ NMR) was used as an internal standard for ${ }^{13} \mathrm{C}$ NMR. Chemical shifts (δ) were recorded in ppm, coupling constants (J) were reported in Hz . The abbreviations are as follows: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad signal. High resolution mass spectra were obtained using a Fourier transform ion cyclotron resonance mass spectrometer.

2) Table S1. Screening the reaction conditions ${ }^{a b}$

	 1a	$\begin{aligned} & 2, \mathrm{X}=\mathrm{N}_{2}^{+} \mathrm{B} \\ & 3, \mathrm{X}=\mathrm{NH}_{2} \end{aligned}$	conditions				
entry	substrate	solvent	catalyst (15\%)	ligand (20\%)	additive (10 equiv.)	4a α (\%)	5 a (\%)
1	2	THF	$\mathrm{Pd}(\mathrm{OAc})_{2}$	-	-	0	trace
2	2	THF	$\mathrm{Pd}(\mathrm{OAc})_{2}$	$\mathrm{Ph}_{3} \mathrm{P}$	-	34	25
3	2	THF	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	-	-	36	31
4	2	THF	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	xanphose	-	33	30

5	2	THF	$\mathrm{Pd}(\mathrm{dba})_{2}$	-	-	81	0
6	2	THF	$\mathrm{Pd}(\mathrm{dba})_{2}$	$\mathrm{Ph}_{3} \mathrm{P}$	-	74	0
7	2	THF	$\mathrm{Pd}(\mathrm{dba})_{2}$	-	NaHCO_{3}	53	26
8	2	THF	$\mathrm{Pd}(\mathrm{dba})_{2}$	-	$\mathrm{K}_{2} \mathrm{CO}_{3}$	56	17
9	2	THF	$\mathrm{Pd}(\mathrm{dba})_{2}$	-	$\mathrm{K}_{3} \mathrm{PO}_{4}$	46	20
10	2	THF	$\mathrm{Pd}(\mathrm{dba})_{2}$	-	NaOH	0	21
11	2	THF	$\mathrm{Pd}(\mathrm{dba})_{2}$	-	DMAP	0	0
12	2	THF	$\mathrm{Pd}(\mathrm{dba})_{2}$	-	$\mathrm{Et}_{3} \mathrm{~N}$	0	0
13	2	THF	$\mathrm{Pd}(\mathrm{dba})_{2}$	-	$\mathrm{H}_{2} \mathrm{O}$	62	0
14	2	THF	$\mathrm{Pd}(\mathrm{dba})_{2}$	-	AcOH	76	0
15	2	THF	$\mathrm{Pd}(\mathrm{dba})_{2}$	-	2 M HCl	31	0
16	2	Acetone	$\mathrm{Pd}(\mathrm{dba})_{2}$	-	-	31	0
17	2	$\mathrm{CH}_{3} \mathrm{CN}$	$\mathrm{Pd}(\mathrm{dba})_{2}$	-	-	0	0
18	2	DMF	$\mathrm{Pd}(\mathrm{dba})_{2}$	-	-	0	0
19	2	DCM	$\mathrm{Pd}(\mathrm{dba})_{2}$	-	-	0	0
20^{c}	3	THF	$\mathrm{Pd}(\mathrm{dba})_{2}$	-	$\mathrm{NaNO}_{2}+\mathrm{HBF}_{4}$	0	0
$21^{\text {c }}$	3	MeOH	$\mathrm{Pd}(\mathrm{dba})_{2}$	-	$\mathrm{NaNO}_{2}+\mathrm{HBF}_{4}$	0	0
$22^{\text {c }}$	3	THF	$\mathrm{Pd}(\mathrm{dba})_{2}$	-	${ }^{t}$ Butyl nitrite $+\mathrm{HBF}_{4}$	trace	0
$23^{\text {c }}$	3	THF	$\mathrm{Pd}(\mathrm{dba})_{2}$	-	NOBF_{4}	73	0

${ }^{a}$ The reactions of entries $1-19$ were carried out with $\mathbf{1 a}(21.0 \mathrm{mg}, 0.05 \mathrm{mmol}), \mathbf{2}(22.0 \mathrm{mg}$, $0.1 \mathrm{mmol})$ and solvent $(4 \mathrm{~mL})$ at room temperature for $1 \mathrm{~h} ;{ }^{b}$ Isolated yield; ${ }^{c}$ The reactions of entries 20-23 were carried out in one-pot protocol: p-anisidine 3 ($31.0 \mathrm{mg}, 0.25 \mathrm{mmol}$), additives (0.25 mmol of each) at $0{ }^{\circ} \mathrm{C}$ for 30 min , then $\mathbf{1 a}(42.0 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $\operatorname{Pd}(\mathrm{dba})_{2}(15 \mathrm{~mol} \%)$ were added, and then stirred at $\mathrm{r} . \mathrm{t}$. for 1 h.

3) Table S2. Investigation of anomerization ${ }^{a b}$

entry	catalyst	solvent	4a $\boldsymbol{\beta}$ $\mathrm{R}=\mathrm{OMe}$ yield (\%)	4i $\boldsymbol{\beta}$ $\mathrm{R}=\mathrm{Br}$ yield (\%)
			0	0
1	$\mathrm{HBF}_{4}, 12.5 \mu \mathrm{~L}$	$\mathrm{Et}_{2} \mathrm{O}$	trace	0
2	$\mathrm{HBF}_{4}, 25 \mu \mathrm{~L}$	$\mathrm{Et}_{2} \mathrm{O}$	92	32
3	$\mathrm{HBF}_{4}, 50 \mu \mathrm{~L}$	$\mathrm{Et}_{2} \mathrm{O}$	$\mathrm{Et}_{2} \mathrm{O}$	86

20	$\mathrm{HBF}_{4}, 50 \mu \mathrm{~L}$	THF	50	trace
21	$\mathrm{HBF}_{4}, 50 \mu \mathrm{~L}$	toluene	22	0
22	$\mathrm{HBF}_{4}, 50 \mu \mathrm{~L}$	MeOH	0	0

${ }^{a}$ All reactions were carried out with $\mathbf{4 a \alpha}(10.0 \mathrm{mg}), \mathrm{HBF}_{4}\left(50 \% \mathrm{~V} / \mathrm{V}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ in solvent (1 mL) at room temperature for 1 h ; $\mathbf{4 i} \boldsymbol{\alpha}(10.0 \mathrm{mg}), \mathrm{HBF}_{4}(50 \% \mathrm{~V} / \mathrm{V}$ in $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ in solvent $(1 \mathrm{~mL})$ at room temperature for $5 \mathrm{~h} .{ }^{b}$ Isolated yield.
4) Table S3. Reduction and reductive-amination of the compound $4 f \beta$

entry	conditions	$\mathbf{7}(\%)$	$\mathbf{8}(\%)$
1	$\mathrm{NaBH}_{4}, \mathrm{THF}, \mathrm{rt}, 1 \mathrm{~h}$	42	40
2	$\mathrm{LiBH}_{4}, \mathrm{THF}, \mathrm{rt}, 1 \mathrm{~h}$	40	41
3	$\mathrm{LiBHEt}_{3}, 0^{\circ} \mathrm{C}, 24 \mathrm{~h}$	trace	78
4	$\mathrm{Pd} / \mathrm{C}(10 \%), \mathrm{rt}, 24 \mathrm{~h}$	10	73
5	$\mathrm{NaBHAc}_{3}, \mathrm{MeOH}, 24 \mathrm{~h}$	0	0
6	$\mathrm{NaBHAc}_{3}, \mathrm{MeCN}^{2} / \mathrm{AcOH}=2 / 1, \mathrm{rt}, 24 \mathrm{~h}$	45	36
7	$\mathrm{LiAlH}_{4}, \mathrm{THF}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}$	20	25

5) Scheme S1. Plausible mechanism of the arylation

6) Scheme S2. NMR analyses of compounds 7-9.

NOE analysis of the compound 9

7) Experimental procedures and compound characterization data

Procedure A: The preparation of 4a α from glucal 1a and 2:

To a solution of 4-methoxybenzenediazonium tetrafluoroborate (2) (22.0 mg, 0.1 $\mathrm{mmol})$ in tetrahydrofuran $(4 \mathrm{~mL})$ were added the glucal 1a ($21.0 \mathrm{mg}, 0.05 \mathrm{mmol}$) and bis(dibenzylideneacetone)palladium ($4.5 \mathrm{mg}, 15 \mathrm{~mol} \%$) at room temperature, and the mixture was stirred for 1 h . After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat. $\mathrm{NaHCO}_{3}, 20 \mathrm{~mL}$) and the aqueous layer was extracted with ethyl acetate ($20 \mathrm{~mL} * 3$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: 1/10) to afford $\mathbf{4 a \alpha}$ as a white foam $(18.0 \mathrm{mg}, 81 \%) . \mathrm{R}_{f}=0.23$ (ethyl acetate/petroleum ether: $1 / 6) ;[a]_{D}^{21}=+120.8\left(\mathrm{c} \mathrm{1.4}, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.25(\mathrm{~m}$, $12 \mathrm{H}), 6.85(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.44(\mathrm{dd}, J=6.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.59(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.71-3.61(\mathrm{~m}, 3 \mathrm{H}), 3.09(\mathrm{dd}, J=14.6,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.03$ (dd, $J=14.7,6.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.86,159.57,138.06$, $137.59,130.80,129.02,128.53,128.50,128.35,128.05,127.99,127.87,114.19,79.87$, 75.02, $74.39,73.71,73.62,69.28,55.43,44.24$; HMRS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{O}_{5}[\mathrm{M}+$ $\mathrm{H}]^{+} 433.2010$, found 433.2007.

1-Methoxy-4-(3,4,6-tri-O-benzyl-2-deoxy-2,3-didehydro- α-D-glucopyranosyl)

 benzene (5a):

Colorless oil ($6.8 \mathrm{mg}, 26 \%$), $\mathrm{R}_{f}=0.31$ (ethyl acetate/petroleum ether: $1 / 6$); $[a]_{D}^{26}=+34.9\left(\mathrm{c} 0.04, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-7.24(\mathrm{~m}, 17 \mathrm{H})$, $6.84(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.33(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 5.00(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2)$, 4.94 - 4.79 (m, 3H, Bn), 4.56 (d, $J=11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}), 4.54$ (d, $J=11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn})$, 4.42 (d, $J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}), 4.21$ (d, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.90-3.84$ (m, 1H, H-5), 3.79 (s, 3H, -OMe), 3.65 (dd, $J=10.4,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{a}$), 3.53 (dd, $J=10.4,3.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.53,153.44,138.64,138.35,137.06$, 133.06, 129.70, 128.63, $128.45,128.38$, 128.34, 128.00, 127.97, 127.73, 127.71, 127.53, 113.75, 99.28, 73.66, 73.44, 73.36, 72.21, 71.64, 69.29, 69.10, 55.43; HMRS (ESI) calcd for $\mathrm{C}_{34} \mathrm{H}_{35} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 523.2484$, found 523.2484.

Procedure B: The preparation of $4(a-u) \alpha$ and $4(a-u) \beta$
a) NOBF_{4} (1.5 equiv)

THF, 30 min ; then 1

(2R,3R,6S)-3-Benzyloxy-2-benzyloxymethyl-6-(4-methoxyphenyl)-tetrahydro-4H

 -pyran-4-one (4a α):

To a solution of p-anisidine (3) ($31.0 \mathrm{mg}, 0.25 \mathrm{mmol}$) in tetrahydrofuran (THF) (4 mL) were added nitrosonium tetrafluoroborate ($44.0 \mathrm{mg}, 0.38 \mathrm{mmol}$) at $-40{ }^{\circ} \mathrm{C}$ under argon. Then, the acetonitrile-dry ice bath was removed and the mixture was stirred at
room temperature for 30 min , during this period, a large amount of solid suspension was observed. Then the glucal 1a ($42.0 \mathrm{mg}, \quad 0.1 \mathrm{mmol})$ and bis(dibenzylideneacetone)palladium $\left(\mathrm{Pd}(\mathrm{dba})_{2}\right)(8.7 \mathrm{mg}, 0.015 \mathrm{mmol})$ were added to the reaction mixture, and the mixture was stirred at room temperature for 1 h . After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat. $\mathrm{NaHCO}_{3}, 20 \mathrm{~mL}$) and the aqueous layer was extracted with ethyl acetate ($20 \mathrm{~mL} * 3$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: $1 / 10$) to afford $\mathbf{4 a} \alpha$ as a white foam ($31.9 \mathrm{mg}, 73 \%$). $\mathrm{R}_{f}=0.23$ (ethyl acetate/petroleum ether: $1 / 6$); $[a]_{D}^{21}=+120.8$ (c 1.4, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.25(\mathrm{~m}, 12 \mathrm{H}), 6.85(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.44$ (dd, $J=6.2$, $\left.2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{4} \mathrm{C}_{1}(\mathrm{D}, \alpha)\right), 4.85(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.47$ (d, $J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H})$, $3.71-3.61(\mathrm{~m}, 3 \mathrm{H}), 3.09(\mathrm{dd}, J=14.6,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=14.7,6.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 206.86, 159.57, 138.06, 137.59, 130.80, 129.02, 128.53, $128.50,128.35,128.05,127.99,127.87,114.19,79.87,75.02,74.39,73.71,73.62$, 69.28, 55.43, 44.24; HMRS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 433.2010$, found 433.2007.
(2R,3R,6S)-3-Methoxy-2-methoxymethyl-6-(4-methoxyphenyl)-tetrahydro-4H-py ran-4-one (4ba):

To a solution of p-anisidine (3) (31.0 mg, 0.25 mmol$)$ in tetrahydrofuran (THF) (4 mL) were added nitrosonium tetrafluoroborate ($44.0 \mathrm{mg}, 0.38 \mathrm{mmol}$) at $-40{ }^{\circ} \mathrm{C}$ under argon. Then, the acetonitrile-dry ice bath was removed and the mixture was stirred at room temperature for 30 min , during this period, a large amount of solid suspension
was observed. Then the glucal 1b (19.0 $\mathrm{mg}, 0.1 \mathrm{mmol})$ and bis(dibenzylideneacetone)palladium $\left(\operatorname{Pd}(\mathrm{dba})_{2}\right)(8.7 \mathrm{mg}, 0.015 \mathrm{mmol})$ were added to the reaction mixture, and the mixture was stirred at room temperature for 1 h . After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat. $\mathrm{NaHCO}_{3}, 20 \mathrm{~mL}$) and the aqueous layer was extracted with ethyl acetate ($20 \mathrm{~mL} * 3$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: $1 / 3$) to afford $\mathbf{4 b} \boldsymbol{\alpha}$ as a white foam ($18.5 \mathrm{mg}, 65 \%$). $\mathrm{R}_{f}=0.24$ (ethyl acetate/petroleum ether: $1 / 3$); $[a]_{D}^{17}=+128.8\left(\mathrm{c} 0.4, \mathrm{CHCl}_{3}\right.$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30-7.27(\mathrm{~m}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.42(\mathrm{dd}, J=6.2$, $\left.2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{4} \mathrm{C}_{1}(\mathrm{D}, \alpha)\right), 3.94(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.62-3.54(\mathrm{~m}, 3 \mathrm{H})$, $3.50(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 3.07(\mathrm{dd}, J=14.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=14.8,6.8 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.89,159.57,130.69,129.03,114.17,81.97$, $75.05,74.16,71.74,59.67,59.52,55.39,44.07$; HMRS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{5}[\mathrm{M}+$ $\mathrm{H}]^{+}$281.1384, found 281.1376.
(2R,3R,6S)-3-tert-Butyldimethylsilyloxy-2-butyldimethylsilyloxymethyl-6-(4-met hoxyphenyl)-tetrahydro-4H-pyran-4-one (4c α):

To a solution of p-anisidine (3) ($31.0 \mathrm{mg}, 0.25 \mathrm{mmol}$) in tetrahydrofuran (THF) (4 mL) were added nitrosonium tetrafluoroborate ($44.0 \mathrm{mg}, 0.38 \mathrm{mmol}$) at $-40^{\circ} \mathrm{C}$ under argon. Then, the acetonitrile-dry ice bath was removed and the mixture was stirred at room temperature for 30 min , during this period, a large amount of solid suspension was observed. Then the glucal 1c ($49.0 \mathrm{mg}, 0.1 \mathrm{mmol})$ and bis(dibenzylideneacetone)palladium $\left(\operatorname{Pd}(\mathrm{dba})_{2}\right)(8.7 \mathrm{mg}, 0.015 \mathrm{mmol})$ were added to the reaction mixture, and the mixture was stirred at room temperature for 1 h . After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate
solution (sat. $\mathrm{NaHCO}_{3}, 20 \mathrm{~mL}$) and the aqueous layer was extracted with ethyl acetate ($20 \mathrm{~mL} * 3$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: 1/20) to afford $\mathbf{4 c \alpha}$ as a colorless oil ($30.3 \mathrm{mg}, 63 \%$). $\mathrm{R}_{f}=0.33$ (ethyl acetate/petroleum ether: $1 / 20$); $[a]_{D}^{17}=+68.3$ (c $0.2, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.39(\mathrm{dd}, J=$ $\left.6.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{4} \mathrm{C}_{1}(\mathrm{D}, \alpha)\right), 4.30(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-3.75(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~s}$, $3 \mathrm{H}), 3.50-3.45$ (m, 1H), 3.05 (dd, $J=14.7,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.92 (dd, $J=14.6,6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.14(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 206.82,159.36,131.34,128.81,114.09,75.13,74.62$, 63.32, 55.41, 43.83, 26.07, 25.94, 18.57, 18.54, -4.12, -4.90, -5.20, -5.42; HMRS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{45} \mathrm{O}_{5} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+} 481.2801$, found 481.2795 .

(2R,3S,6S)-3-Benzyloxy-2-benzyloxymethyl-6-(4-methoxyphenyl)-tetrahydro-4H-

 pyran-4-one (4d α):

To a solution of p-anisidine (3) ($31.0 \mathrm{mg}, 0.25 \mathrm{mmol}$) in tetrahydrofuran (THF) (4 mL) were added nitrosonium tetrafluoroborate ($44.0 \mathrm{mg}, 0.38 \mathrm{mmol}$) at $-40{ }^{\circ} \mathrm{C}$ under argon. Then, the acetonitrile-dry ice bath was removed and the mixture was stirred at room temperature for 30 min , during this period, a large amount of solid suspension was observed. Then the galactal 1d ($42.0 \mathrm{mg}, \quad 0.1 \mathrm{mmol})$ and bis(dibenzylideneacetone)palladium $\left(\operatorname{Pd}(\mathrm{dba})_{2}\right)(8.7 \mathrm{mg}, 0.015 \mathrm{mmol})$ were added to the reaction mixture, and the mixture was stirred at room temperature for 1 h . After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat. $\mathrm{NaHCO}_{3}, 20 \mathrm{~mL}$) and the aqueous layer was extracted with ethyl acetate $(20 \mathrm{~mL} * 3)$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica
gel (ethyl acetate/petroleum ether: 1/10) to afford $\mathbf{4 d} \boldsymbol{\alpha}$ as a yellow foam ($25.0 \mathrm{mg}, 57 \%$). $\mathrm{R}_{f}=0.34$ (ethyl acetate/petroleum ether: $1 / 6$); $[a]_{D}^{19}=+39.5\left(\mathrm{c} 0.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.25(\mathrm{~m}, 12 \mathrm{H}), 6.88(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.27(\mathrm{dd}, J=9.5$, $\left.3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{1} \mathrm{C}_{4}(\mathrm{D}, \alpha)\right), 4.93(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.50$ $(\mathrm{d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.43-4.37(\mathrm{~m}, 1 \mathrm{H}), 4.15(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-3.76(\mathrm{~m}$, $2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.80(\mathrm{dd}, J=14.4,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{dd}, J=14.1,9.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 204.60,159.53,138.10,137.60,132.70,128.65,128.49$, $128.12,127.98,127.81,127.75,127.60,114.08,79.45,76.36,74.68,73.70,72.78$, 68.58, 55.44, 47.86; HMRS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$433.2010, found 433.2008 .

(2R,3R,6S)-3-Benzyloxy-2-methyl-6-(4-methoxyphenyl)-tetrahydro-4H-pyran-4-

 one (4e α):

To a solution of p-anisidine (3) ($31.0 \mathrm{mg}, 0.25 \mathrm{mmol}$) in tetrahydrofuran (THF) (4 mL) were added nitrosonium tetrafluoroborate ($44.0 \mathrm{mg}, 0.38 \mathrm{mmol}$) at $-40{ }^{\circ} \mathrm{C}$ under argon. Then, the acetonitrile-dry ice bath was removed and the mixture was stirred at room temperature for 30 min , during this period, a large amount of solid suspension was observed. Then the 6-deoxy-glucal $\mathbf{1 e}(31.0 \mathrm{mg}, 0.1 \mathrm{mmol})$ and bis(dibenzylideneacetone)palladium $\left(\mathrm{Pd}(\mathrm{dba})_{2}\right)(8.7 \mathrm{mg}, 0.015 \mathrm{mmol})$ were added to the reaction mixture, and the mixture was stirred at room temperature for 1 h . After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat. $\mathrm{NaHCO}_{3}, 20 \mathrm{~mL}$) and the aqueous layer was extracted with ethyl acetate (20 mL * 3). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: 1/10) to afford $\mathbf{4 e} \boldsymbol{\alpha}$ as a white foam ($25.5 \mathrm{mg}, 78 \%$). $\mathrm{R}_{f}=0.35$ (ethyl acetate/petroleum ether: $1 / 6$); $[a]_{D}^{19}=+102.8\left(\mathrm{c} 0.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR
($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.28(\mathrm{~m}, 7 \mathrm{H}), 6.86(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.27(\mathrm{dd}, J=6.4$, $\left.2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{4} \mathrm{C}_{1}(\mathrm{D}, \alpha)\right), 4.87(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.79$ (s, 3H), $3.82-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{dd}, J=14.2,3.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.93(\mathrm{dd}, J=13.9,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.77,159.52,137.53,131.32,128.79,128.57,128.37,128.12,114.16,85.03$, 74.56, 73.25, 71.65, 55.44, 44.75, 18.38; HMRS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$ 327.1591, found 327.1592.
(2S,3S,6R)-3-Benzyloxy-2-methyl-6-(4-methoxyphenyl)-tetrahydro-4H-pyran-4-o ne (4f α).

To a solution of p-anisidine (3) ($31.0 \mathrm{mg}, 0.25 \mathrm{mmol}$) in tetrahydrofuran (THF) (4 mL) were added nitrosonium tetrafluoroborate ($44.0 \mathrm{mg}, 0.38 \mathrm{mmol}$) at $-40{ }^{\circ} \mathrm{C}$ under argon. Then, the acetonitrile-dry ice bath was removed and the mixture was stirred at room temperature for 30 min , during this period, a large amount of solid suspension was observed. Then the rhamnal 1f ($31.0 \mathrm{mg}, 0.1 \mathrm{mmol})$ and bis(dibenzylideneacetone)palladium $\left(\mathrm{Pd}(\mathrm{dba})_{2}\right)(8.7 \mathrm{mg}, 0.015 \mathrm{mmol})$ were added to the reaction mixture, and the mixture was stirred at room temperature for 1 h . After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat. $\mathrm{NaHCO}_{3}, 20 \mathrm{~mL}$) and the aqueous layer was extracted with ethyl acetate (20 mL * 3). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: $1 / 10$) to afford $\mathbf{4} \mathbf{f} \boldsymbol{\alpha}$ as a light yellow foam $(23.0 \mathrm{mg}$, 70%). $\mathrm{R}_{f}=0.36$ (ethyl acetate/petroleum ether: $1 / 6$); $[a]_{D}^{20}=-141.2\left(\mathrm{c} 1.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.28(\mathrm{~m}, 7 \mathrm{H}), 6.88-6.84(\mathrm{~m}, 2 \mathrm{H}), 5.27(\mathrm{dd}, J=6.7$, $\left.3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{1} \mathrm{C}_{4}(\mathrm{~L}, \alpha)\right), 4.87(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.79$ (s, 3H), $3.81-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=8.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{dd}, J=14.2,3.3 \mathrm{~Hz}$,

1H), 2.93 (ddd, $J=14.2,6.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{~d}, J=6.4,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 206.80,159.52,137.52,131.31,128.80,128.57,128.38,128.13,114.15$, 85.03, 74.56, 73.26, 71.64, 55.44, 44.74, 18.38; HMRS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{4}[\mathrm{M}+$ $\mathrm{H}]^{+} 327.1586$, found 327.1586 .

(3S,6R)-3-Benzyloxy-6-(4-methoxyphenyl)-tetrahydro-4H-pyran-4-one (4gß).

To a solution of p-anisidine (3) ($31.0 \mathrm{mg}, 0.25 \mathrm{mmol}$) in tetrahydrofuran (THF) (4 mL) were added nitrosonium tetrafluoroborate ($44.0 \mathrm{mg}, 0.38 \mathrm{mmol}$) at $-40{ }^{\circ} \mathrm{C}$ under argon. Then, the acetonitrile-dry ice bath was removed and the mixture was stirred at room temperature for 30 min , during this period, a large amount of solid suspension was observed. Then the arabinal $\mathbf{1 g}(30.0 \quad \mathrm{mg}, 0.1 \mathrm{mmol})$ and bis(dibenzylideneacetone)palladium $\left(\operatorname{Pd}(\mathrm{dba})_{2}\right)(8.7 \mathrm{mg}, 0.015 \mathrm{mmol})$ were added to the reaction mixture, and the mixture was stirred at room temperature for 1 h . After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat. $\mathrm{NaHCO}_{3}, 20 \mathrm{~mL}$) and the aqueous layer was extracted with ethyl acetate ($20 \mathrm{~mL} * 3$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: $1 / 10$) to afford $\mathbf{4 g} \boldsymbol{\beta}$ as a white foam ($17.3 \mathrm{mg}, 55 \%$). $\mathrm{R}_{f}=0.43$ (ethyl acetate/petroleum ether: $1 / 6$); $[a]_{D}^{20}=-98.2\left(\mathrm{c} 0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41$ - $7.25(\mathrm{~m}, 7 \mathrm{H}), 6.91-6.87(\mathrm{~m}, 2 \mathrm{H}), 4.95(\mathrm{~d}, J=11.9 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{Bn}-), 4.60(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-), 4.60-4.57(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1), 4.40(\mathrm{dd}, J=10.9$, $7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{a}), 4.19$ (dd, $J=10.4,7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{~b}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.62$ (t, $J=$ $10.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 2.76-2.66(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2 \mathrm{a}, 2 \mathrm{~b}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $205.15,159.77,137.57,132.18,128.75,128.27,128.15,127.18,114.23,80.65,79.16$,
72.94, 70.72, 55.47, 49.90; HMRS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$335.1254, found 335.1256 .
(2R,3R,6S)-3-Benzyloxy-2-benzyloxymethyl-6-phenyl-tetrahydro-4H-pyran-4-on e (4h $)$:

To a solution of aniline ($\mathbf{3 b}$) $(23.0 \mathrm{mg}, 0.25 \mathrm{mmol})$ in tetrahydrofuran (THF) (4 mL) were added nitrosonium tetrafluoroborate ($44.0 \mathrm{mg}, 0.38 \mathrm{mmol}$) at $-40^{\circ} \mathrm{C}$ under argon. Then, the acetonitrile-dry ice bath was removed and the mixture was stirred at room temperature for 30 min , during this period, a large amount of solid suspension was observed. Then the glucal 1a ($42.0 \mathrm{mg}, 0.1 \mathrm{mmol})$ and bis(dibenzylideneacetone)palladium $\left(\operatorname{Pd}(\mathrm{dba})_{2}\right)(8.7 \mathrm{mg}, 0.015 \mathrm{mmol})$ were added to the reaction mixture, and the mixture was stirred at room temperature for 1 h . After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat. $\mathrm{NaHCO}_{3}, 20 \mathrm{~mL}$) and the aqueous layer was extracted with ethyl acetate $(20 \mathrm{~mL} * 3)$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: 1/10) to afford $\mathbf{4} \boldsymbol{h} \boldsymbol{\alpha}$ as a white foam ($30.5 \mathrm{mg}, 76 \%$). $\mathrm{R}_{f}=0.29$ (ethyl acetate/petroleum ether: $1 / 6$); $[a]_{D}^{19}=+85.3\left(\mathrm{c} 0.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.25(\mathrm{~m}, 15 \mathrm{H}), 5.48\left(\mathrm{dd}, J=6.6,3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{4} \mathrm{C}_{1}(\mathrm{D}\right.$, a)), $4.84(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H})$, 4.43 (d, $J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.68(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{dd}, J=$ $10.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.12 (dd, $J=14.7,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=14.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 206.55,138.78,138.04,137.54,128.87,128.54,128.52$, 128.36, 128.32, 128.08, 127.99, 127.89, 127.54, 79.78, 75.35, 74.85, 73.72, 73.58, 69.33, 44.15. The ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ NMR spectroscopic data coincide with the previous report. ${ }^{[1]}$

(2R,3R,6S)-3-Benzyloxy-2-benzyloxymethyl-6-(4-bromophenyl)-tetrahydro-4H-p

 yran-4-one (4i α):

To a solution of p-bromoaniline ($\mathbf{3 c}$) ($43.0 \mathrm{mg}, 0.25 \mathrm{mmol}$) in tetrahydrofuran (THF) $(4 \mathrm{~mL})$ were added nitrosonium tetrafluoroborate ($44.0 \mathrm{mg}, 0.38 \mathrm{mmol}$) at $-40^{\circ} \mathrm{C}$ under argon. Then, the acetonitrile-dry ice bath was removed and the mixture was stirred at room temperature for 0.5 h , during this period, a large amount of solid suspension was observed. Then the glucal 1a ($42.0 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $\operatorname{bis}($ dibenzylideneacetone $)$ palladium $\left(\operatorname{Pd}(\mathrm{dba})_{2}\right)(8.7 \mathrm{mg}, 0.015 \mathrm{mmol})$ were added to the reaction mixture, and the mixture was stirred at room temperature for 1 h . After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat. $\mathrm{NaHCO}_{3}, 20 \mathrm{~mL}$) and the aqueous layer was extracted with ethyl acetate (20 mL * 3). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: $1 / 10$) to afford $\mathbf{4 i} \boldsymbol{\alpha}$ as a white foam ($37.5 \mathrm{mg}, 78 \%$). $\mathrm{R}_{f}=0.30$ (ethyl acetate/petroleum ether: $1 / 6$); $[a]_{D}^{19}=+104.5$ (c $0.2, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.35-7.24$ (m, 12H), 5.41 (dd, $J=5.5$, $\left.3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{4} \mathrm{C}_{1}(\mathrm{D}, \alpha)\right), 4.82(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.47$ (d, $J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.72-3.62$ (m, 3H), 3.06 (dd, $J=14.9,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=15.1,6.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.10,137.92,137.89,137.41,132.01,129.20,128.56,128.53$, 128.34, 128.12, 127.96, 127.93, 122.47, 79.60, 75.18, 74.80, 73.74, 73.50, 69.32, 44.11; HMRS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{O}_{4} \mathrm{NBr}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$498.1280, found 498.1281.

To a solution of p-nitroaniline (3d) ($35.0 \mathrm{mg}, 0.25 \mathrm{mmol}$) in tetrahydrofuran (THF) $(4 \mathrm{~mL})$ were added nitrosonium tetrafluoroborate $(44.0 \mathrm{mg}, 0.38 \mathrm{mmol})$ at $-40^{\circ} \mathrm{C}$ under argon. Then, the acetonitrile-dry ice bath was removed and the mixture was stirred at room temperature for 0.5 h , during this period, a large amount of solid suspension was observed. Then the glucal 1a ($42.0 \mathrm{mg}, 0.1 \mathrm{mmol})$ and bis(dibenzylideneacetone)palladium $\left(\operatorname{Pd}(\mathrm{dba})_{2}\right)(8.7 \mathrm{mg}, 0.015 \mathrm{mmol})$ were added to the reaction mixture, and the mixture was stirred at room temperature for 1 h . After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat. $\mathrm{NaHCO}_{3}, 20 \mathrm{~mL}$) and the aqueous layer was extracted with ethyl acetate ($20 \mathrm{~mL} * 3$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: $1 / 10$) to afford $\mathbf{4 j} \boldsymbol{\alpha}$ as a white foam ($32.7 \mathrm{mg}, 73 \%$). $\mathrm{R}_{f}=0.21$ (ethyl acetate/petroleum ether: $1 / 3$); $[a]_{D}^{23}=+74.1\left(\mathrm{c} 2.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.21(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.26(\mathrm{~m}$, $10 \mathrm{H}), 5.52\left(\mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{4} \mathrm{C}_{1}(\mathrm{D}, \alpha)\right), 4.81(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=$ $12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.82-3.77(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.08(\mathrm{dd}, J=14.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.02$ (dd, $J=14.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.11,147.86,146.46$, 137.79, 137.24, 128.63, 128.60, 128.36, 128.23, 128.06, 127.94, 124.06, 79.34, 76.31, 74.58, 73.82, 73.33, 69.63, 44.40; HMRS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{O}_{6} \mathrm{~N}_{2}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$ 465.2021, found 465.2018.
(2R,3R,6S)-3-Benzyloxy-2-benzyloxymethyl-6-(4-ethoxyphenyl)-tetrahydro-4H-p yran-4-one ($4 \mathrm{k} \alpha$):

To a solution of p-phenetidine ($\mathbf{3 e}$) ($34.0 \mathrm{mg}, 0.25 \mathrm{mmol}$) in tetrahydrofuran (THF) $(4 \mathrm{~mL})$ were added nitrosonium tetrafluoroborate $(44.0 \mathrm{mg}, 0.38 \mathrm{mmol})$ at $-40^{\circ} \mathrm{C}$ under argon. Then, the acetonitrile-dry ice bath was removed and the mixture was stirred at room temperature for 0.5 h , during this period, a large amount of solid suspension was observed. Then the glucal 1a ($42.0 \mathrm{mg}, 0.1 \mathrm{mmol})$ and bis(dibenzylideneacetone)palladium $\left(\operatorname{Pd}(\mathrm{dba})_{2}\right)(8.7 \mathrm{mg}, 0.015 \mathrm{mmol})$ were added to the reaction mixture, and the mixture was stirred at room temperature for 1 h . After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat. $\mathrm{NaHCO}_{3}, 20 \mathrm{~mL}$) and the aqueous layer was extracted with ethyl acetate ($20 \mathrm{~mL} * 3$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: $1 / 6$) to afford $\mathbf{4 k} \boldsymbol{\alpha}$ as a gray foam ($34.1 \mathrm{mg}, 76 \%$). R_{f} $=0.19$ (ethyl acetate/petroleum ether: $1 / 6$); $[a]_{D}^{20}=+93.8\left(\mathrm{c} 0.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.34-7.25(\mathrm{~m}, 12 \mathrm{H}), 7.05(\mathrm{dd}, J=8.7$, $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.98\left(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{4} \mathrm{C}_{1}(\mathrm{D}, \alpha)\right), 4.79(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.56$ (d, $J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 4.06\left(\mathrm{qd}, \mathrm{J}=7.0,2.7 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.78-3.72(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5)$, $3.66(\mathrm{dd}, J=10.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{dd}, J=10.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{dd}, J=15.5,5.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.95(\mathrm{dd}, J=15.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 205.93, 159.18, 149.48, 137.84, 137.34, 129.88, 128.55, 128.34, 128.15, 127.90, 127.86, 125.67, 118.93, 110.63, 79.17, 76.53, 73.71, 73.31, 70.75, 69.45, 64.50, 44.69, 14.68; HMRS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$447.2166, found 447.2165.
(2R,3R,6S)-3-Benzyloxy-2-benzyloxymethyl-6-(4-hydroxy-2-nitrophenyl)-tetrahy dro-4H-pyran-4-one (4l α):

To a solution of 4-amino-3-nitrophenol ($\mathbf{(3 f}$) $(39.0 \mathrm{mg}, 0.25 \mathrm{mmol})$ in tetrahydrofuran (THF) (4 mL) were added nitrosonium tetrafluoroborate $(44.0 \mathrm{mg}, 0.38 \mathrm{mmol}$) at -40 ${ }^{\circ} \mathrm{C}$ under argon. Then, the acetonitrile-dry ice bath was removed and the mixture was stirred at room temperature for 0.5 h , during this period, a large amount of solid suspension was observed. Then the glucal 1a ($42.0 \mathrm{mg}, 0.1 \mathrm{mmol}$) and bis(dibenzylideneacetone)palladium $\left(\operatorname{Pd}(\mathrm{dba})_{2}\right)(8.7 \mathrm{mg}, 0.015 \mathrm{mmol})$ were added to the reaction mixture, and the mixture was stirred at room temperature for 1 h . After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat. $\mathrm{NaHCO}_{3}, 20 \mathrm{~mL}$) and the aqueous layer was extracted with ethyl acetate ($20 \mathrm{~mL} * 3$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: 1/3) to afford 4l $\boldsymbol{\alpha}$ as a colorless oil ($29.6 \mathrm{mg}, 64 \%$). $\mathrm{R}_{f}=0.23$ (ethyl acetate/petroleum ether: $1 / 3$); $[a]_{D}^{19}=+250.7\left(\mathrm{c} 0.8, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.25(\mathrm{~m}, 12 \mathrm{H}), 7.04(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{dd}, J=8.5$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 5.94\left(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{4} \mathrm{C}_{1}(\mathrm{D}, \alpha)\right), 4.79(\mathrm{~d}, J=11.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=11.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.26(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=10.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.61-3.55(\mathrm{~m}, 2 \mathrm{H})$, 3.08 (dd, $J=15.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{dd}, J=15.1,4.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 206.55,156.61,149.55,137.62,136.78,129.94,128.65,128.60,128.56$, 128.42, 128.08, 128.00, 124.54, 119.48, 111.94, 79.34, 76.26, 73.81, 70.90, 69.08, 44.36; HMRS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{O}_{7} \mathrm{NNa}[\mathrm{M}+\mathrm{Na}]^{+} 486.1524$, found 486.1524 .
(2S,3S,6R)-3-Benzyloxy-2-methyl-6-(4-ethoxyphenyl)-tetrahydro-4H-pyran-4-on e ($4 \mathrm{~m} \alpha)$:

To a solution of 4-aminoacetophenone ($\mathbf{3 g} \mathbf{~})(34.0 \mathrm{mg}, 0.25 \mathrm{mmol})$ in tetrahydrofuran (THF) (4 mL) were added nitrosonium tetrafluoroborate ($44.0 \mathrm{mg}, 0.38 \mathrm{mmol}$) at -40 ${ }^{\circ} \mathrm{C}$ under argon. Then, the acetonitrile-dry ice bath was removed and the mixture was stirred at room temperature for 1 h , during this period, a large amount of solid suspension was observed. Then the rhamnal $1 f(31.0 \mathrm{mg}, 0.1 \mathrm{mmol})$ and bis(dibenzylideneacetone)palladium $\left(\operatorname{Pd}(\mathrm{dba})_{2}\right)(8.7 \mathrm{mg}, 0.015 \mathrm{mmol})$ were added to the reaction mixture, and the mixture was stirred at room temperature for 1 h . After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat. $\mathrm{NaHCO}_{3}, 20 \mathrm{~mL}$) and the aqueous layer was extracted with ethyl acetate $(20 \mathrm{~mL} * 3)$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: $1 / 10$) to afford $\mathbf{4 m} \boldsymbol{\alpha}$ as a white foam ($23.3 \mathrm{mg}, 69 \%$). $\mathrm{R}_{f}=0.28$ (ethyl acetate/petroleum ether: $1 / 3$); $[a]_{D}^{19}=$ -102.1 (c 0.4, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.49 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.31-5.29\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{1} \mathrm{C}_{4}(\mathrm{~L}, \alpha)\right), 4.83(\mathrm{~d}, J=$ $11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, 3.15 (dd, $J=14.2,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{dd}, J=14.1,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~d}$, $J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.04,197.68,144.48,137.30$, 136.92, 128.85, 128.59, 128.35, 128.20, 127.35, 84.63, 74.31, 73.14, 72.84, 44.63, 26.77, 18.01; HMRS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 339.1591$, found 339.1592
(2S,3S,6R)-3-Benzyloxy-2-methyl-6-phenyl-tetrahydro-4H-pyran-4-one (4n α):

To a solution of aniline (3b) ($23.0 \mathrm{mg}, 0.25 \mathrm{mmol}$) in tetrahydrofuran (THF) (4 mL) was added nitrosonium tetrafluoroborate ($44.0 \mathrm{mg}, 0.38 \mathrm{mmol}$) at $-40^{\circ} \mathrm{C}$ under argon. Then, the acetonitrile-dry ice bath was removed and the mixture was stirred at room temperature for 1 h , during this period, a large amount of solid suspension was observed. Then the rhamnal 1f ($31.0 \mathrm{mg}, 0.1 \mathrm{mmol})$ and bis(dibenzylideneacetone)palladium $\left(\operatorname{Pd}(\mathrm{dba})_{2}\right)(8.7 \mathrm{mg}, 0.015 \mathrm{mmol})$ were added to the reaction mixture, and the mixture was stirred at room temperature for 1 h . After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat. $\mathrm{NaHCO}_{3}, 20 \mathrm{~mL}$) and the aqueous layer was extracted with ethyl acetate ($20 \mathrm{~mL} * 3$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: $1 / 10$) to afford $\mathbf{4 n} \boldsymbol{\alpha}$ as a white foam ($23.7 \mathrm{mg}, 80 \%$). $\mathrm{R}_{f}=0.36$ (ethyl acetate/petroleum ether: 1/6); $[a]_{D}^{17}=-162.3$ (c $0.5, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.28(\mathrm{~m}, 10 \mathrm{H}), 5.30\left(\mathrm{dd}, J=6.6,3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{1} \mathrm{C}_{4}(\mathrm{~L}, \alpha)\right.$), $4.86(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{dq}, J=12.6,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.67$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{dd}, J=14.2,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{ddd}, J=14.2,6.5,0.9 \mathrm{~Hz}, 1 \mathrm{H})$, $1.29(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.62$, 139.19, 137.43, $128.83,128.58,128.38,128.25,128.15,127.32,84.88,74.81,73.20,72.10,44.63$, 18.24; HMRS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 319.1305$, found 319.1310.
(2S,3S,6R)-3-Benzyloxy-2-methyl-6-(4-bromophenyl)-tetrahydro-4H-pyran-4-on e (4oo):

To a solution of p-bromoaniline ($\mathbf{3 c}$) ($43.0 \mathrm{mg}, 0.25 \mathrm{mmol}$) in tetrahydrofuran (THF) $(4 \mathrm{~mL})$ were added nitrosonium tetrafluoroborate $(44.0 \mathrm{mg}, 0.38 \mathrm{mmol})$ at $-40^{\circ} \mathrm{C}$ under argon. Then, the acetonitrile-dry ice bath was removed and the mixture was stirred at room temperature for 30 min , during this period, a large amount of solid suspension
was observed. Then the rhamnal 1f ($31.0 \mathrm{mg}, 0.1 \mathrm{mmol}$) and bis(dibenzylideneacetone)palladium $\left(\operatorname{Pd}(\mathrm{dba})_{2}\right)(8.7 \mathrm{mg}, 0.015 \mathrm{mmol})$ were added to the reaction mixture, and the mixture was stirred at room temperature for 1 h . After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat. $\mathrm{NaHCO}_{3}, 20 \mathrm{~mL}$) and the aqueous layer was extracted with ethyl acetate ($20 \mathrm{~mL} * 3$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: 1/12) to afford $\mathbf{4 o \alpha}$ as a white foam ($28.1 \mathrm{mg}, 75 \%$). $\mathrm{R}_{f}=0.35$ (ethyl acetate/petroleum ether: $1 / 6$); $[a]_{D}^{22}=-98.5\left(\mathrm{c} 0.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.24(\mathrm{~m}, 7 \mathrm{H}), 5.23(\mathrm{dd}, J=6.2,4.0$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{1} \mathrm{C}_{4}(\mathrm{~L}, \alpha)\right), 4.84(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-3.76$ (m, 1H), 3.66 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J=14.2,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{dd}, J=14.1,6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 1.28(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.25,138.27$, 137.31, 131.96, 129.01, 128.59, 128.36, 128.18, 122.35, 84.69, 74.22, 73.16, 72.40, 44.55, 18.13; HMRS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{BrNa}[\mathrm{M}+\mathrm{Na}]^{+}$397.0405, found 397.0409.

(2S,3S,6R)-3-Benzyloxy-2-methyl-6-(3-nitrophenyl)-tetrahydro-4H-pyran-4-one (4p α):

To a solution of 3-nitroaniline ($\mathbf{3 h} \mathbf{~})(35.0 \mathrm{mg}, 0.25 \mathrm{mmol})$ in tetrahydrofuran (THF) $(4 \mathrm{~mL})$ were added nitrosonium tetrafluoroborate $(44.0 \mathrm{mg}, 0.38 \mathrm{mmol})$ at $-40^{\circ} \mathrm{C}$ under argon. Then, the acetonitrile-dry ice bath was removed and the mixture was stirred at room temperature for 0.5 h , during this period, a large amount of solid suspension was observed. Then the rhamnal 1f ($31.0 \mathrm{mg}, 0.1 \mathrm{mmol})$ and bis(dibenzylideneacetone)palladium $\left(\operatorname{Pd}(\mathrm{dba})_{2}\right)(8.7 \mathrm{mg}, 0.015 \mathrm{mmol})$ were added to the reaction mixture, and the mixture was stirred at room temperature for 1 h . After the
completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat. $\mathrm{NaHCO}_{3}, 20 \mathrm{~mL}$) and the aqueous layer was extracted with ethyl acetate ($20 \mathrm{~mL} * 3$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: $1 / 10$) to afford $\mathbf{4 p \alpha}$ as a white foam ($26.6 \mathrm{mg}, 78 \%$). $\mathrm{R}_{f}=0.38$ (ethyl acetate/petroleum ether: $1 / 3$); $[a]_{D}^{19}=-87.3\left(\mathrm{c} 0.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.30(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{dd}, J=8.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.54(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.32\left(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{1} \mathrm{C}_{4}(\mathrm{~L}\right.$, a)), $4.81(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-3.83(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J$ $=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{dd}, J=14.1,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{ddd}, J=14.1,5.9,0.6 \mathrm{~Hz}, 1 \mathrm{H})$, $1.33(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.63,148.69,141.67,137.08$, $132.82,129.86,128.61,128.34,128.24,123.18,122.22,84.32,73.65,73.33,73.02$, 44.68, 17.69; HMRS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{O}_{5} \mathrm{NNa}[\mathrm{M}+\mathrm{Na}]^{+}$364.1156, found 364.1165.

(2S,3S,6R)-3-Benzyloxy-2-methyl-6-(3-carboxyphenyl)-tetrahydro-4H-pyran-4-o

 ne (4q α):

To a solution of 3-aminobenzoic acid (3i) ($34.0 \mathrm{mg}, 0.25 \mathrm{mmol}$) in tetrahydrofuran (THF) (4 mL) were added nitrosonium tetrafluoroborate $(44.0 \mathrm{mg}, 0.38 \mathrm{mmol})$ at -40 ${ }^{\circ} \mathrm{C}$ under argon. Then, the acetonitrile-dry ice bath was removed and the mixture was stirred at room temperature for 0.5 h , during this period, a large amount of solid suspension was observed. Then the rhamnal 1f ($31.0 \mathrm{mg}, 0.1 \mathrm{mmol}$) and bis(dibenzylideneacetone)palladium $\left(\operatorname{Pd}(\mathrm{dba})_{2}\right)(8.7 \mathrm{mg}, 0.015 \mathrm{mmol})$ were added to the reaction mixture, and the mixture was stirred at room temperature for 1 h . After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat. $\mathrm{NaHCO}_{3}, 20 \mathrm{~mL}$) and the aqueous layer was extracted with
ethyl acetate $(20 \mathrm{~mL} * 3)$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (MeOH/DCM: 1/20) to afford $\mathbf{4 q} \boldsymbol{\alpha}$ as a white foam $(17.0 \mathrm{mg}, 49 \%) . \mathrm{R}_{f}=0.24(\mathrm{MeOH} / \mathrm{DCM}: 1 / 20) ;[a]_{D}^{20}=-81.8\left(\mathrm{c} 0.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.16(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.48(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.33\left(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{1} \mathrm{C}_{4}(\mathrm{~L}\right.$, d)), $4.84(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.96-3.83(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.19$ (dd, $J=14.1,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{dd}, J=13.9,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.32$ $(\mathrm{d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.19,171.50,140.04,137.27$, $132.28,130.04,129.99,129.11,129.04,128.60,128.38,128.20,84.55,77.48,77.16$, 76.84, 74.21, 73.07, 72.84, 44.74, 17.90; HMRS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{~N}[\mathrm{M}+$ $\left.\mathrm{NH}_{4}\right]^{+}$358.1649, found 358.1652.
(2S,3S,6R)-3-Benzyloxy-2-methyl-6-(1-naphthyl)-tetrahydro-4H-pyran-4-one (4r α):

To a solution of α-naphthylamine ($\mathbf{(3 j}$) ($36.0 \mathrm{mg}, 0.25 \mathrm{mmol}$) in tetrahydrofuran (THF) (4 mL) were added nitrosonium tetrafluoroborate ($44.0 \mathrm{mg}, 0.38 \mathrm{mmol}$) at -40 ${ }^{\circ} \mathrm{C}$ under argon. Then, the acetonitrile-dry ice bath was removed and the mixture was stirred at room temperature for 0.5 h , during this period, a large amount of solid suspension was observed. Then the rhamnal $1 f(31.0 \mathrm{mg}, 0.1 \mathrm{mmol})$ and bis(dibenzylideneacetone)palladium $\left(\operatorname{Pd}(\mathrm{dba})_{2}\right)(8.7 \mathrm{mg}, 0.015 \mathrm{mmol})$ were added to the reaction mixture, and the mixture was stirred at room temperature for 1 h . After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat. $\mathrm{NaHCO}_{3}, 20 \mathrm{~mL}$) and the aqueous layer was extracted with ethyl acetate $(20 \mathrm{~mL} * 3)$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated to dryness. The residue was purified by column
chromatography on silica gel (ethyl acetate/petroleum ether: $1 / 10$) to afford $\mathbf{4 r a}$ as a white foam ($20.8 \mathrm{mg}, 60 \%$). $\mathrm{R}_{f}=0.29$ (ethyl acetate/petroleum ether: $1 / 6$); $[a]_{D}^{18}=$ -278.3 (c 0.2, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.36(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.88 $7.78(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.41-7.28(\mathrm{~m}, 6 \mathrm{H}), 5.97(\mathrm{dd}, J=6.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}-1,{ }^{1} \mathrm{C}_{4}(\mathrm{~L}, \alpha)\right), 4.91(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J=8.2$ Hz, 1H), 3.68 - 3.60 (m, 1H), 3.28 (dd, $J=14.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.13 (dd, $J=14.6,6.9$ $\mathrm{Hz}, 1 \mathrm{H}), 1.20(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.31,137.55$, $134.43,134.21,131.63,129.51,128.84,128.57,128.39,128.13,126.48,126.13$, 126.05, 125.01, 124.78, 85.27, 73.45, 72.69, 71.60, 44.88, 18.56; HMRS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 369.1462$, found 369.1468 .

(2S,3S,6R)-3-Benzyloxy-2-methyl-6-(2-methyl-5-fluorophenyl)-tetrahydro-4H-py ran-4-one (4s α):

To a solution of 5-fluoro-2-methoxy-aniline ($\mathbf{3 k}$) ($35.0 \mathrm{mg}, 0.25 \mathrm{mmol}$) in tetrahydrofuran (THF) (4 mL) were added nitrosonium tetrafluoroborate $(44.0 \mathrm{mg}$, 0.38 mmol) at $-40{ }^{\circ} \mathrm{C}$ under argon. Then, the acetonitrile-dry ice bath was removed and the mixture was stirred at room temperature for 0.5 h , during this period, a large amount of solid suspension was observed. Then the rhamnal $\mathbf{1 f}(31.0 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $\operatorname{bis}($ dibenzylideneacetone $)$ palladium $\left(\operatorname{Pd}(\mathrm{dba})_{2}\right)(8.7 \mathrm{mg}, 0.015 \mathrm{mmol})$ were added to the reaction mixture, and the mixture was stirred at room temperature for 1 h . After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat. $\mathrm{NaHCO}_{3}, 20 \mathrm{~mL}$) and the aqueous layer was extracted with ethyl acetate ($20 \mathrm{~mL} * 3$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: 1/10) to afford $\mathbf{4 s} \boldsymbol{\alpha}$ as a
white foam ($21.7 \mathrm{mg}, 63 \%$). $\mathrm{R}_{f}=0.33$ (ethyl acetate/petroleum ether: $1 / 6$); $[a]_{D}^{20}=$ -32.9 (c 0.5, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.23(\mathrm{dd}, J=$ $9.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-6.92(\mathrm{~m}, 1 \mathrm{H}), 6.79(\mathrm{dd}, J=9.0,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{dd}, J=7.7$, $\left.4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{1} \mathrm{C}_{4}(\mathrm{~L}, \alpha)\right), 4.77(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.31$ - $4.23(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{dd}, J=4.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{dd}, J=14.2,7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.79$ (ddd, $J=14.2,4.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.34,157.22(\mathrm{~d}, J=239.0 \mathrm{~Hz}$), 152.42, $137.30,130.45(\mathrm{~d}, J=6.8$ $\mathrm{Hz}), 128.63,128.31,128.19,114.99(\mathrm{~d}, J=22.9 \mathrm{~Hz}), 114.62(\mathrm{~d}, J=24.5 \mathrm{~Hz}), 111.56$ (d, $J=8.1 \mathrm{~Hz}$), 84.14, 73.70, 72.66, 68.54, 55.97, 45.30, 16.81; ${ }^{19}$ F NMR (376 MHz , CDCl_{3}) δ-122.92; HMRS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}_{4 \mathrm{w} \beta} \mathrm{a}[\mathrm{M}+\mathrm{Na}]^{+}$367.1317, found 367.1313 .
(2S,3S,6R)-3-Benzyloxy-2-methyl-6-(3,5-bis-trifluoromethylphenyl)-tetrahydro-4 H-pyran-4-one (4t α):

To a solution of 3,5 -bis(trifluoromethyl)aniline (31) ($65.0 \mathrm{mg}, 0.25 \mathrm{mmol}$) in tetrahydrofuran (THF) (4 mL) were added nitrosonium tetrafluoroborate $(44.0 \mathrm{mg}, 0.38$ $\mathrm{mmol})$ at $-40^{\circ} \mathrm{C}$ under argon. Then, the acetonitrile-dry ice bath was removed and the mixture was stirred at room temperature for 0.5 h , during this period, a large amount of solid suspension was observed. Then the rhamnal if ($31.0 \mathrm{mg}, 0.1 \mathrm{mmol}$) and bis(dibenzylideneacetone)palladium $\left(\operatorname{Pd}(\mathrm{dba})_{2}\right)(8.7 \mathrm{mg}, 0.015 \mathrm{mmol})$ were added to the reaction mixture, and the mixture was stirred at room temperature for 1 h . After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat. $\mathrm{NaHCO}_{3}, 20 \mathrm{~mL}$) and the aqueous layer was extracted with ethyl acetate ($20 \mathrm{~mL} * 3$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica
gel (ethyl acetate/petroleum ether: $1 / 10$) to afford $\mathbf{4 t} \boldsymbol{\alpha}$ as a white foam ($29.8 \mathrm{mg}, 69 \%$). $\mathrm{R}_{f}=0.31$ (ethyl acetate/petroleum ether: $1 / 6$); $[a]_{D}^{17}=-56.4$ (c $0.3, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86(\mathrm{~s}, 2 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.38-7.29(\mathrm{~m}, 5 \mathrm{H}), 5.28(\mathrm{t}, J=5.8 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}-1,{ }^{1} \mathrm{C}_{4}(\mathrm{~L}, \alpha)\right), 4.78(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{p}, J=6.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.68(\mathrm{dd}, J=5.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{dd}, J=14.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{ddd}, J=$ $14.0,5.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.26$, 142.49, 136.97, 132.27 (q, $J=33.4 \mathrm{~Hz},-\mathrm{CF}_{3}$), 128.69, 128.39, 128.35, $126.93-$ $126.89(\mathrm{~m}), 123.28(\mathrm{q}, \mathrm{J}=272.9 \mathrm{~Hz}), 122.31$ - $122.21(\mathrm{~m}), 84.01,74.04,73.23,72.85$, 45.04, 17.14; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.84$ (s, 6F); HMRS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{O}_{5} \mathrm{~F}_{6}\left[\mathrm{M}+\mathrm{HCO}_{2}\right]^{-}$477.1143, found 477.1143.
(2S,3S,6R)-3-Benzyloxy-2-methyl-6-(4-biphenyl)-tetrahydro-4H-pyran-4-one (4u α):

To a solution of 4-aminodiphenyl ($\mathbf{3 m}$) ($42.0 \mathrm{mg}, 0.25 \mathrm{mmol}$) in tetrahydrofuran (THF) $(4 \mathrm{~mL})$ were added nitrosonium tetrafluoroborate $(44.0 \mathrm{mg}, 0.38 \mathrm{mmol})$ at -40 ${ }^{\circ} \mathrm{C}$ under argon. Then, the acetonitrile-dry ice bath was removed and the mixture was stirred at room temperature for 0.5 h , during this period, a large amount of solid suspension was observed. Then the rhamnal $1 f(31.0 \mathrm{mg}, 0.1 \mathrm{mmol})$ and bis(dibenzylideneacetone)palladium $\left(\mathrm{Pd}(\mathrm{dba})_{2}\right)(8.7 \mathrm{mg}, 0.015 \mathrm{mmol})$ were added to the reaction mixture, and the mixture was stirred at room temperature for 1 h . After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat. $\mathrm{NaHCO}_{3}, 20 \mathrm{~mL}$) and the aqueous layer was extracted with ethyl acetate ($20 \mathrm{~mL} * 3$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: $1 / 10$) to afford $\mathbf{4 u} \boldsymbol{\alpha}$ as a white foam ($24.6 \mathrm{mg}, 66 \%$).
$\mathrm{R}_{f}=0.26$ (ethyl acetate/petroleum ether: $1 / 6$); $[a]_{D}^{21}=-119.8\left(\mathrm{c} 0.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60-7.53(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.28(\mathrm{~m}, 6 \mathrm{H})$, $5.35\left(\mathrm{dd}, J=6.4,3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{1} \mathrm{C}_{4}(\mathrm{~L}, \alpha)\right), 4.87(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=11.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.91-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{dd}, J=14.2,3.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.98(\mathrm{dd}, J=14.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.60,141.18,140.67,138.13,137.42,128.94,128.59,128.39,128.16,127.79$, 127.60, 127.57, 127.25, 84.91, 74.66, 73.25, 72.15, 44.65, 18.33; HMRS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{~N}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$390.2064, found 390.2072.

(2R,3R,6R)-3-Benzyloxy-2-benzyloxymethyl-6-(4-methoxyphenyl)-tetrahydro-4H

 -pyran-4-one (4aß):

To a solution of $\mathbf{4} \mathbf{a} \boldsymbol{\alpha}(10.0 \mathrm{mg}, 0.023 \mathrm{mmol})$ in ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)(1 \mathrm{~mL})$ was added $\mathrm{HBF}_{4}\left(50 \mu \mathrm{~L}, 50 \% \mathrm{~V} / \mathrm{V}\right.$ in $\mathrm{Et}_{2} \mathrm{O}$), and the mixture was stirred at room temperature for 1 h. After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat. $\mathrm{NaHCO}_{3}, 10 \mathrm{~mL}$) and the aqueous layer was extracted with ethyl acetate ($10 \mathrm{~mL} * 3$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: $1 / 10$) to afford $\mathbf{4 a} \boldsymbol{\beta}$ as a white foam ($9.2 \mathrm{mg}, 92 \%$). $\mathrm{R}_{f}=0.30$ (ethyl acetate/petroleum ether: $1 / 6$); $[a]_{D}^{16}=$ $+105.0\left(\mathrm{c} 0.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.29(\mathrm{~m}, 12 \mathrm{H}), 6.90(\mathrm{~d}, J$ $=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.94(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{dd}, J=10.6$, $2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.56(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=8.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.83-3.81(\mathrm{~m}, 3 \mathrm{H}), 3.81$ (s, 3H, MeO-), 2.82 (dd, $J=13.8,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.71$ $(\mathrm{dd}, J=13.8,3.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.04,159.66,138.38$, $137.63,132.40,128.54,128.52,128.39,128.09,127.87,127.78,127.24,114.14$,
81.00, 79.90, 79.35, 73.71, 73.67, 69.39, 55.48, 50.11; HMRS (ESI) calcd for HMRS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 433.2010$, found 433.2006.
(2R,3R,6R)-3-Methoxy-2-methoxymethyl-6-(4-methoxyphenyl)-tetrahydro-4H-p yran-4-one (4bß):

To a solution of $\mathbf{4 b} \boldsymbol{\alpha}(10.0 \mathrm{mg}, 0.036 \mathrm{mmol})$ in ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)(1 \mathrm{~mL})$ was added $\mathrm{HBF}_{4}\left(50 \mu \mathrm{~L}, 50 \% \mathrm{~V} / \mathrm{V}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}\right)$, and the mixture was stirred at room temperature for 1 h. After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat. $\mathrm{NaHCO}_{3}, 10 \mathrm{~mL}$) and the aqueous layer was extracted with ethyl acetate $(10 \mathrm{~mL} * 3)$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: $1 / 6$) to afford $\mathbf{4 b} \boldsymbol{\beta}$ as a white foam ($8.3 \mathrm{mg}, 83 \%$). $\mathrm{R}_{f}=0.27$ (ethyl acetate/petroleum ether: $1 / 3$); $[a]_{D}^{15}=$ $+132.8\left(\mathrm{c} 0.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.61\left(\mathrm{dd}, J=11.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{4} \mathrm{C}_{1}(\mathrm{D}, \beta)\right), 4.00(\mathrm{~d}, J=9.9 \mathrm{~Hz}$, 1 H), $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.75-3.70(\mathrm{~m}, 3 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 2.78$ (ddd, $J=13.7$, $11.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{dd}, J=13.7,2.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 206.13, 159.68, 132.20, 127.32, 114.14, 82.09, 80.97, 79.48, 71.83, 59.89, 59.84, 55.47, 49.96; HMRS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$281.1384, found 281.1385 .
(2R,3R,6R)-3-Tert-butyldimethylsilyloxy-2-hydroxymethyl-6-(4-methoxyphenyl)-tetrahydro-4H-pyran-4-one (4c β):

To a solution of $\mathbf{4} \mathbf{c} \boldsymbol{\alpha}(10.0 \mathrm{mg}, 0.021 \mathrm{mmol})$ in ether $(2 \mathrm{~mL})$ was added $\mathrm{HBF}_{4}(50$ $\mu \mathrm{L}, 50 \% \mathrm{~V} / \mathrm{V}$ in $\mathrm{Et}_{2} \mathrm{O}$), and the mixture was stirred at room temperature for 1 h . After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat. $\mathrm{NaHCO}_{3}, 10 \mathrm{~mL}$) and the aqueous layer was extracted with ethyl acetate $(10 \mathrm{~mL} * 3)$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: $1 / 6$) to afford $\mathbf{4 c} \boldsymbol{\beta}$ as a colorless oil ($5.8 \mathrm{mg}, 75 \%$). $\mathrm{R}_{f}=0.31$ (ethyl acetate/petroleum ether: $1 / 3$); $[a]_{D}^{19}=$ +96.7 (c 0.2, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.91$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.67\left(\mathrm{dd}, J=11.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{4} \mathrm{C}_{1}(\mathrm{D}, \beta)\right), 4.36(\mathrm{~d}, J=9.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.04-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.89-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.70-3.64(\mathrm{~m}, 1 \mathrm{H}), 2.76$ (dd, $J=13.8,11.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{dd}, J=13.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.03-2.00(\mathrm{~m}, 1 \mathrm{H},-\mathrm{OH})$, $0.94(\mathrm{~s}, 9 \mathrm{H}), 0.20(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.44,159.88$, 132.10, 127.39, 114.25, 82.51, 79.35, 75.32, 62.71, 55.50, 49.19, 25.92, 18.62, -4.13, -5.45; HMRS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{O}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$367.1936, found 367.1938.

(2R,3S,6R)-3-Benzyloxy-2-benzyloxymethyl-6-(4-methoxyphenyl)-tetrahydro-4H -pyran-4-one (4d β):

To a solution of $\mathbf{4 d} \boldsymbol{\alpha}(10.0 \mathrm{mg}, 0.023 \mathrm{mmol})$ in ether (1 mL) was added $\mathrm{HBF}_{4}(50$ $\mu \mathrm{L}, 50 \% \mathrm{~V} / \mathrm{V}$ in $\mathrm{Et}_{2} \mathrm{O}$), and the mixture was stirred at room temperature for 1 h . After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat. $\mathrm{NaHCO}_{3}, 10 \mathrm{~mL}$) and the aqueous layer was extracted with ethyl acetate ($10 \mathrm{~mL} * 3$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: $1 / 10$) to afford $\mathbf{4 d} \boldsymbol{\beta}$ as a colorless oil ($6.4 \mathrm{mg}, 64 \%$). $\mathrm{R}_{f}=0.35$ (ethyl acetate/petroleum ether: $1 / 6$); $[a]_{D}^{21}=$
$+30.5\left(\mathrm{c} 0.2, \mathrm{CHCl}_{3}\right){ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.25(\mathrm{~m}, 12 \mathrm{H}), 6.88(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.62-4.51(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-1, \mathrm{Bn}), 4.47(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}), 4.41(\mathrm{~d}, J=$ $11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}), 3.91(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.86-3.77$ (m, 3H, H-5, H-6a, H-6b), $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.20-3.12(\mathrm{~m}, 1 \mathrm{H}), 2.48(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 207.06,159.71,138.19,137.21,132.70,128.59,128.53,128.25,128.18$, $127.85,127.42,114.14,80.13,79.86,79.69,73.67,72.24,68.58,55.48,47.30$; HMRS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 433.2010$, found 433.2008.
(2R,3R,6R)-3-Benzyloxy-2-methyl-6-(4-methoxyphenyl)-tetrahydro-4H-pyran-4one ($4 \mathrm{e} \beta$):

To a solution of $4 \mathrm{e} \alpha(10.0 \mathrm{mg}, 0.03 \mathrm{mmol})$ in ether $(1 \mathrm{~mL})$ was added $\mathrm{HBF}_{4}(50 \mu \mathrm{~L}$, $50 \% \mathrm{~V} / \mathrm{V}$ in $\mathrm{Et}_{2} \mathrm{O}$), and the mixture was stirred at room temperature for 1 h . After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat. $\mathrm{NaHCO}_{3}, 10 \mathrm{~mL}$) and the aqueous layer was extracted with ethyl acetate $(10 \mathrm{~mL} * 3)$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: $1 / 10$) to afford $\mathbf{4 e} \boldsymbol{\beta}$ as a white foam $(9.2 \mathrm{mg}, 92 \%)$. $\mathrm{R}_{f}=0.41$ (ethyl acetate/petroleum ether: $1 / 6$); $[a]_{D}^{16}=+187.1$ (c $0.1, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.27(\mathrm{~m}, 7 \mathrm{H}), 6.89(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.99(\mathrm{~d}, J=11.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.62\left(\mathrm{dd}, J=10.7,3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{4} \mathrm{C}_{1}(\mathrm{D}, \beta)\right), 4.54(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.82-3.74(\mathrm{~m}, 2 \mathrm{H}), 2.76(\mathrm{dd}, J=13.6,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{dd}, J=13.7$, $3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.46-1.44(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 205.72, 159.65, $137.59,132.43,128.60,128.45,128.17,127.24,114.18,85.06,79.11,77.80,73.45$, 55.47, 50.14, 19.51; HMRS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 349.1810$, found 349.1817.

(2S,3S,6S)-3-Benzyloxy-2-methyl-6-(4-methoxyphenyl)-tetrahydro-4H-pyran-4-o

 ne (4f β):

To a solution of $\mathbf{4} \mathbf{f} \boldsymbol{\alpha}(10.0 \mathrm{mg}, 0.03 \mathrm{mmol})$ in ether (1 mL) was added $\mathrm{HBF}_{4}(50 \mu \mathrm{~L}$, $50 \% \mathrm{~V} / \mathrm{V}$ in $\mathrm{Et}_{2} \mathrm{O}$), and the mixture was stirred at room temperature for 1 h . After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat. $\mathrm{NaHCO}_{3}, 10 \mathrm{~mL}$) and the aqueous layer was extracted with ethyl acetate $(10 \mathrm{~mL} * 3)$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: $1 / 10$) to afford $\mathbf{4 f} \boldsymbol{f}$ as a white foam ($9.0 \mathrm{mg}, 90 \%$). R_{f} $=0.42$ (ethyl acetate/petroleum ether: $1 / 6$) ; $[a]_{D}^{22}=-224.9\left(\mathrm{c} 0.7, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.25(\mathrm{~m}, 7 \mathrm{H}), 6.90-6.87(\mathrm{~m}, 2 \mathrm{H}), 4.99(\mathrm{~d}, J=11.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.62\left(\mathrm{dd}, J=10.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{1} \mathrm{C}_{4}(\mathrm{~L}, \beta)\right), 4.54(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}$, $3 \mathrm{H}), 3.79-3.74(\mathrm{~m}, 2 \mathrm{H}), 2.79-2.67(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{dd}, J=3.9,1.8 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 205.69,159.69,137.64,132.49,128.61,128.45,128.17$, $127.24,114.21,85.11,79.12,77.82,73.47,55.48,50.15,19.52$; HMRS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 349.1811$, found 349.1815 .

(2R,3R,6R)-3-Benzyloxy-2-benzyloxymethyl-6-phenyl-tetrahydro-4H-pyran-4-on

 e (4h β):

To a solution of $\mathbf{4} \boldsymbol{h} \boldsymbol{\alpha}(10.0 \mathrm{mg}, 0.025 \mathrm{mmol})$ in ether $(1 \mathrm{~mL})$ was added HBF_{4} (50 $\mu \mathrm{L}, 50 \% \mathrm{~V} / \mathrm{V}$ in $\mathrm{Et}_{2} \mathrm{O}$), and the mixture was stirred at room temperature for 5 h . After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat. $\mathrm{NaHCO}_{3}, 10 \mathrm{~mL}$) and the aqueous layer was extracted with
ethyl acetate ($10 \mathrm{~mL} * 3$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: $1 / 10$) to afford $\mathbf{4 h} \boldsymbol{\beta}$ as a white foam ($6.1 \mathrm{mg}, 61 \%$). $\mathrm{R}_{f}=0.37$ (ethyl acetate/petroleum ether: $1 / 6$); $[a]_{D}^{20}=$ $+84.8\left(\mathrm{c} 0.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.28(\mathrm{~m}, 15 \mathrm{H}), 4.94(\mathrm{~d}, J=$ $11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.66(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=12.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.87-3.81(\mathrm{~m}, 3 \mathrm{H}), 2.76(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$) ; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.84,140.27,138.44,137.66$, $128.77,128.55,128.53,128.40,128.31,128.10,127.85,127.79,125.83,81.12,79.92$, $79.57,73.75,73.71,69.44,50.18$. The ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ NMR spectroscopic data are coincide with the previous report. ${ }^{[1]}$
(2R,3R,6R)-3-Benzyloxy-2-benzyloxymethyl-6-(4-bromophenyl)-tetrahydro-4H-p yran-4-one (4i β):

To a solution of $\mathbf{4 i \alpha}(10.0 \mathrm{mg}, 0.021 \mathrm{mmol})$ in ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)(1 \mathrm{~mL})$ was added HBF_{4} ($75 \mu \mathrm{~L}, 50 \% \mathrm{~V} / \mathrm{V}$ in $\mathrm{Et}_{2} \mathrm{O}$), and the mixture was stirred at room temperature for 5 h . After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat. $\mathrm{NaHCO}_{3}, 10 \mathrm{~mL}$) and the aqueous layer was extracted with ethyl acetate $(10 \mathrm{~mL} * 3)$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: $1 / 10$) to afford $\mathbf{4 i} \boldsymbol{\beta}$ as a white foam ($5.1 \mathrm{mg}, 51 \%$). $\mathrm{R}_{f}=0.38$ (ethyl acetate/petroleum ether: $1 / 6$); $[a]_{D}^{20}=$ $+133.6\left(\mathrm{c} 0.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-$ $7.24(\mathrm{~m}, 12 \mathrm{H}), 4.93(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.65\left(\mathrm{dd}, J=11.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{4} \mathrm{C}_{1}(\mathrm{D}\right.$, ß)), $4.57(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.23(\mathrm{~m}, 1 \mathrm{H}), 3.86-$
$3.78(\mathrm{~m}, 1 \mathrm{H}), 2.77-2.65(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 205.43, 139.19, $138.22,137.45,131.86,128.55,128.54,128.39,128.14,127.85,127.50,122.16$, 80.93, 79.67, 78.76, 73.69, 73.67, 69.22, 49.94; HMRS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{NaBr}$ $[\mathrm{M}+\mathrm{Na}]^{+} 503.0828$, found 503.0826.

(2R,3R,6R)-3-Benzyloxy-2-benzyloxymethyl-6-(4-nitrophenyl)-tetrahydro-4H-py

 ran-4-one ($4 \mathrm{j} \beta$):

To a solution of $\mathbf{4 j} \boldsymbol{\alpha}(10.0 \mathrm{mg}, 0.022 \mathrm{mmol})$ in ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)(1 \mathrm{~mL})$ was added $\mathrm{HBF}_{4}\left(50 \mu \mathrm{~L}, 50 \% \mathrm{~V} / \mathrm{V}\right.$ in $\mathrm{Et}_{2} \mathrm{O}$), and the mixture was stirred at room temperature for 5 h. After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat. $\mathrm{NaHCO}_{3}, 10 \mathrm{~mL}$) and the aqueous layer was extracted with ethyl acetate ($10 \mathrm{~mL} * 3$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: $1 / 6$) to afford $\mathbf{4 j} \boldsymbol{j}$ as a white foam ($6.3 \mathrm{mg}, 63 \%$). $\mathrm{R}_{f}=0.30$ (ethyl acetate/petroleum ether: $1 / 3$); $[a]_{D}^{19}=$ $+137.8\left(\mathrm{c} 0.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.24(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.28(\mathrm{~m}, 10 \mathrm{H}), 4.95(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{dd}, J=11.6,2.5$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{4} \mathrm{C}_{1}(\mathrm{D}, \beta)\right), 4.65(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J$ $=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.89-3.82(\mathrm{~m}, 3 \mathrm{H}), 2.81(\mathrm{dd}, J=13.8$, $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{ddd}, J=13.8,11.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 204.70, 147.80, 147.16, 138.11, 137.35, 128.59, 128.42, 128.23, 127.95, 127.87, 126.53, 124.03, 80.96, 79.54, 78.16, 73.78, 73.72, 69.16, 49.71; HMRS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{O}_{6} \mathrm{~N}_{2}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 465.2021$, found 465.2018.
(2R,3R,6R)-3-Benzyloxy-2-benzyloxymethyl-6-(4-ethoxyphenyl)-tetrahydro-4H-p yran-4-one ($4 \mathrm{k} \beta$):

To a solution of $\mathbf{4} \mathbf{k} \boldsymbol{\alpha}(10.0 \mathrm{mg}, 0.022 \mathrm{mmol})$ in ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)(1 \mathrm{~mL})$ was added $\mathrm{HBF}_{4}\left(50 \mu \mathrm{~L}, 50 \% \mathrm{~V} / \mathrm{V}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}\right)$, and the mixture was stirred at room temperature for 1 h. After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution ($\mathrm{sat} . \mathrm{NaHCO}_{3}, 10 \mathrm{~mL}$) and the aqueous layer was extracted with ethyl acetate ($10 \mathrm{~mL} * 3$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: $1 / 10$) to afford $\mathbf{4 k} \boldsymbol{\beta}$ as a white foam ($9.0 \mathrm{mg}, 90 \%$). $\mathrm{R}_{f}=0.25$ (ethyl acetate/petroleum ether: $1 / 6$); $[a]_{D}^{20}=$ $+123.6\left(\mathrm{c} 0.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.27(\mathrm{~m}, 12 \mathrm{H}), 6.89(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.94(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{dd}, J=10.8,2.9$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{4} \mathrm{C}_{1}(\mathrm{D}, \beta)\right), 4.56(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J$ $=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.84-3.80(\mathrm{~m}, 3 \mathrm{H}), 2.81-2.74(\mathrm{~m}, 1 \mathrm{H}), 2.71$ $(\mathrm{dd}, J=13.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 206.12, 159.00, 138.35, 137.60, 132.18, 128.54, 128.52, 128.39, 128.09, 127.87, $127.78,127.22,114.67,80.96,79.87,79.38,73.68,73.66,69.33,63.64,50.10,14.95$; HMRS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 447.2166$, found 447.2167 .

(2R,3R,6R)-3-Benzyloxy-2-benzyloxymethyl-6-(4-hydroxy-2-nitrophenyl)-tetrahy

 dro-4H-pyran-4-one (41 β):

To a solution of $\mathbf{4 l \boldsymbol { \alpha }}(10.0 \mathrm{mg}, 0.022 \mathrm{mmol})$ in ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)(1 \mathrm{~mL})$ was added HBF_{4} ($50 \mu \mathrm{~L}, 50 \% \mathrm{~V} / \mathrm{V}$ in $\mathrm{Et}_{2} \mathrm{O}$), and the mixture was stirred at room temperature for 5 h . After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat. $\mathrm{NaHCO}_{3}, 10 \mathrm{~mL}$) and the aqueous layer was extracted with
ethyl acetate ($10 \mathrm{~mL} * 3$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: $\mathbf{1 / 3}$) to afford $\mathbf{4 I} \boldsymbol{\beta}$ as a white foam ($6.2 \mathrm{mg}, 62 \%$). $\mathrm{R}_{f}=0.25$ (ethyl acetate/petroleum ether: $1 / 3$); $[a]_{D}^{20}=$ $+277.1\left(\mathrm{c} 0.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.27(\mathrm{~m}, 11 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}$, $-\mathrm{OH}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.12\left(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{4} \mathrm{C}_{1}(\mathrm{D}, \beta)\right)$, 4.97 (d, $J=11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}), 4.61(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}), 4.54(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{Bn}), 4.46$ (d, $J=11.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}), 4.07(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.91-3.83$ (m, 2H, H-5, H-6a), 3.77 (dd, $J=10.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}$), 2.93 (d, $J=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}$), 2.72 - 2.63 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~b}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.70,156.40,148.10,137.37$, $136.89,128.73,128.63,128.45,128.39,128.25,125.83,120.62,111.40,79.88,79.46$, 74.75, 73.93, 73.69, 69.68, 48.43; HMRS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{O}_{7} \mathrm{NNa}[\mathrm{M}+\mathrm{Na}]^{+}$ 486.1524, found 486.1525 .
(2S,3S,6S)-3-Benzyloxy-2-methyl-6-(4-acetylphenyl)-tetrahydro-4H-pyran-4-one ($4 \mathrm{~m} \beta$):

To a solution of $\mathbf{4 m} \boldsymbol{\alpha}(10.0 \mathrm{mg}, 0.029 \mathrm{mmol})$ in ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)(1 \mathrm{~mL})$ was added $\mathrm{HBF}_{4}\left(50 \mu \mathrm{~L}, 50 \% \mathrm{~V} / \mathrm{V}\right.$ in $\mathrm{Et}_{2} \mathrm{O}$), and the mixture was stirred at room temperature for 5 h. After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat. $\mathrm{NaHCO}_{3}, 10 \mathrm{~mL}$) and the aqueous layer was extracted with ethyl acetate $(10 \mathrm{~mL} * 3)$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: $1 / 5$) to afford $\mathbf{4 m} \boldsymbol{\beta}$ as a white foam ($6.0 \mathrm{mg}, 60 \%$). $\mathrm{R}_{f}=0.36$ (ethyl acetate/petroleum ether: $1 / 3$); $[a]_{D}^{20}=$ -235.8 (c 0.1, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.96(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.31(\mathrm{~m}, 5 \mathrm{H}), 5.00(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{dd}, J=11.4,2.5$
$\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{1} \mathrm{C}_{4}(\mathrm{~L}, \beta)\right), 4.55(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.76(\mathrm{~m}, 1 \mathrm{H}), 2.77(\mathrm{dd}, J=$ 13.7, $2.6 \mathrm{~Hz}, 1 \mathrm{H}$), $2.71-2.64(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.96,197.75,145.37,137.43,136.94,128.87,128.62,128.46$, 128.23, 125.85, 84.84, 78.60, 77.94, 73.50, 50.02, 26.81, 19.46; HMRS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 339.1591$, found 339.1599
(2S,3S,6S)-3-Benzyloxy-2-methyl-6-phenyl-tetrahydro-4H-pyran-4-one (4n $\boldsymbol{3}$):

To a solution of $\mathbf{4} \mathbf{n} \boldsymbol{\alpha}(10.0 \mathrm{mg}, 0.034 \mathrm{mmol})$ in ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)(1 \mathrm{~mL})$ was added $\mathrm{HBF}_{4}\left(75 \mu \mathrm{~L}, 50 \% \mathrm{~V} / \mathrm{V}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}\right)$, and the mixture was stirred at room temperature for 5 h. After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat. $\mathrm{NaHCO}_{3}, 10 \mathrm{~mL}$) and the aqueous layer was extracted with ethyl acetate ($10 \mathrm{~mL} * 3$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: $1 / 10$) to afford $\mathbf{4 n} \boldsymbol{\beta}$ as a white foam ($4.5 \mathrm{mg}, 45 \%$). $\mathrm{R}_{f}=0.43$ (ethyl acetate/petroleum ether: $1 / 6$); $[a]_{D}^{18}=-86.7$ (c 0.1, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.29(\mathrm{~m}, 10 \mathrm{H}), 5.00(\mathrm{~d}, J=11.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.67$ (dd, $J=8.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.55(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.74$ (m, $2 \mathrm{H}), 2.77-2.69(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 205.51, 140.33, 137.63, 128.81, 128.61, 128.45, 128.33, 128.18, 125.82, 85.08, 79.35, $77.90,73.49,50.24,19.50 ;$ HMRS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]+319.1305$, found 319.1310.
(2S,3S,6S)-3-Benzyloxy-2-methyl-6-(4-bromophenyl)-tetrahydro-4H-pyran-4-one (40 β):

To a solution of $\mathbf{4 o \alpha}(10.0 \mathrm{mg}, 0.027 \mathrm{mmol})$ in ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)(1 \mathrm{~mL})$ was added $\mathrm{HBF}_{4}\left(75 \mu \mathrm{~L}, 50 \% \mathrm{~V} / \mathrm{V}\right.$ in $\mathrm{Et}_{2} \mathrm{O}$), and the mixture was stirred at room temperature for 5 h. After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat. $\mathrm{NaHCO}_{3}, 10 \mathrm{~mL}$) and the aqueous layer was extracted with ethyl acetate $(10 \mathrm{~mL} * 3)$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: $1 / 10$) to afford $\mathbf{4 o} \boldsymbol{\beta}$ as a white foam ($4.2 \mathrm{mg}, 42 \%$). $\mathrm{R}_{f}=0.43$ (ethyl acetate/petroleum ether: $1 / 6$); $[a]_{D}^{19}=$ -125.9 (c 0.1, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.30$ (m, 5H), 7.24 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.99(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{dd}, J=11.0,3.1 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}-1,{ }^{1} \mathrm{C}_{4}(\mathrm{~L}, \beta)\right), 4.54(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.83-3.74(\mathrm{~m}, 2 \mathrm{H}), 2.73(\mathrm{dd}, J=13.7$, $3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{dd}, J=13.5,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.13,139.34,137.47,131.92,128.63,128.47,128.23,127.49$, 122.19, 84.88, 78.57, 77.89, 76.84, 73.50, 50.09, 19.47; HMRS (ESI) calcd for HMRS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{BrNa}[\mathrm{M}+\mathrm{Na}]^{+} 397.0405$, found 397.0409.

(2S,3S,6S)-3-Benzyloxy-2-methyl-6-(3-nitrophenyl)-tetrahydro-4H-pyran-4-one

 ($4 \mathrm{p} \beta$):

To a solution of $4 \mathbf{p} \boldsymbol{\alpha}(10.0 \mathrm{mg}, 0.029 \mathrm{mmol})$ in ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)(1 \mathrm{~mL})$ was added $\mathrm{HBF}_{4}\left(50 \mu \mathrm{~L}, 50 \% \mathrm{~V} / \mathrm{V}\right.$ in $\mathrm{Et}_{2} \mathrm{O}$), and the mixture was stirred at room temperature for 3 h. After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat. $\mathrm{NaHCO}_{3}, 10 \mathrm{~mL}$) and the aqueous layer was extracted with ethyl acetate ($10 \mathrm{~mL} * 3$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The
solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: $1 / 5$) to afford $\mathbf{4 p} \boldsymbol{\beta}$ as a white foam ($6.5 \mathrm{mg}, 65 \%$). $\mathrm{R}_{f}=0.48$ (ethyl acetate/petroleum ether: $1 / 3$); $[a]_{D}^{20}=$ -104.5 (c 0.2, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.29(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.18$ (ddd, $J=8.1,2.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.31$ (m, 5H), $5.00(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.79\left(\mathrm{dd}, J=11.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{1} \mathrm{C}_{4}(\mathrm{~L}, \beta)\right), 4.56$ (d, $J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-3.76(\mathrm{~m}, 2 \mathrm{H}), 2.81(\mathrm{dd}, J=13.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.73-2.64(\mathrm{~m}$, $1 \mathrm{H}), 1.49(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.47,148.63,142.43$, 137.34, 131.82, 129.79, 128.66, 128.50, 128.30, 123.23, 120.89, 84.70, 78.00, 77.87, 73.57, 49.92, 19.43; HMRS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{5} \mathrm{~N}_{2}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$359.1602, found 359.1603.
(2S,3S,6S)-3-Benzyloxy-2-methyl-6-(3-carboxyphenyl)-tetrahydro-4H-pyran-4-o ne ($4 q \beta$):

To a solution of $\mathbf{4 q} \boldsymbol{\alpha}(10.0 \mathrm{mg}, 0.029 \mathrm{mmol})$ in ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)(1 \mathrm{~mL})$ was added $\mathrm{HBF}_{4}\left(75 \mu \mathrm{~L}, 50 \% \mathrm{~V} / \mathrm{V}\right.$ in $\mathrm{Et}_{2} \mathrm{O}$), and the mixture was stirred at room temperature for 5 h. After the completion of the reaction, the mixture was diluted with brine $(10 \mathrm{~mL})$ and the aqueous layer was extracted with ethyl acetate ($10 \mathrm{~mL} * 3$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel ($\mathrm{MeOH} / \mathrm{DCM}: 1 / 20$) to afford $\mathbf{4 q} \boldsymbol{\beta}$ as a white foam ($5.2 \mathrm{mg}, 52 \%) . \mathrm{R}_{f}=0.24(\mathrm{MeOH} / \mathrm{DCM}: 1 / 20) ;[a]_{D}^{20}=-48.0(\mathrm{c} 0.1$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.12(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J$ $=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.32(\mathrm{~m}, 5 \mathrm{H}), 5.00(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}$, Bn), $4.75\left(\mathrm{dd}, J=10.9,3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{1} \mathrm{C}_{4}(\mathrm{~L}, \beta)\right), 4.56(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}), 3.85$ - 3.78 (m, 2H, H-4, H-5), 2.80 (dd, $J=13.7,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}$), 2.74 (dd, $J=13.6,11.1$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~b}), 1.48(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-6) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.03$
(C-3), $170.78\left(-\mathrm{CO}_{2} \mathrm{H}\right), 141.02,137.52,131.22,130.10,129.82,129.07,128.64$, 128.49, 128.24, 127.61, 84.94, 78.66, 78.00, 73.56 ($\mathrm{Ph}-\mathrm{CH}_{2}$-), 50.07, 19.47 (C-6); HMRS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{~N}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$358.1649, found 358.1652.
(2S,3S,6S)-3-Benzyloxy-2-methyl-6-(1-naphthyl)-tetrahydro-4H-pyran-4-one (4r β):

To a solution of $4 \mathbf{r} \boldsymbol{\alpha}(10.0 \mathrm{mg}, 0.029 \mathrm{mmol})$ in ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)(1 \mathrm{~mL})$ was added $\mathrm{HBF}_{4}\left(75 \mu \mathrm{~L}, 50 \% \mathrm{~V} / \mathrm{V}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}\right)$, and the mixture was stirred at room temperature for 2.5 h . After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat. $\mathrm{NaHCO}_{3}, 10 \mathrm{~mL}$) and the aqueous layer was extracted with ethyl acetate $(10 \mathrm{~mL} * 3)$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: $1 / 10$) to afford $\mathbf{4 r} \boldsymbol{\beta}$ as a white foam ($4.1 \mathrm{mg}, 41 \%$). $\mathrm{R}_{f}=0.35$ (ethyl acetate/petroleum ether: $1 / 6$); $[a]_{D}^{20}=$ -167.8 (c 0.1, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.89-$ $7.86(\mathrm{~m}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.47(\mathrm{~m}, 3 \mathrm{H})$, $7.45-7.33(\mathrm{~m}, 5 \mathrm{H}), 5.39\left(\mathrm{dd}, J=10.6,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{1} \mathrm{C}_{4}(\mathrm{~L}, \beta)\right), 5.04(\mathrm{~d}, J=11.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.59(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.98-2.87$ $(\mathrm{m}, 2 \mathrm{H}), 1.53(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 205.77, 137.61, $135.74,133.90,130.09,129.12,128.90,128.63,128.46,128.20,126.63,125.91$, 125.59, 123.14, 122.88, 85.19, 78.16, 76.47, 73.51, 49.36, 19.64; HMRS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 369.1462$, found 369.1467.

To a solution of $4 \mathbf{s} \boldsymbol{\alpha}(10.0 \mathrm{mg}, 0.058 \mathrm{mmol})$ in ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)(1 \mathrm{~mL})$ was added $\mathrm{HBF}_{4}\left(75 \mu \mathrm{~L}, 50 \% \mathrm{~V} / \mathrm{V}\right.$ in $\mathrm{Et}_{2} \mathrm{O}$), and the mixture was stirred at room temperature for 3 h. After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat. $\mathrm{NaHCO}_{3}, 10 \mathrm{~mL}$) and the aqueous layer was extracted with ethyl acetate $(10 \mathrm{~mL} * 3)$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: $1 / 10$) to afford $\mathbf{4 s} \boldsymbol{\beta}$ as a white foam ($4.5 \mathrm{mg}, 45 \%$). $\mathrm{R}_{f}=0.39$ (ethyl acetate/petroleum ether: $1 / 6$); $[a]_{D}^{20}=$ $-106.0\left(\mathrm{c} 0.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.24(\mathrm{dd}, J=$ $9.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-6.90(\mathrm{~m}, 1 \mathrm{H}), 6.77(\mathrm{dd}, J=9.0,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=11.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.95\left(\mathrm{dd}, J=11.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{1} \mathrm{C}_{4}(\mathrm{~L}, \beta)\right), 4.54(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.79$ (s, 3H), 3.82 - 3.72 (m, 2H), 2.87 (dd, $J=13.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.44 (ddd, $J=13.6,11.5,1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 1.46(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.63, \delta 157.46(\mathrm{~d}, J$ $=238.4 \mathrm{~Hz}), 151.52,137.64,130.80(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 128.60,128.44,128.16,114.60(\mathrm{~d}$, $J=23.0 \mathrm{~Hz}), 113.17(\mathrm{~d}, J=24.8 \mathrm{~Hz}), 111.26(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 84.99,77.68,73.48,73.44$, 55.92, 48.66, 19.51; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-123.03$; HMRS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{~F}[\mathrm{M}+\mathrm{Na}]^{+}$367.1317, found 367.1308.
(2S,3S,6S)-3-Benzyloxy-2-methyl-6-(3,5-bis-trifluoromethylphenyl)-tetrahydro-4 H-pyran-4-one (4t β):

To a solution of $4 \mathbf{t} \boldsymbol{\alpha}(10.0 \mathrm{mg}, 0.023 \mathrm{mmol})$ in ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)(1 \mathrm{~mL})$ was added HBF_{4} ($75 \mu \mathrm{~L}, 50 \% \mathrm{~V} / \mathrm{V}$ in $\mathrm{Et}_{2} \mathrm{O}$), and the mixture was stirred at room temperature for 5 h .

After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat. $\mathrm{NaHCO}_{3}, 10 \mathrm{~mL}$) and the aqueous layer was extracted with ethyl acetate ($10 \mathrm{~mL} * 3$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: $1 / 10$) to afford $\mathbf{4 t} \boldsymbol{\beta}$ as a white foam ($3.6 \mathrm{mg}, 36 \%$). $\mathrm{R}_{f}=0.37$ (ethyl acetate/petroleum ether: $1 / 6$); $[a]_{D}^{20}=-94.2$ (c $0.2, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89-7.78(\mathrm{~m}, 3 \mathrm{H}), 7.43-7.32(\mathrm{~m}, 5 \mathrm{H})$, $5.00(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.80\left(\mathrm{dd}, J=11.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{1} \mathrm{C}_{4}(\mathrm{~L}, \beta)\right), 4.56(\mathrm{~d}, J=$ $11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.87-3.77(\mathrm{~m}, 2 \mathrm{H}), 2.82(\mathrm{dd}, J=13.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.72-2.62(\mathrm{~m}, 1 \mathrm{H})$, $1.49(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 204.12,142.87,137.30$, $132.21(\mathrm{q}, \mathrm{J}=32.1 \mathrm{~Hz}), 128.68,128.51,128.34,126.93-126.89(\mathrm{~m}), 123.28(\mathrm{q}, J=$ 272.9 Hz), 122.31 - 122.21 (m), 84.60, 78.09, 77.67, 73,60, 49.89, 19.39; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.85(\mathrm{~s}, 6 \mathrm{~F})$; HMRS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{O}_{5} \mathrm{~F}_{6}\left[\mathrm{M}+\mathrm{HCO}_{2}\right]^{-}$ 477.1143, found 477.1144.
(2S,3S,6S)-3-Benzyloxy-2-methyl-6-(4-biphenyl)-tetrahydro-4H-pyran-4-one (4uß):

To a solution of $\mathbf{4} \mathbf{u} \boldsymbol{\alpha}(10.0 \mathrm{mg}, 0.027 \mathrm{mmol})$ in ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)(1 \mathrm{~mL})$ was added $\mathrm{HBF}_{4}\left(50 \mu \mathrm{~L}, 50 \% \mathrm{~V} / \mathrm{V}\right.$ in $\mathrm{Et}_{2} \mathrm{O}$), and the mixture was stirred at room temperature for 5 h. After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat. $\mathrm{NaHCO}_{3}, 10 \mathrm{~mL}$) and the aqueous layer was extracted with ethyl acetate $(10 \mathrm{~mL} * 3)$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: $1 / 10$) to afford $\mathbf{4 u} \boldsymbol{\beta}$ as a white foam ($3.5 \mathrm{mg}, 35 \%$). $\mathrm{R}_{f}=0.33$ (ethyl acetate/petroleum ether: $1 / 6$); $[a]_{D}^{20}=-76.4$
(c $0.1, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58(\mathrm{t}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.47-7.32(\mathrm{~m}$, $10 \mathrm{H}), 5.01(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.56(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.87-3.76(\mathrm{~m}, 2 \mathrm{H}), 2.79(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.48(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.54,141.37,140.79,139.23,137.57,128.95,128.62,128.47$, 128.20, 127.59, 127.27, 126.32, 85.05, 79.16, 77.94, 73.49, 50.13, 19.53; HMRS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$395.1617, found 395.1612.
(4R,5S,E)-4,6-Di(benzyloxy)-5-hydroxy1-(4-bromophenyl)-3-ono-1-hexene (6):

To a solution of $\mathbf{4 i \alpha}(10.0 \mathrm{mg}, 0.021 \mathrm{mmol})$ in ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)(1 \mathrm{~mL})$ was added HBF_{4} ($75 \mu \mathrm{~L}, 50 \% \mathrm{~V} / \mathrm{V}$ in $\mathrm{Et}_{2} \mathrm{O}$), and the mixture was stirred at room temperature for 5 h . After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat. $\mathrm{NaHCO}_{3}, 10 \mathrm{~mL}$) and the aqueous layer was extracted with ethyl acetate ($10 \mathrm{~mL} * 3$). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: $1 / 10$) to afford $\mathbf{6 h}$ as a white foam ($2.5 \mathrm{mg}, 25 \%$). $\mathrm{R}_{f}=0.13$ (ethyl acetate/petroleum ether: $1 / 6$); $[a]_{D}^{20}=0$ (c $0.2, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}-H C=\mathrm{CH}), 7.51$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.38$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.27$ (m, 10H), 7.13 (d, $J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{Ph}-\mathrm{HC}=\mathrm{CH}-\mathrm{CO}), 4.64(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}), 4.54(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}), 4.50$ (d, $J=11.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Bn}$), $4.16-4.10$ (m, 2H, H-4, H-5), $3.69-3.61$ (m, 2H, H-6a,b), 2.63 (br, $1 \mathrm{H},-\mathrm{OH}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.60,142.55,137.82,137.13$, $133.60,132.29,130.10,128.70,128.56,128.34,127.96,125.15,122.14,84.14,73.59$, 73.19, 71.41, 70.31. HMRS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}$481.1009, found 481.1011 .
(2S,3S,4S,6S)-3-Benzyloxy-4-hydroxy-2-methyl-6-(4-methoxyphenyl)-tetrahydro-4H-pyran (7):

To the solution of $\mathbf{4} \boldsymbol{f} \boldsymbol{\beta}(20.0 \mathrm{mg}, 0.06 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(0.6$ $\mathrm{mmol})$. Then, the mixture was stirred for 1 h . The solution was taken up in 20 mL of sat. $\mathrm{NH}_{4} \mathrm{Cl}$, then it was extracted with ethyl acetate $(3 * 20 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under rotary evaporation. The residue was purified through silica (petroleum ether/ethyl acetate: $3 / 1$) to afford a colorless oil 7 ($8.5 \mathrm{mg}, 42 \%$), $\mathrm{R}_{f}=0.24$ (ethyl acetate/petroleum ether: $1 / 3$) and $\mathbf{8}(8.0 \mathrm{mg}, 40 \%), \mathrm{R}_{f}=$ 0.26 (ethyl acetate/petroleum ether: $1 / 3$). For compound 7, $[a]_{D}^{26}=-86.4$ (c 0.08, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.33(\mathrm{dd}, J=8.5,4.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.28$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.83(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{Bn}), 4.74(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}), 4.41(\mathrm{dd}, J=11.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 3.89-3.82$ (m, 1H, H-3), 3.79 (s, 3H, -OMe), 3.51 (dq, $J=8.9,6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 3.07 (t, $J=8.9$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-4), 2.23-2.18(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}), 2.15(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OH}), 1.76(\mathrm{dd}, J=24.3,11.6$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~b}), 1.41(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.33$, 138.50, 133.70, 128.86, 128.23, 128.10, 127.48, 113.99, 86.64, 77.48, 75.66, 75.37, 73.02, 55.45, 40.96, 18.89. HMRS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$351.1572, found 351.1569 .
(2S,3S,4R,6S)-3-Benzyloxy-4-hydroxy-2-methyl-6-(4-methoxyphenyl)-tetrahydro -4H-pyran (8):

To the solution of $\mathbf{4} \mathbf{f} \boldsymbol{\beta}(20.0 \mathrm{mg}, 0.06 \mathrm{mmol})$ in THF (2 mL) was added 1 M $\operatorname{LiBHEt}_{3}(0.6 \mathrm{~mL}, 0.6 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. Then, the mixture was stirred $0{ }^{\circ} \mathrm{C}$ for 24 h . The solution was taken up in 20 mL of sat. $\mathrm{NH}_{4} \mathrm{Cl}$, and extracted with ethyl acetate ($3 * 20$
mL). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under rotary evaporation. The residue was purified through silica (petroleum ether/ethyl acetate: 3/1) to afford a colorless oil 8 ($16.0 \mathrm{mg}, 78 \%$), $\mathrm{R}_{f}=0.26$ (ethyl acetate/petroleum ether: $1 / 3) \cdot[a]_{D}^{26}=-38.8\left(c \quad 0.02, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.41-7.33(\mathrm{~m}, 5 \mathrm{H}), 7.28(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.79$ (dd, $J=11.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.69(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}), 4.58(\mathrm{~d}, J=11.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{Bn}$), $4.30-4.28$ (m, 1H, H-3), $3.96-3.87$ (m, 1H, H-5), 3.78 (s, 3H, -OMe), 3.21 (dd, $J=9.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 2.52(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OH}), 2.20-2.13$ (m, 1H, H-2a), $1.80(\mathrm{dd}$, $J=13.7,12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~b}), 1.31(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{Me}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 159.13,137.81,134.45,128.74,128.28,128.13,127.42,113.93,80.97$, 72.91, 71.69, 70.81, 64.45, 55.43, 39.21, 18.81; HMRS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+} 351.1572$, found 351.1574 .
(2S,3S,4R,6S)-3-Benzyloxy-4-dimethylamino-2-methyl-6-(4-methoxyphenyl)-tetr ahydro-4H-pyran (9):

To the solution of $\mathbf{4} \mathbf{f} \boldsymbol{\beta}(50.0 \mathrm{mg}, 0.15 \mathrm{mmol})$ and ammonium acetate $(115.0 \mathrm{mg}, 1.5$ mmol) in methanol (4 mL) was added $\mathrm{NaBH}_{3} \mathrm{CN}(94.0 \mathrm{mg}, 1.5 \mathrm{mmol})$ at room temperature. The mixture was stirred at room temperature for 24 h . The solution was taken up in 20 mL of water and extracted with ethyl acetate ($3^{*} 20 \mathrm{~mL}$). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under rotary evaporation. Then the residue was dissolved in acetonitrile (4 mL), and was added $45 \% \mathrm{aq}$. formaldehyde (1 mL) and $\mathrm{NaBH}_{3} \mathrm{CN}(47.0 \mathrm{mg}, 7.5 \mathrm{mmol})$, the mixture was stirred at room temperature for 24 h . The resulting mixture was quenched with brine $(20 \mathrm{~mL})$ and the aqueous layer was extracted with ethyl acetate ($3^{*} 20 \mathrm{ml}$). The organic layer was washed with water then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under rotary evaporation. The residue was purified through silica gel (petroleum ether/ ethyl acetate:

3/1) to afford a colorless oil $9(27.1 \mathrm{mg}, 50 \%), \mathrm{R}_{f}=0.40$ (ethyl acetate/petroleum ether: $1 / 3) ;[a]_{D}^{20}=-81.8\left(\mathrm{c} 0.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.26(\mathrm{~m}, 7 \mathrm{H})$, $6.86(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.86$ (dd, $J=11.1,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.73$ (d, $J=11.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{Ph}-\mathrm{CH}_{2}-$), $4.51\left(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}-\mathrm{CH}_{2}\right.$) $), 4.30-4.21(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.78$ (s, $3 \mathrm{H}, \mathrm{MeO}-$), 3.43 (d, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), 2.75 (s, 1H, H-3), 2.44 (s, $6 \mathrm{H},-\mathrm{NMe}_{2}$), 2.19 (ddd, $J=14.1,4.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{a}), 1.80-1.71$ (m, 1H, H-2b), 1.30 (d, $J=$ 6.3 Hz, 3H, Me-); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.12,138.40,135.19,128.51$, 127.92, 127.40, 113.93, 83.95(br, -C-NMe ${ }_{2}$, 73.27, 72.35, 71.66, 59.34, 55.44, 44.98, 37.22(br, C2), 19.24; HMRS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+} 356.2220$, found 356.2224 .

8) Reference

[1] C.-F. Liu, D.-C. Xiong, X.-S. Ye, J. Org. Chem. 2014, 79, 4676-4686.

9) Spectral data

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 a} \alpha, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 a} \alpha, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 a}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 a}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\left.\begin{array}{lllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}\right)$
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 b} \boldsymbol{\alpha}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 b \alpha}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 c} \boldsymbol{c}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4} \mathbf{c} \boldsymbol{\alpha}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 d} \boldsymbol{\alpha}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 d} \boldsymbol{\alpha}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 e} \boldsymbol{\alpha}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 e} \boldsymbol{\alpha}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 f} \boldsymbol{\alpha}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4} \mathbf{f} \boldsymbol{\alpha}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4} \boldsymbol{g} \boldsymbol{\beta}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 g} \boldsymbol{\beta}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 h} \boldsymbol{\alpha}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 h} \boldsymbol{\alpha}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 i \alpha}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 i} \boldsymbol{\alpha}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4} \mathbf{j} \boldsymbol{\alpha}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4} \mathbf{j} \boldsymbol{\alpha}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4} \mathbf{k} \boldsymbol{\alpha}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4} \mathbf{k} \boldsymbol{\alpha}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 1} \boldsymbol{\alpha}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4} \mathbf{1} \boldsymbol{\alpha}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 m a}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4} \mathbf{m} \boldsymbol{\alpha}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 n} \boldsymbol{\alpha}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 n} \boldsymbol{\alpha}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 o \alpha}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 o \alpha}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4} \mathbf{p} \boldsymbol{\alpha}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 p \alpha}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 q} \boldsymbol{\alpha}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 q} \alpha, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4} \mathbf{r} \boldsymbol{\alpha}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4} \mathbf{r} \boldsymbol{\alpha}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4} \mathbf{s} \boldsymbol{\alpha}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{4 s} \boldsymbol{\alpha}, 376 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4} \mathbf{s} \boldsymbol{\alpha}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 t} \boldsymbol{\alpha}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{19}$ F NMR spectrum of $\mathbf{4 t} \boldsymbol{t}, 376 \mathrm{MHz}, \mathrm{CDCl}_{3}$

- -62.843

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 t} \boldsymbol{\alpha}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4} \mathbf{u} \boldsymbol{\alpha}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4} \mathbf{u} \boldsymbol{\alpha} 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 a} \boldsymbol{\beta}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 a} \boldsymbol{\beta}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 b} \boldsymbol{\beta}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 b} \boldsymbol{\beta}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 c} \boldsymbol{\beta}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4} \mathbf{c} \boldsymbol{\beta}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\square^{25.92}$
$\mathbf{-}^{18.62}$
$\chi_{-5.45}^{-4.13}$

BRUKER

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 d} \boldsymbol{\beta}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 d} \boldsymbol{\beta}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 e} \boldsymbol{\beta}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4} \mathbf{e} \boldsymbol{\beta}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 f} \boldsymbol{\beta}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4} \mathbf{f} \boldsymbol{\beta}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4} \mathbf{h} \boldsymbol{\beta}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 h} \boldsymbol{\beta}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 i} \boldsymbol{\beta}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 i} \boldsymbol{\beta}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 j} \boldsymbol{\beta}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4} \mathbf{j} \boldsymbol{\beta}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4} \mathbf{k} \boldsymbol{\beta}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 k} \boldsymbol{\beta}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 1 \boldsymbol { \beta }}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 1} \boldsymbol{\beta}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4} \boldsymbol{m} \boldsymbol{\beta}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 m} \boldsymbol{\beta}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 n} \boldsymbol{\beta}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 n} \boldsymbol{\beta}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 o} \boldsymbol{\beta}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 o} \boldsymbol{\beta}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 p} \boldsymbol{\beta}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4} \mathbf{p} \boldsymbol{\beta}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4} \boldsymbol{q} \boldsymbol{\beta}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4} \mathbf{q} \boldsymbol{\beta}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4} \mathbf{r} \boldsymbol{\beta}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4} \mathbf{r} \boldsymbol{\beta}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4} \mathbf{s} \boldsymbol{\beta}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{19} \mathrm{C}$ NMR spectrum of $\mathbf{4} \mathbf{s} \boldsymbol{\beta}, 376 \mathrm{MHz}, \mathrm{CDCl}_{3}$

- -123.034

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4} \mathbf{s} \boldsymbol{\beta}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 t} \boldsymbol{\beta}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{4} \mathbf{t} \boldsymbol{\beta}, 376 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 t} \boldsymbol{\beta}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4} \mathbf{u} \boldsymbol{\beta}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4} \mathbf{u} \boldsymbol{\beta}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{6}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of $7,400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $7,100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{9}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{9}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

HSQC spectrum of $\mathbf{9}, 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

NOE spectrum of $\mathbf{9}, 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

