### **Supporting Information**

### Stereocontrolled Synthesis of 2-Deoxy-C-Glycopyranosyl Arenes Using Glycals and Aromatic Amines

Shengbiao Tang, $^{\dagger}$ , $^{\ddagger}$  Qiannan Zheng, $^{\dagger}$  De-Cai Xiong, $^{*,\dagger,\$}$  Shende Jiang, $^{\ddagger}$  Qin Li, $^{\dagger}$  and Xin-Shan Ye\*, $^{\dagger}$ 

†State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China

‡School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China

§ State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences

#### **Table of Contents**

| General information                                        | S2        |
|------------------------------------------------------------|-----------|
| Optimization of the reaction (Tables S1-S3)                | S2 – S5   |
| Structure identification of compounds 7-9                  | S6 – S7   |
| Experimental procedures and compound characterization data | S8 – S47  |
| Reference                                                  | S47       |
| Spectral data                                              | S47 – S98 |

#### 1) General information

All reagents were purchased as reagent grade and used without further purification unless otherwise indicated. The Pd-catalysts were purchased from Sigma-Aldrich company Ltd. THF (99.5+% extra pure) was purchased. Organic solutions were removed by rotary evaporation with a water bath temperature below 50 °C. Reactions were monitored by thin-layer chromatography (TLC) analysis, and stained by the solution of potassium permanganate or acidic ceric ammonium molybdate. Product purification was subjected by column chromatography on silica gel. <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra were recorded on a 400 MHz spectrometer at 20 °C. The residual solvent of CDCl<sub>3</sub> (7.26 ppm for <sup>1</sup>H NMR), TMS (0 ppm for <sup>1</sup>H NMR) was used as an internal standard for <sup>1</sup>H NMR spectra, and the residual solvent of CDCl<sub>3</sub> (77.16 ppm for <sup>13</sup>C NMR) was used as an internal standard for <sup>13</sup>C NMR. Chemical shifts (δ) were recorded in ppm, coupling constants (*J*) were reported in Hz. The abbreviations are as follows: s = singlet, d = doublet, t = triplet, m = multiplet, br = broad signal. High resolution mass spectra were obtained using a Fourier transform ion cyclotron resonance mass spectrometer.

#### 2) Table S1. Screening the reaction conditions<sup>ab</sup>

BnO 
$$O$$
 + MeO  $O$  X  $O$  Conditions BnO  $O$  + BnO  $O$  BnO  $O$  BnO  $O$  Compared to  $O$  BnO  $O$  Compared to  $O$ 

|       | 1         |         | catalyst                           | ligand            | additive    | <b>4a</b> α(%) | <b>5</b> . (0/) |
|-------|-----------|---------|------------------------------------|-------------------|-------------|----------------|-----------------|
| entry | substrate | solvent | (15%) (20%)                        |                   | (10 equiv.) | 4au(70)        | 5a (%)          |
| 1     | 2         | THF     | Pd(OAc) <sub>2</sub>               | -                 | -           | 0              | trace           |
| 2     | 2         | THF     | Pd(OAc) <sub>2</sub>               | Ph <sub>3</sub> P | -           | 34             | 25              |
| 3     | 2         | THF     | Pd(PPh <sub>3</sub> ) <sub>4</sub> | -                 | -           | 36             | 31              |
| 4     | 2         | THF     | Pd(PPh <sub>3</sub> ) <sub>4</sub> | xanphose          | -           | 33             | 30              |

| 5               | 2 | THF                | $Pd(dba)_2$          | -                 | -                                   | 81    | 0  |
|-----------------|---|--------------------|----------------------|-------------------|-------------------------------------|-------|----|
| 6               | 2 | THF                | Pd(dba) <sub>2</sub> | Ph <sub>3</sub> P | -                                   | 74    | 0  |
| 7               | 2 | THF                | Pd(dba) <sub>2</sub> | -                 | NaHCO <sub>3</sub>                  | 53    | 26 |
| 8               | 2 | THF                | Pd(dba) <sub>2</sub> | -                 | $K_2CO_3$                           | 56    | 17 |
| 9               | 2 | THF                | Pd(dba) <sub>2</sub> | -                 | $K_3PO_4$                           | 46    | 20 |
| 10              | 2 | THF                | Pd(dba) <sub>2</sub> | -                 | NaOH                                | 0     | 21 |
| 11              | 2 | THF                | Pd(dba) <sub>2</sub> | -                 | DMAP                                | 0     | 0  |
| 12              | 2 | THF                | Pd(dba) <sub>2</sub> | -                 | $Et_3N$                             | 0     | 0  |
| 13              | 2 | THF                | Pd(dba) <sub>2</sub> | -                 | $H_2O$                              | 62    | 0  |
| 14              | 2 | THF                | Pd(dba) <sub>2</sub> | -                 | АсОН                                | 76    | 0  |
| 15              | 2 | THF                | Pd(dba) <sub>2</sub> | -                 | 2M HCl                              | 31    | 0  |
| 16              | 2 | Acetone            | Pd(dba) <sub>2</sub> | -                 | -                                   | 31    | 0  |
| 17              | 2 | CH <sub>3</sub> CN | Pd(dba) <sub>2</sub> | -                 | -                                   | 0     | 0  |
| 18              | 2 | DMF                | Pd(dba) <sub>2</sub> | -                 | -                                   | 0     | 0  |
| 19              | 2 | DCM                | Pd(dba) <sub>2</sub> | -                 | -                                   | 0     | 0  |
| $20^c$          | 3 | THF                | Pd(dba) <sub>2</sub> | -                 | NaNO <sub>2</sub> +HBF <sub>4</sub> | 0     | 0  |
| 21 <sup>c</sup> | 3 | МеОН               | Pd(dba) <sub>2</sub> | -                 | NaNO <sub>2</sub> +HBF <sub>4</sub> | 0     | 0  |
| 22 <sup>c</sup> | 2 | THE                | D 4(41)              |                   | <sup>t</sup> Butyl nitrite          | 4     | 0  |
| 22 <sup>c</sup> | 3 | THF                | $Pd(dba)_2$          | -                 | +HBF <sub>4</sub>                   | trace | 0  |
| 23 <sup>c</sup> | 3 | THF                | Pd(dba) <sub>2</sub> | -                 | NOBF <sub>4</sub>                   | 73    | 0  |

<sup>a</sup>The reactions of entries 1-19 were carried out with **1a** (21.0 mg, 0.05 mmol), **2** (22.0 mg, 0.1 mmol) and solvent (4 mL) at room temperature for 1 h; <sup>b</sup>Isolated yield; <sup>c</sup>The reactions of entries 20-23 were carried out in one-pot protocol: *p*-anisidine **3** (31.0 mg, 0.25 mmol), additives (0.25 mmol of each) at 0 °C for 30 min, then **1a** (42.0 mg, 0.1 mmol) and Pd(dba)<sub>2</sub> (15 mol%) were added, and then stirred at r.t. for 1 h.

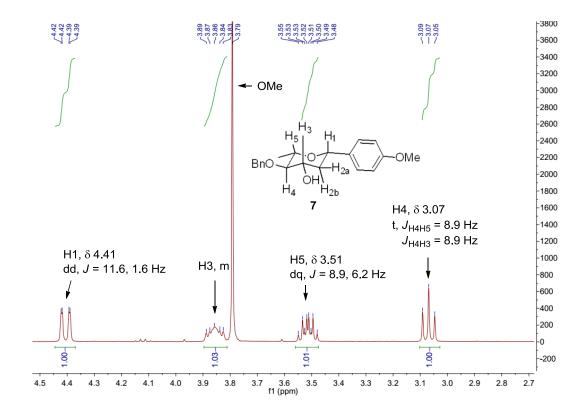
### 3) Table S2. Investigation of anomerization $^{ab}$

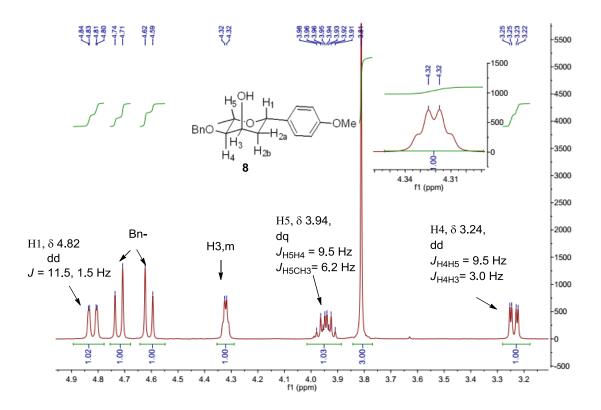
BnO 
$$\alpha$$
 isomer  $\alpha$  is

| entry | catalyst                                        | solvent 4aß 4iß        |           | 4iβ       |
|-------|-------------------------------------------------|------------------------|-----------|-----------|
|       |                                                 | R = OMe                |           | R = Br    |
|       |                                                 |                        | yield (%) | yield (%) |
| 1     | $\mathrm{HBF}_{4,}$ 12.5 $\mu\mathrm{L}$        | Et <sub>2</sub> O      | 0         | 0         |
| 2     | $\mathrm{HBF}_{4,}$ 25 $\mu\mathrm{L}$          | $\mathrm{Et_2O}$       | trace     | 0         |
| 3     | $\mathrm{HBF}_{4,}50~\mu\mathrm{L}$             | Et <sub>2</sub> O      | 92        | 32        |
| 4     | $\mathrm{HBF}_{4,}75~\mu\mathrm{L}$             | Et <sub>2</sub> O      | 86        | 51        |
| 5     | $\mathrm{HBF}_{4,}100~\mu\mathrm{L}$            | $\mathrm{Et_2O}$       | 78        | 46        |
| 6     | BF <sub>3</sub> ·Et <sub>2</sub> O, 100 $\mu$ L | Et <sub>2</sub> O      | 23        | 0         |
| 7     | $SnCl_{4,}$ 100 $\mu L$                         | Et <sub>2</sub> O      | 45        | 0         |
| 8     | con. HCl, $100~\mu L$                           | Et <sub>2</sub> O      | 0         | 0         |
| 9     | $\mathrm{HBF}_{4,}50~\mu\mathrm{L}$             | isopropyl ether        | 82        | 50        |
| 10    | $\mathrm{HBF}_{4,}50~\mu\mathrm{L}$             | $^{n}\mathrm{Bu_{2}O}$ | 65        | trace     |
| 11    | $\mathrm{HBF}_{4,}50~\mu\mathrm{L}$             | glycol dimethyl        | 0         | 0         |
|       |                                                 | ether                  |           |           |
| 12    | $\mathrm{HBF}_{4,}50~\mu\mathrm{L}$             | methyl butyl ether     | 0         | 0         |
| 13    | $\mathrm{HBF}_{4,}50~\mu\mathrm{L}$             | dichloromethane        | 0         | 0         |
| 14    | $\mathrm{HBF}_{4,}50~\mu\mathrm{L}$             | ethyl acetate          | 86        | 0         |
| 15    | $\mathrm{HBF}_{4,}50~\mu\mathrm{L}$             | CH <sub>3</sub> CN     | trace     | 0         |
| 16    | $\mathrm{HBF}_{4,}50~\mu\mathrm{L}$             | acetone                | 85        | 0         |
| 17    | $\mathrm{HBF}_{4,}50~\mu\mathrm{L}$             | DMF                    | 0         | 0         |
| 18    | $\mathrm{HBF}_{4,}50~\mu\mathrm{L}$             | dichloroethene         | 0         | 0         |
| 19    | $\mathrm{HBF}_{4,}50~\mu\mathrm{L}$             | octane                 | 0         | 0         |
|       |                                                 |                        |           |           |

| 20 | HBF <sub>4</sub> , 50 μL            | THF     | 50 | trace |
|----|-------------------------------------|---------|----|-------|
| 21 | $\mathrm{HBF}_{4,}50~\mu\mathrm{L}$ | toluene | 22 | 0     |
| 22 | $HBF_4$ , 50 $\mu$ L                | МеОН    | 0  | 0     |

<sup>a</sup>All reactions were carried out with  $4a\alpha$  (10.0 mg), HBF<sub>4</sub> (50% V/V in Et<sub>2</sub>O) in solvent (1 mL) at room temperature for 1 h;  $4i\alpha$  (10.0 mg), HBF<sub>4</sub> (50% V/V in Et<sub>2</sub>O) in solvent (1 mL) at room temperature for 5 h. <sup>b</sup> Isolated yield.


#### 4) Table S3. Reduction and reductive-amination of the compound 4fB


Ar = p-Methoxyphenyl

| entry | conditions                                | 7 (%) | 8 (%) |
|-------|-------------------------------------------|-------|-------|
| 1     | NaBH <sub>4</sub> , THF, rt, 1 h          | 42    | 40    |
| 2     | LiBH <sub>4</sub> , THF, rt, 1h           | 40    | 41    |
| 3     | LiBHEt <sub>3</sub> , 0 °C, 24 h          | trace | 78    |
| 4     | Pd/C (10%), rt, 24 h                      | 10    | 73    |
| 5     | NaBHAc <sub>3</sub> , MeOH, 24 h          | 0     | 0     |
| 6     | $NaBHAc_3$ , $MeCN/AcOH = 2/1$ , rt, 24 h | 45    | 36    |
| 7     | LiAlH <sub>4</sub> , THF, 0 °C, 1 h       | 20    | 25    |

#### 5) Scheme S1. Plausible mechanism of the arylation

#### 6) Scheme S2. NMR analyses of compounds 7-9.





$$\begin{array}{c|c} H_5 & H_1 \\ \hline \\ N & \\ H_2 & \\ \end{array}$$
 OMe

NOE analysis of the compound 9

#### 7) Experimental procedures and compound characterization data

#### Procedure A: The preparation of 4aα from glucal 1a and 2:

To a solution of 4-methoxybenzenediazonium tetrafluoroborate (2) (22.0 mg, 0.1 mmol) in tetrahydrofuran (4 mL) were added the glucal 1a (21.0 mg, 0.05 mmol) and bis(dibenzylideneacetone)palladium (4.5 mg, 15 mol%) at room temperature, and the mixture was stirred for 1 h. After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat.NaHCO<sub>3</sub>, 20 mL) and the aqueous layer was extracted with ethyl acetate (20 mL \* 3). The combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: 1/10) to afford  $4a\alpha$  as a white foam (18.0 mg, 81%).  $R_f = 0.23$  (ethyl acetate/petroleum ether: 1/6);  $[a]_D^{21} = +120.8$  (c 1.4, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.34 – 7.25 (m, 12H), 6.85 (d, J = 8.7 Hz, 2H), 5.44 (dd, J = 6.2, 2.6 Hz, 1H), 4.85 (d, J = 11.1 Hz, 1H), 4.59 (d, J = 12.1 Hz, 1H), 4.47 (d, J = 12.1 Hz, 1H), 4.42 (d, J = 11.1 Hz, 1H), 4.23 (d, J = 8.3 Hz, 1H), 3.77 (s, 3H), 3.71 – 3.61 (m, 3H), 3.09 (dd, J = 14.6, 2.9 Hz, 1H), 3.03 (dd, J = 14.7, 6.6 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  206.86, 159.57, 138.06, 137.59, 130.80, 129.02, 128.53, 128.50, 128.35, 128.05, 127.99, 127.87, 114.19, 79.87, 75.02, 74.39, 73.71, 73.62, 69.28, 55.43, 44.24; HMRS (ESI) calcd for  $C_{27}H_{29}O_5$  [M + H]<sup>+</sup> 433.2010, found 433.2007.

1-Methoxy-4-(3,4,6-tri-*O*-benzyl-2-deoxy-2,3-didehydro-α-D-glucopyranosyl) benzene (5a):

Colorless oil (6.8 mg, 26%),  $R_f = 0.31$  (ethyl acetate/petroleum ether: 1/6);  $[a]_D^{26} = +34.9$  (c 0.04, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.42 – 7.24 (m, 17H), 6.84 (d, J = 8.5 Hz, 2H), 5.33 (d, J = 2.7 Hz, 1H, H-1), 5.00 (d, J = 3.4 Hz, 1H, H-2), 4.94 – 4.79 (m, 3H, Bn), 4.56 (d, J = 11.3 Hz, 1H, Bn), 4.54 (d, J = 11.3 Hz, 1H, Bn), 4.42 (d, J = 12.2 Hz, 1H, Bn), 4.21 (d, J = 6.5 Hz, 1H, H-4), 3.90 – 3.84 (m, 1H, H-5), 3.79 (s, 3H, -OMe), 3.65 (dd, J = 10.4, 4.6 Hz, 1H, H-6a), 3.53 (dd, J = 10.4, 3.5 Hz, 1H, H-6b); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  159.53, 153.44, 138.64, 138.35, 137.06, 133.06, 129.70, 128.63, 128.45, 128.38, 128.34, 128.00, 127.97, 127.73, 127.71, 127.53, 113.75, 99.28, 73.66, 73.44, 73.36, 72.21, 71.64, 69.29, 69.10, 55.43; HMRS (ESI) calcd for  $C_{34}H_{35}O_{5}[M + H]^{+}$  523.2484, found 523.2484.

#### Procedure B: The preparation of 4(a-u)α and 4(a-u)β

a) NOBF<sub>4</sub> (1.5 equiv)
THF, 30 min; then 1
$$Pd(dba)_2, 1 h$$

$$R = 0$$
ArNH<sub>2</sub>
3(a-m)
$$R = 0$$

$$Ar = 0$$

### (2R,3R,6S)-3-Benzyloxy-2-benzyloxymethyl-6-(4-methoxyphenyl)-tetrahydro-4H -pyran-4-one (4aα):

To a solution of p-anisidine (3) (31.0 mg, 0.25 mmol) in tetrahydrofuran (THF) (4 mL) were added nitrosonium tetrafluoroborate (44.0 mg, 0.38 mmol) at -40 °C under argon. Then, the acetonitrile-dry ice bath was removed and the mixture was stirred at

room temperature for 30 min, during this period, a large amount of solid suspension observed. Then the glucal 1a (42.0)0.1 was mg, mmol) bis(dibenzylideneacetone)palladium (Pd(dba)<sub>2</sub>) (8.7 mg, 0.015 mmol) were added to the reaction mixture, and the mixture was stirred at room temperature for 1 h. After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat.NaHCO<sub>3</sub>, 20 mL) and the aqueous layer was extracted with ethyl acetate (20 mL \* 3). The combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: 1/10) to afford  $4a\alpha$  as a white foam (31.9 mg, 73%).  $R_f = 0.23$  (ethyl acetate/petroleum ether: 1/6);  $[a]_D^{21} = +120.8$  (c 1.4, CHCl<sub>3</sub>); <sup>1</sup>H NMR  $(400 \text{ MHz}, \text{CDCl}_3) \delta 7.34 - 7.25 \text{ (m, 12H)}, 6.85 \text{ (d, } J = 8.7 \text{ Hz, 2H)}, 5.44 \text{ (dd, } J = 6.2,$ 2.6 Hz, 1H, H-1,  ${}^{4}C_{1}$  (D,  $\alpha$ )), 4.85 (d, J = 11.1 Hz, 1H), 4.59 (d, J = 12.1 Hz, 1H), 4.47 (d, J = 12.1 Hz, 1H), 4.42 (d, J = 11.1 Hz, 1H), 4.23 (d, J = 8.3 Hz, 1H), 3.77 (s, 3H),3.71 - 3.61 (m, 3H), 3.09 (dd, J = 14.6, 2.9 Hz, 1H), 3.03 (dd, J = 14.7, 6.6 Hz, 1H);  $^{13}$ C NMR (100 MHz, CDCl<sub>3</sub>) δ 206.86, 159.57, 138.06, 137.59, 130.80, 129.02, 128.53, 128.50, 128.35, 128.05, 127.99, 127.87, 114.19, 79.87, 75.02, 74.39, 73.71, 73.62, 69.28, 55.43, 44.24; HMRS (ESI) calcd for  $C_{27}H_{29}O_5$  [M + H]<sup>+</sup> 433.2010, found 433.2007.

### (2R,3R,6S)-3-Methoxy-2-methoxymethyl-6-(4-methoxyphenyl)-tetrahydro-4H-py ran-4-one (4bα):

To a solution of p-anisidine (3) (31.0 mg, 0.25 mmol) in tetrahydrofuran (THF) (4 mL) were added nitrosonium tetrafluoroborate (44.0 mg, 0.38 mmol) at -40 °C under argon. Then, the acetonitrile-dry ice bath was removed and the mixture was stirred at room temperature for 30 min, during this period, a large amount of solid suspension

was observed. Then the glucal 1b (19.0)mg, 0.1 mmol) and bis(dibenzylideneacetone)palladium (Pd(dba)<sub>2</sub>) (8.7 mg, 0.015 mmol) were added to the reaction mixture, and the mixture was stirred at room temperature for 1 h. After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat.NaHCO<sub>3</sub>, 20 mL) and the aqueous layer was extracted with ethyl acetate (20 mL \* 3). The combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: 1/3) to afford  $4b\alpha$  as a white foam (18.5 mg, 65%).  $R_f = 0.24$  (ethyl acetate/petroleum ether: 1/3);  $[a]_D^{17} = +128.8$  (c 0.4, CHCl<sub>3</sub>); <sup>1</sup>H NMR  $(400 \text{ MHz}, \text{CDCl}_3) \delta 7.30 - 7.27 \text{ (m, 2H)}, 6.85 \text{(d, } J = 8.6 \text{ Hz, 2H)}, 5.42 \text{ (dd, } J = 6.2,$ 2.6 Hz, 1H,  $1^{4}\text{C}_{1}$  (D,  $\alpha$ )), 3.94 (d, J = 8.8 Hz, 1H), 3.78 (s, 3H), 3.62 - 3.54 (m, 3H), 3.50 (s, 3H), 3.42 (s, 3H), 3.07 (dd, J = 14.6, 2.8 Hz, 1H), 3.01 (dd, J = 14.8, 6.8 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 206.89, 159.57, 130.69, 129.03, 114.17, 81.97, 75.05, 74.16, 71.74, 59.67, 59.52, 55.39, 44.07; HMRS (ESI) calcd for  $C_{15}H_{21}O_5$  [M + H]<sup>+</sup> 281.1384, found 281.1376.

(2R,3R,6S)-3-*tert*-Butyldimethylsilyloxy-2-butyldimethylsilyloxymethyl-6-(4-met hoxyphenyl)-tetrahydro-4H-pyran-4-one (4cα):

To a solution of p-anisidine (3) (31.0 mg, 0.25 mmol) in tetrahydrofuran (THF) (4 mL) were added nitrosonium tetrafluoroborate (44.0 mg, 0.38 mmol) at -40 °C under argon. Then, the acetonitrile-dry ice bath was removed and the mixture was stirred at room temperature for 30 min, during this period, a large amount of solid suspension observed. Then the 1c (49.0)0.1 mmol) was glucal mg, and bis(dibenzylideneacetone)palladium (Pd(dba)<sub>2</sub>) (8.7 mg, 0.015 mmol) were added to the reaction mixture, and the mixture was stirred at room temperature for 1 h. After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat.NaHCO<sub>3</sub>, 20 mL) and the aqueous layer was extracted with ethyl acetate (20 mL \* 3). The combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: 1/20) to afford  $4c\alpha$  as a colorless oil (30.3 mg, 63%).  $R_f = 0.33$  (ethyl acetate/petroleum ether: 1/20);  $[a]_D^{17} = +68.3$  (c 0.2, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.29 (d, J = 8.7 Hz, 2H), 6.86 (d, J = 8.7 Hz, 2H), 5.39 (dd, J = 6.8, 2.7 Hz, 1H, H-1, <sup>4</sup>C<sub>1</sub> (D,  $\alpha$ )), 4.30 (d, J = 9.0 Hz, 1H), 3.88 – 3.75 (m, 2H), 3.79 (s, 3H), 3.50 – 3.45 (m, 1H), 3.05 (dd, J = 14.7, 2.8 Hz, 1H), 2.92 (dd, J = 14.6, 6.9 Hz, 1H), 0.91 (s, 9H), 0.88 (s, 9H), 0.14 (s, 3H), 0.08 (s, 3H), 0.07 (s, 3H), 0.03 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  206.82, 159.36, 131.34, 128.81, 114.09, 75.13, 74.62, 63.32, 55.41, 43.83, 26.07, 25.94, 18.57, 18.54, -4.12, -4.90, -5.20, -5.42; HMRS (ESI) calcd for C<sub>25</sub>H<sub>45</sub>O<sub>5</sub>Si<sub>2</sub> [M + H]<sup>+</sup> 481.2801, found 481.2795.

### (2R,3S,6S)-3-Benzyloxy-2-benzyloxymethyl-6-(4-methoxyphenyl)-tetrahydro-4H-pyran-4-one (4d $\alpha$ ):

To a solution of p-anisidine (3) (31.0 mg, 0.25 mmol) in tetrahydrofuran (THF) (4 mL) were added nitrosonium tetrafluoroborate (44.0 mg, 0.38 mmol) at -40 °C under argon. Then, the acetonitrile-dry ice bath was removed and the mixture was stirred at room temperature for 30 min, during this period, a large amount of solid suspension observed. Then the galactal 1d (42.0)0.1 mmol) was mg, and bis(dibenzylideneacetone)palladium (Pd(dba)<sub>2</sub>) (8.7 mg, 0.015 mmol) were added to the reaction mixture, and the mixture was stirred at room temperature for 1 h. After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat.NaHCO<sub>3</sub>, 20 mL) and the aqueous layer was extracted with ethyl acetate (20 mL \* 3). The combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica

gel (ethyl acetate/petroleum ether: 1/10) to afford  $4d\alpha$  as a yellow foam (25.0 mg, 57%).  $R_f = 0.34$  (ethyl acetate/petroleum ether: 1/6);  $[a]_D^{19} = +39.5$  (c 0.3, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.36 – 7.25 (m, 12H), 6.88 (d, J = 8.7 Hz, 2H), 5.27 (dd, J = 9.5, 3.6 Hz, 1H, H-1, <sup>1</sup>C<sub>4</sub> (D,  $\alpha$ )), 4.93 (d, J = 12.1 Hz, 1H), 4.57 (d, J = 12.5 Hz, 2H), 4.50 (d, J = 12.2 Hz, 1H), 4.43 – 4.37 (m, 1H), 4.15 (d, J = 6.4 Hz, 1H), 3.86 – 3.76 (m, 2H), 3.80 (s, 3H), 2.80 (dd, J = 14.4, 3.7 Hz, 1H), 2.66 (dd, J = 14.1, 9.8 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  204.60, 159.53, 138.10, 137.60, 132.70, 128.65, 128.49, 128.12, 127.98, 127.81, 127.75, 127.60, 114.08, 79.45, 76.36, 74.68, 73.70, 72.78, 68.58, 55.44, 47.86; HMRS (ESI) calcd for  $C_{27}H_{29}O_5$  [M + H]<sup>+</sup> 433.2010, found 433.2008.

### (2R,3R,6S)-3-Benzyloxy-2-methyl-6-(4-methoxyphenyl)-tetrahydro-4H-pyran-4-one $(4e\alpha)$ :

To a solution of *p*-anisidine (3) (31.0 mg, 0.25 mmol) in tetrahydrofuran (THF) (4 mL) were added nitrosonium tetrafluoroborate (44.0 mg, 0.38 mmol) at -40 °C under argon. Then, the acetonitrile-dry ice bath was removed and the mixture was stirred at room temperature for 30 min, during this period, a large amount of solid suspension was observed. Then the 6-deoxy-glucal **1e** (31.0 mg, 0.1 mmol) and bis(dibenzylideneacetone)palladium (Pd(dba)<sub>2</sub>) (8.7 mg, 0.015 mmol) were added to the reaction mixture, and the mixture was stirred at room temperature for 1 h. After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat.NaHCO<sub>3</sub>, 20 mL) and the aqueous layer was extracted with ethyl acetate (20 mL \* 3). The combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: 1/10) to afford **4ea** as a white foam (25.5 mg, 78%).  $R_f = 0.35$  (ethyl acetate/petroleum ether: 1/6);  $[a]_D^{19} = +102.8$  (c 0.4, CHCl<sub>3</sub>); <sup>1</sup>H NMR

(400 MHz, CDCl<sub>3</sub>) δ 7.35 – 7.28 (m, 7H), 6.86 (d, J = 8.7 Hz, 2H), 5.27 (dd, J = 6.4, 2.9 Hz, 1H, H-1,  ${}^{4}$ C<sub>1</sub> (D, α)), 4.87 (d, J = 11.5 Hz, 1H), 4.49 (d, J = 11.5 Hz, 1H), 3.79 (s, 3H), 3.82 – 3.72 (m, 1H), 3.66 (d, J = 7.9 Hz, 1H), 3.11 (dd, J = 14.2, 3.1 Hz, 1H), 2.93 (dd, J = 13.9, 6.6 Hz, 1H), 1.28 (d, J = 6.2 Hz, 3H);  ${}^{13}$ C NMR (100 MHz, CDCl<sub>3</sub>) δ 206.77, 159.52, 137.53, 131.32, 128.79, 128.57, 128.37, 128.12, 114.16, 85.03, 74.56, 73.25, 71.65, 55.44, 44.75, 18.38; HMRS (ESI) calcd for C<sub>20</sub>H<sub>23</sub>O<sub>4</sub> [M + H]<sup>+</sup> 327.1591, found 327.1592.

## (2S,3S,6R)-3-Benzyloxy-2-methyl-6-(4-methoxyphenyl)-tetrahydro-4H-pyran-4-o ne (4f $\alpha$ ).

To a solution of p-anisidine (3) (31.0 mg, 0.25 mmol) in tetrahydrofuran (THF) (4 mL) were added nitrosonium tetrafluoroborate (44.0 mg, 0.38 mmol) at -40 °C under argon. Then, the acetonitrile-dry ice bath was removed and the mixture was stirred at room temperature for 30 min, during this period, a large amount of solid suspension observed. Then the rhamnal 1f (31.0)0.1 was mg, mmol) and bis(dibenzylideneacetone)palladium (Pd(dba)<sub>2</sub>) (8.7 mg, 0.015 mmol) were added to the reaction mixture, and the mixture was stirred at room temperature for 1 h. After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat.NaHCO<sub>3</sub>, 20 mL) and the aqueous layer was extracted with ethyl acetate (20 mL \* 3). The combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: 1/10) to afford  $4f\alpha$  as a light yellow foam (23.0 mg, 70%).  $R_f = 0.36$  (ethyl acetate/petroleum ether: 1/6);  $[a]_D^{20} = -141.2$  (c 1.1, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.36 – 7.28 (m, 7H), 6.88 – 6.84 (m, 2H), 5.27 (dd, J = 6.7, 3.3 Hz, 1H, H-1,  ${}^{1}C_{4}$  (L,  $\alpha$ ), 4.87 (d, J = 11.5 Hz, 1H), 4.50 (d, J = 11.5 Hz, 1H), 3.79 (s, 3H), 3.81 - 3.73 (m, 1H), 3.66 (dd, J = 8.0, 0.9 Hz, 1H), 3.11 (dd, J = 14.2, 3.3 Hz,

1H), 2.93 (ddd, J = 14.2, 6.7, 1.0 Hz, 1H), 1.28 (d, J = 6.4, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  206.80, 159.52, 137.52, 131.31, 128.80, 128.57, 128.38, 128.13, 114.15, 85.03, 74.56, 73.26, 71.64, 55.44, 44.74, 18.38; HMRS (ESI) calcd for C<sub>20</sub>H<sub>23</sub>O<sub>4</sub> [M + H]<sup>+</sup> 327.1586, found 327.1586.

#### (3S,6R)-3-Benzyloxy-6-(4-methoxyphenyl)-tetrahydro-4H-pyran-4-one (4gβ).

To a solution of p-anisidine (3) (31.0 mg, 0.25 mmol) in tetrahydrofuran (THF) (4 mL) were added nitrosonium tetrafluoroborate (44.0 mg, 0.38 mmol) at -40 °C under argon. Then, the acetonitrile-dry ice bath was removed and the mixture was stirred at room temperature for 30 min, during this period, a large amount of solid suspension was observed. Then the arabinal 1g (30.0)mg, 0.1 bis(dibenzylideneacetone)palladium (Pd(dba)<sub>2</sub>) (8.7 mg, 0.015 mmol) were added to the reaction mixture, and the mixture was stirred at room temperature for 1 h. After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat.NaHCO<sub>3</sub>, 20 mL) and the aqueous layer was extracted with ethyl acetate (20 mL \* 3). The combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: 1/10) to afford  $4g\beta$  as a white foam (17.3 mg, 55%).  $R_f = 0.43$  (ethyl acetate/petroleum ether: 1/6);  $[\alpha]_D^{20} = -98.2$  (c 0.5, CHCl<sub>3</sub>); <sup>1</sup>H NMR  $(400 \text{ MHz}, \text{CDCl}_3) \delta 7.41 - 7.25 \text{ (m, 7H)}, 6.91 - 6.87 \text{ (m, 2H)}, 4.95 \text{ (d, } J = 11.9 \text{ Hz,}$ 1H, Bn-), 4.60 (d, J = 12.0 Hz, 1H, Bn-), 4.60 - 4.57 (m, 1H, H-1), 4.40 (dd, J = 10.9, 7.2 Hz, 1H, H-5a), 4.19 (dd, J = 10.4, 7.3 Hz, 1H, H-5b), 3.80 (s, 3H), 3.62 (t, J =10.7 Hz, 1H, H-4), 2.76 – 2.66 (m, 2H, H-2a, 2b);  $^{13}$ C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$ 205.15, 159.77, 137.57, 132.18, 128.75, 128.27, 128.15, 127.18, 114.23, 80.65, 79.16,

72.94, 70.72, 55.47, 49.90; HMRS (ESI) calcd for  $C_{19}H_{20}O_4Na~[M+Na]^+$  335.1254, found 335.1256.

### (2R,3R,6S)-3-Benzyloxy-2-benzyloxymethyl-6-phenyl-tetrahydro-4H-pyran-4-on e (4hα):

To a solution of aniline (3b) (23.0 mg, 0.25 mmol) in tetrahydrofuran (THF) (4 mL) were added nitrosonium tetrafluoroborate (44.0 mg, 0.38 mmol) at -40 °C under argon. Then, the acetonitrile-dry ice bath was removed and the mixture was stirred at room temperature for 30 min, during this period, a large amount of solid suspension was observed. Then the glucal (42.0)0.1 mmol) 1a mg, and bis(dibenzylideneacetone)palladium (Pd(dba)<sub>2</sub>) (8.7 mg, 0.015 mmol) were added to the reaction mixture, and the mixture was stirred at room temperature for 1 h. After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat.NaHCO<sub>3</sub>, 20 mL) and the aqueous layer was extracted with ethyl acetate (20 mL \* 3). The combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: 1/10) to afford 4ha as a white foam (30.5 mg, 76%).  $R_f = 0.29$  (ethyl acetate/petroleum ether: 1/6);  $[a]_D^{19} = +85.3$  (c 0.2, CHCl<sub>3</sub>); <sup>1</sup>H NMR  $(400 \text{ MHz}, \text{CDCl}_3) \delta 7.40 - 7.25 \text{ (m, 15H)}, 5.48 \text{ (dd, } J = 6.6, 3.1 \text{ Hz, 1H, H-1, }^4\text{C}_1 \text{ (D, 1.5)}$  $\alpha$ ), 4.84 (d, J = 11.1 Hz, 1H), 4.59 (d, J = 12.1 Hz, 1H), 4.48 (d, J = 12.1 Hz, 1H), 4.43 (d, J = 11.1 Hz, 1H), 4.24 (d, J = 8.6 Hz, 1H), 3.76 – 3.68 (m, 2H), 3.65 (dd, J =10.4, 2.2 Hz, 1H), 3.12 (dd, J = 14.7, 3.2 Hz, 1H), 3.03 (dd, J = 14.7, 6.7 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 206.55, 138.78, 138.04, 137.54, 128.87, 128.54, 128.52, 128.36, 128.32, 128.08, 127.99, 127.89, 127.54, 79.78, 75.35, 74.85, 73.72, 73.58, 69.33, 44.15. The <sup>1</sup>H/<sup>13</sup>C NMR spectroscopic data coincide with the previous report. <sup>[1]</sup>

### (2R,3R,6S)-3-Benzyloxy-2-benzyloxymethyl-6-(4-bromophenyl)-tetrahydro-4H-p yran-4-one $(4i\alpha)$ :

To a solution of p-bromoaniline (3c) (43.0 mg, 0.25 mmol) in tetrahydrofuran (THF) (4 mL) were added nitrosonium tetrafluoroborate (44.0 mg, 0.38 mmol) at -40 °C under argon. Then, the acetonitrile-dry ice bath was removed and the mixture was stirred at room temperature for 0.5 h, during this period, a large amount of solid suspension was observed. Then 0.1 the glucal 1a (42.0)mmol) and mg, bis(dibenzylideneacetone)palladium (Pd(dba)<sub>2</sub>) (8.7 mg, 0.015 mmol) were added to the reaction mixture, and the mixture was stirred at room temperature for 1 h. After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat.NaHCO<sub>3</sub>, 20 mL) and the aqueous layer was extracted with ethyl acetate (20 mL \* 3). The combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: 1/10) to afford 4ia as a white foam (37.5 mg, 78%).  $R_f = 0.30$  (ethyl acetate/petroleum ether: 1/6);  $[a]_D^{19} = +104.5$  (c 0.2, CHCl<sub>3</sub>); <sup>1</sup>H NMR  $(400 \text{ MHz}, \text{CDCl}_3) \delta 7.46 \text{ (d, } J = 8.4 \text{ Hz}, \text{ 2H)}, 7.35 - 7.24 \text{ (m, 12H)}, 5.41 \text{ (dd, } J = 5.5,$ 3.9 Hz, 1H, H-1,  ${}^{4}C_{1}$  (D,  $\alpha$ )), 4.82 (d, J = 11.2 Hz, 1H), 4.57 (d, J = 12.1 Hz, 1H), 4.47 (d, J = 12.1 Hz, 1H), 4.41 (d, J = 11.2 Hz, 1H), 4.22 (d, J = 8.6 Hz, 1H), 3.72 - 3.62(m, 3H), 3.06 (dd, J = 14.9, 3.9 Hz, 1H), 3.01 (dd, J = 15.1, 6.6 Hz, 1H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 206.10, 137.92, 137.89, 137.41, 132.01, 129.20, 128.56, 128.53, 128.34, 128.12, 127.96, 127.93, 122.47, 79.60, 75.18, 74.80, 73.74, 73.50, 69.32, 44.11; HMRS (ESI) calcd for  $C_{26}H_{29}O_4NBr [M + NH_4]^+ 498.1280$ , found 498.1281.

(2R,3R,6S)-3-Benzyloxy-2-benzyloxymethyl-6-(4-nitrophenyl)-tetrahydro-4H-py ran-4-one (4j $\alpha$ ):

To a solution of p-nitroaniline (3d) (35.0 mg, 0.25 mmol) in tetrahydrofuran (THF) (4 mL) were added nitrosonium tetrafluoroborate (44.0 mg, 0.38 mmol) at -40 °C under argon. Then, the acetonitrile-dry ice bath was removed and the mixture was stirred at room temperature for 0.5 h, during this period, a large amount of solid suspension was 0.1 observed. Then the glucal 1a (42.0)mg, mmol) and bis(dibenzylideneacetone)palladium (Pd(dba)<sub>2</sub>) (8.7 mg, 0.015 mmol) were added to the reaction mixture, and the mixture was stirred at room temperature for 1 h. After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat.NaHCO<sub>3</sub>, 20 mL) and the aqueous layer was extracted with ethyl acetate (20 mL \* 3). The combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: 1/10) to afford  $4j\alpha$  as a white foam (32.7 mg, 73%).  $R_f = 0.21$  (ethyl acetate/petroleum ether: 1/3);  $[a]_D^{23} = +74.1$  (c 2.3, CHCl<sub>3</sub>); <sup>1</sup>H NMR  $(400 \text{ MHz}, \text{CDCl}_3) \delta 8.21 \text{ (d, } J = 8.7 \text{ Hz}, \text{ 2H)}, 7.57 \text{ (d, } J = 8.6 \text{ Hz}, \text{ 2H)}, 7.37 - 7.26 \text{ (m, } J = 8.6 \text{ Hz}, \text{ 2H)}, 7.37 - 7.26 \text{ (m, } J = 8.6 \text{ Hz}, \text{ 2H)}, 7.37 - 7.26 \text{ (m, } J = 8.6 \text{ Hz}, \text{ 2H)}, 7.37 - 7.26 \text{ (m, } J = 8.6 \text{ Hz}, \text{ 2H)}, 7.37 - 7.26 \text{ (m, } J = 8.6 \text{ Hz}, \text{ 2H)}, 7.37 - 7.26 \text{ (m, } J = 8.6 \text{ Hz}, \text{ 2H)}, 7.37 - 7.26 \text{ (m, } J = 8.6 \text{ Hz}, \text{ 2H)}, 7.37 - 7.26 \text{ (m, } J = 8.6 \text{ Hz}, \text{ 2H)}, 7.37 - 7.26 \text{ (m, } J = 8.6 \text{ Hz}, \text{ 2H)}, 7.37 - 7.26 \text{ (m, } J = 8.6 \text{ Hz}, \text{ 2H)}, 7.37 - 7.26 \text{ (m, } J = 8.6 \text{ Hz}, \text{ 2H)}, 7.37 - 7.26 \text{ (m, } J = 8.6 \text{ Hz}, \text{ 2H)}, 7.37 - 7.26 \text{ (m, } J = 8.6 \text{ Hz}, \text{ 2H)}, 7.37 - 7.26 \text{ (m, } J = 8.6 \text{ Hz}, \text{ 2H)}, 7.37 - 7.26 \text{ (m, } J = 8.6 \text{ Hz}, \text{ 2H)}, 7.37 - 7.26 \text{ (m, } J = 8.6 \text{ Hz}, \text{ 2H)}, 7.37 - 7.26 \text{ (m, } J = 8.6 \text{ Hz}, \text{ 2H)}, 7.37 - 7.26 \text{ (m, } J = 8.6 \text{ Hz}, \text{ 2H)}, 7.37 - 7.26 \text{ (m, } J = 8.6 \text{ Hz}, \text{ 2H)}, 7.37 - 7.26 \text{ (m, } J = 8.6 \text{ Hz}, \text{ 2H)}, 7.37 - 7.26 \text{ (m, } J = 8.6 \text{ Hz}, \text{ 2H)}, 7.37 - 7.26 \text{ (m, } J = 8.6 \text{ Hz}, \text{ 2H)}, 7.37 - 7.26 \text{ (m, } J = 8.6 \text{ Hz}, \text{ 2H)}, 7.37 - 7.26 \text{ (m, } J = 8.6 \text{ Hz}, \text{ 2H)}, 7.37 - 7.26 \text{ (m, } J = 8.6 \text{ Hz}, \text{ 2H)}, 7.37 - 7.26 \text{ (m, } J = 8.6 \text{ Hz}, \text{ 2H)}, 7.37 - 7.26 \text{ (m, } J = 8.6 \text{ Hz}, \text{ 2H)}, 7.37 - 7.26 \text{ (m, } J = 8.6 \text{ Hz}, \text{ 2H)}, 7.37 - 7.26 \text{ (m, } J = 8.6 \text{ Hz}, \text{ 2H)}, 7.37 - 7.26 \text{ (m, } J = 8.6 \text{ Hz}, \text{ 2H)}, 7.37 - 7.26 \text{ (m, } J = 8.6 \text{ Hz}, \text{ 2H)}, 7.37 - 7.26 \text{ (m, } J = 8.6 \text{ Hz}, \text{ 2H)}, 7.37 - 7.26 \text{ (m, } J = 8.6 \text{ Hz}, \text{ 2H)}, 7.37 - 7.26 \text{ (m, } J = 8.6 \text{ Hz}, \text{ 2H)}, 7.37 - 7.26 \text{ (m, } J = 8.6 \text{ Hz}, \text{ 2H)}, 7.37 - 7.26 \text{ (m, } J = 8.6 \text{ Hz}, \text{ 2H)}, 7.37 - 7.26 \text{ (m, } J = 8.6 \text{ Hz}, \text{ 2H)}, 7.37 - 7.26 \text{ (m, } J = 8.6 \text{ Hz}, \text{ 2H)}, 7.37 - 7.26 \text{ (m, } J = 8.6 \text{ Hz}, \text{ 2H)}, 7.37 - 7.26 \text{ (m, } J = 8.6 \text{ Hz}, \text{ 2H)}, 7.37 - 7.26 \text{ (m, } J = 8.6 \text{ Hz}, \text{ 2H)}, 7.37 - 7.26 \text{ (m, } J = 8.6 \text{ Hz}, \text{ 2H)}, 7.37 -$ 10H), 5.52 (t, J = 5.3 Hz, 1H, H-1,  ${}^{4}C_{1}(D, \alpha)$ ), 4.81 (d, J = 11.2 Hz, 1H), 4.57 (d, J =12.1 Hz, 1H), 4.49 (d, J = 12.1 Hz, 1H), 4.42 (d, J = 11.2 Hz, 1H), 4.21 (d, J = 7.8 Hz, 1H), 3.82 - 3.77 (m, 1H), 3.70 (d, J = 2.9 Hz, 2H), 3.08 (dd, J = 14.8, 4.8 Hz, 1H), 3.02(dd, J = 14.8, 6.0 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  205.11, 147.86, 146.46, 137.79, 137.24, 128.63, 128.60, 128.36, 128.23, 128.06, 127.94, 124.06, 79.34, 76.31, 74.58, 73.82, 73.33, 69.63, 44.40; HMRS (ESI) calcd for  $C_{26}H_{29}O_6N_2$  [M + NH<sub>4</sub>]<sup>+</sup> 465.2021, found 465.2018.

(2R,3R,6S)-3-Benzyloxy-2-benzyloxymethyl-6-(4-ethoxyphenyl)-tetrahydro-4H-p yran-4-one  $(4k\alpha)$ :

To a solution of p-phenetidine (3e) (34.0 mg, 0.25 mmol) in tetrahydrofuran (THF) (4 mL) were added nitrosonium tetrafluoroborate (44.0 mg, 0.38 mmol) at -40 °C under argon. Then, the acetonitrile-dry ice bath was removed and the mixture was stirred at room temperature for 0.5 h, during this period, a large amount of solid suspension was observed. Then 0.1 the glucal 1a (42.0)mg, mmol) and bis(dibenzylideneacetone)palladium (Pd(dba)<sub>2</sub>) (8.7 mg, 0.015 mmol) were added to the reaction mixture, and the mixture was stirred at room temperature for 1 h. After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat.NaHCO<sub>3</sub>, 20 mL) and the aqueous layer was extracted with ethyl acetate (20 mL \* 3). The combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: 1/6) to afford  $4k\alpha$  as a gray foam (34.1 mg, 76%).  $R_f$ = 0.19 (ethyl acetate/petroleum ether: 1/6);  $[a]_D^{20} = +93.8$  (c 0.2, CHCl<sub>3</sub>); <sup>1</sup>H NMR  $(400 \text{ MHz}, \text{CDCl}_3) \delta 7.52 \text{ (d, } J = 8.7 \text{ Hz}, 1\text{H)}, 7.34 - 7.25 \text{ (m, 12H)}, 7.05 \text{ (dd, } J = 8.7, 1.7)$ 2.7 Hz, 1H), 5.98 (t, J = 5.7 Hz, 1H, H-1,  ${}^{4}C_{1}$  (D,  $\alpha$ )), 4.79 (d, J = 11.2 Hz, 1H), 4.56 (d, J = 12.2 Hz, 1H), 4.43 (d, J = 12.2 Hz, 1H), 4.42 (d, J = 11.2 Hz, 1H), 4.22 (d, J = 11.2 Hz, 1H)7.3 Hz, 1H, H-4), 4.06 (qd, J = 7.0, 2.7 Hz, 2H,  $-OCH_2CH_3$ ), 3.78 - 3.72 (m, 1H, H-5), 3.66 (dd, J = 10.7, 3.4 Hz, 1H), 3.58 (dd, J = 10.7, 2.3 Hz, 1H), 3.07 (dd, J = 15.5, 5.4)Hz, 1H), 2.95 (dd, J = 15.3, 5.7 Hz, 1H), 1.43 (t, J = 7.0 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) 205.93, 159.18, 149.48, 137.84, 137.34, 129.88, 128.55, 128.34, 128.15, 127.90, 127.86, 125.67, 118.93, 110.63, 79.17, 76.53, 73.71, 73.31, 70.75, 69.45, 64.50, 44.69, 14.68; HMRS (ESI) calcd for  $C_{28}H_{31}O_5$  [M + H]<sup>+</sup> 447.2166, found 447.2165.

(2R,3R,6S)-3-Benzyloxy-2-benzyloxymethyl-6-(4-hydroxy-2-nitrophenyl)-tetrahy dro-4H-pyran-4-one (4 $l\alpha$ ):

$$\mathsf{BnO}^{\mathsf{O}} \overset{\mathsf{O}}{\underset{\mathsf{O}}{\mathsf{NO}_2}} \mathsf{NO}_2$$

To a solution of 4-amino-3-nitrophenol (3f) (39.0 mg, 0.25 mmol) in tetrahydrofuran (THF) (4 mL) were added nitrosonium tetrafluoroborate (44.0 mg, 0.38 mmol) at -40 °C under argon. Then, the acetonitrile-dry ice bath was removed and the mixture was stirred at room temperature for 0.5 h, during this period, a large amount of solid suspension was observed. Then the glucal 1a (42.0 mg, 0.1 mmol) and bis(dibenzylideneacetone)palladium (Pd(dba)<sub>2</sub>) (8.7 mg, 0.015 mmol) were added to the reaction mixture, and the mixture was stirred at room temperature for 1 h. After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat.NaHCO<sub>3</sub>, 20 mL) and the aqueous layer was extracted with ethyl acetate (20 mL \* 3). The combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: 1/3) to afford 4lα as a colorless oil (29.6 mg, 64%).  $R_f = 0.23$  (ethyl acetate/petroleum ether: 1/3);  $[a]_D^{19} = +250.7$  (c 0.8, CHCl<sub>3</sub>); <sup>1</sup>H NMR  $(400 \text{ MHz}, \text{CDCl}_3) \delta 7.33 - 7.25 \text{ (m, 12H)}, 7.04 \text{ (d, } J = 2.4 \text{ Hz, 1H)}, 6.84 \text{ (dd, } J = 8.5,$ 2.4 Hz, 1H), 6.67 (s, 1H), 5.94 (t, J = 5.2 Hz, 1H, H-1,  ${}^{4}C_{1}$  (D,  $\alpha$ ), 4.79 (d, J = 11.0Hz, 1H), 4.58 (d, J = 12.1 Hz, 1H), 4.45 (d, J = 12.1 Hz, 1H), 4.42 (d, J = 11.0 Hz, 1H), 4.26 (d, J = 7.6 Hz, 1H), 3.69 (dd, J = 10.3, 2.8 Hz, 1H), 3.61 – 3.55 (m, 2H), 3.08 (dd, J = 15.1, 6.0 Hz, 1H), 2.98 (dd, J = 15.1, 4.7 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  206.55, 156.61, 149.55, 137.62, 136.78, 129.94, 128.65, 128.60, 128.56, 128.42, 128.08, 128.00, 124.54, 119.48, 111.94, 79.34, 76.26, 73.81, 70.90, 69.08, 44.36; HMRS (ESI) calcd for  $C_{26}H_{25}O_7NNa [M + Na]^+ 486.1524$ , found 486.1524.

(2S,3S,6R)-3-Benzyloxy-2-methyl-6-(4-ethoxyphenyl)-tetrahydro-4H-pyran-4-on e  $(4m\alpha)$ :

To a solution of 4-aminoacetophenone (3g) (34.0 mg, 0.25 mmol) in tetrahydrofuran (THF) (4 mL) were added nitrosonium tetrafluoroborate (44.0 mg, 0.38 mmol) at -40 °C under argon. Then, the acetonitrile-dry ice bath was removed and the mixture was stirred at room temperature for 1 h, during this period, a large amount of solid suspension was observed. Then the rhamnal 1f (31.0 mg, 0.1 mmol) and bis(dibenzylideneacetone)palladium (Pd(dba)<sub>2</sub>) (8.7 mg, 0.015 mmol) were added to the reaction mixture, and the mixture was stirred at room temperature for 1 h. After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat.NaHCO<sub>3</sub>, 20 mL) and the aqueous layer was extracted with ethyl acetate (20 mL \* 3). The combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: 1/10) to afford 4ma as a white foam (23.3 mg, 69%).  $R_f = 0.28$  (ethyl acetate/petroleum ether: 1/3);  $[a]_D^{19} =$ -102.1 (c 0.4, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.94 (d, J = 8.3 Hz, 2H), 7.49 (d, 11.5 Hz, 1H), 4.49 (d, J = 11.5 Hz, 1H), 3.88 – 3.79 (m, 1H), 3.68 (d, J = 7.4 Hz, 1H), 3.15 (dd, J = 14.2, 4.3 Hz, 1H), 2.94 (dd, J = 14.1, 6.3 Hz, 1H), 2.59 (s, 3H), 1.30 (d, 3.15 (dd, 3.15 Hz, 3.15 (dd, 3.15 (dd, 3.15 Hz, 3.15 (dd, 3.15 (dd, 3.15 Hz, 3.15 (dd, 3.J = 6.3 Hz, 3H; <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  206.04, 197.68, 144.48, 137.30, 136.92, 128.85, 128.59, 128.35, 128.20, 127.35, 84.63, 74.31, 73.14, 72.84, 44.63, 26.77, 18.01; HMRS (ESI) calcd for  $C_{21}H_{23}O_4$  [M + H]<sup>+</sup> 339.1591, found 339.1592.

#### (2S,3S,6R)-3-Benzyloxy-2-methyl-6-phenyl-tetrahydro-4H-pyran-4-one (4nα):

To a solution of aniline (3b) (23.0 mg, 0.25 mmol) in tetrahydrofuran (THF) (4 mL) was added nitrosonium tetrafluoroborate (44.0 mg, 0.38 mmol) at -40 °C under argon. Then, the acetonitrile-dry ice bath was removed and the mixture was stirred at room temperature for 1 h, during this period, a large amount of solid suspension was observed. Then the rhamnal 1f (31.0)0.1 mg, mmol) and bis(dibenzylideneacetone)palladium (Pd(dba)<sub>2</sub>) (8.7 mg, 0.015 mmol) were added to the reaction mixture, and the mixture was stirred at room temperature for 1 h. After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat.NaHCO<sub>3</sub>, 20 mL) and the aqueous layer was extracted with ethyl acetate (20 mL \* 3). The combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: 1/10) to afford  $4n\alpha$  as a white foam (23.7 mg, 80%).  $R_f = 0.36$  (ethyl acetate/petroleum ether: 1/6);  $[a]_D^{17} = -162.3$  (c 0.5, CHCl<sub>3</sub>); <sup>1</sup>H NMR  $(400 \text{ MHz}, \text{CDCl}_3) \delta 7.39 - 7.28 \text{ (m, 10H)}, 5.30 \text{ (dd, } J = 6.6, 3.5 \text{ Hz}, 1\text{H, H-1}, {}^{1}\text{C}_{4} \text{ (L, }\alpha)),$ 4.86 (d, J = 11.5 Hz, 1H), 4.49 (d, J = 11.5 Hz, 1H), 3.82 (dq, J = 12.6, 6.3 Hz, 1H), 3.67(d, J = 7.8 Hz, 1H), 3.16 (dd, J = 14.2, 3.7 Hz, 1H), 2.94 (ddd, J = 14.2, 6.5, 0.9 Hz, 1H),1.29 (d, J = 6.3 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  206.62, 139.19, 137.43, 128.83, 128.58, 128.38, 128.25, 128.15, 127.32, 84.88, 74.81, 73.20, 72.10, 44.63, 18.24; HMRS (ESI) calcd for  $C_{19}H_{20}O_3Na [M + Na]^+$  319.1305, found 319.1310.

### (2S,3S,6R)-3-Benzyloxy-2-methyl-6-(4-bromophenyl)-tetrahydro-4H-pyran-4-on e (4οα):

To a solution of p-bromoaniline (3c) (43.0 mg, 0.25 mmol) in tetrahydrofuran (THF) (4 mL) were added nitrosonium tetrafluoroborate (44.0 mg, 0.38 mmol) at -40 °C under argon. Then, the acetonitrile-dry ice bath was removed and the mixture was stirred at room temperature for 30 min, during this period, a large amount of solid suspension

rhamnal was observed. Then the 1f (31.0)mg, 0.1 mmol) and bis(dibenzylideneacetone)palladium (Pd(dba)<sub>2</sub>) (8.7 mg, 0.015 mmol) were added to the reaction mixture, and the mixture was stirred at room temperature for 1 h. After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat.NaHCO<sub>3</sub>, 20 mL) and the aqueous layer was extracted with ethyl acetate (20 mL \* 3). The combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: 1/12) to afford 40a as a white foam (28.1 mg, 75%).  $R_f = 0.35$  (ethyl acetate/petroleum ether: 1/6);  $[a]_D^{22} = -98.5$  (c 0.2, CHCl<sub>3</sub>); <sup>1</sup>H NMR  $(400 \text{ MHz}, \text{CDCl}_3) \delta 7.47 \text{ (d, } J = 8.5 \text{ Hz}, \text{ 2H)}, 7.36 - 7.24 \text{ (m, 7H)}, 5.23 \text{ (dd, } J = 6.2, 4.0)$ Hz, 1H, H-1,  ${}^{1}C_{4}(L, \alpha)$ ), 4.84 (d, J = 11.5 Hz, 1H), 4.48 (d, J = 11.5 Hz, 1H), 3.84 – 3.76 (m, 1H), 3.66 (d, J = 7.6 Hz, 1H), 3.09 (dd, J = 14.2, 3.9 Hz, 1H), 2.92 (dd, J = 14.1, 6.4Hz, 1H), 1.28 (d, J = 6.4 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  206.25, 138.27, 137.31, 131.96, 129.01, 128.59, 128.36, 128.18, 122.35, 84.69, 74.22, 73.16, 72.40, 44.55, 18.13; HMRS (ESI) calcd for  $C_{19}H_{19}O_3BrNa [M + Na]^+$  397.0405, found 397.0409.

### (2S,3S,6R)-3-Benzyloxy-2-methyl-6-(3-nitrophenyl)-tetrahydro-4H-pyran-4-one (4pα):

To a solution of 3-nitroaniline (3h) (35.0 mg, 0.25 mmol) in tetrahydrofuran (THF) (4 mL) were added nitrosonium tetrafluoroborate (44.0 mg, 0.38 mmol) at -40 °C under argon. Then, the acetonitrile-dry ice bath was removed and the mixture was stirred at room temperature for 0.5 h, during this period, a large amount of solid suspension was observed. Then the rhamnal 1f (31.0)mg, 0.1 mmol) and bis(dibenzylideneacetone)palladium (Pd(dba)<sub>2</sub>) (8.7 mg, 0.015 mmol) were added to the reaction mixture, and the mixture was stirred at room temperature for 1 h. After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat.NaHCO<sub>3</sub>, 20 mL) and the aqueous layer was extracted with ethyl acetate (20 mL \* 3). The combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: 1/10) to afford **4pa** as a white foam (26.6 mg, 78%). R<sub>f</sub> = 0.38 (ethyl acetate/petroleum ether: 1/3);  $[a]_D^{19} = -87.3$  (c 0.3, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.30 (s, 1H), 8.15 (dd, J = 8.1, 1.5 Hz, 1H), 7.72 (d, J = 7.7 Hz, 1H), 7.54 (t, J = 8.0 Hz, 1H), 7.37 – 7.28 (m, 5H), 5.32 (t, J = 5.4 Hz, 1H, H-1, <sup>1</sup>C<sub>4</sub> (L,  $\alpha$ )), 4.81 (d, J = 11.6 Hz, 1H), 4.49 (d, J = 11.6 Hz, 1H), 3.95 – 3.83 (m, 1H), 3.70 (d, J = 6.9 Hz, 1H), 3.16 (dd, J = 14.1, 5.0 Hz, 1H), 2.96 (ddd, J = 14.1, 5.9, 0.6 Hz, 1H), 1.33 (d, J = 6.4 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  205.63, 148.69, 141.67, 137.08, 132.82, 129.86, 128.61, 128.34, 128.24, 123.18, 122.22, 84.32, 73.65, 73.33, 73.02, 44.68, 17.69; HMRS (ESI) calcd for C<sub>19</sub>H<sub>19</sub>O<sub>5</sub>NNa [M + Na]<sup>+</sup> 364.1156, found 364.1165.

### (2S,3S,6R)-3-Benzyloxy-2-methyl-6-(3-carboxyphenyl)-tetrahydro-4H-pyran-4-o ne (4q $\alpha$ ):

To a solution of 3-aminobenzoic acid (**3i**) (34.0 mg, 0.25 mmol) in tetrahydrofuran (THF) (4 mL) were added nitrosonium tetrafluoroborate (44.0 mg, 0.38 mmol) at -40 °C under argon. Then, the acetonitrile-dry ice bath was removed and the mixture was stirred at room temperature for 0.5 h, during this period, a large amount of solid suspension was observed. Then the rhamnal **1f** (31.0 mg, 0.1 mmol) and bis(dibenzylideneacetone)palladium (Pd(dba)<sub>2</sub>) (8.7 mg, 0.015 mmol) were added to the reaction mixture, and the mixture was stirred at room temperature for 1 h. After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat.NaHCO<sub>3</sub>, 20 mL) and the aqueous layer was extracted with

ethyl acetate (20 mL \* 3). The combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (MeOH/DCM: 1/20) to afford  $4q\alpha$  as a white foam (17.0 mg, 49%). R<sub>f</sub> = 0.24 (MeOH/DCM: 1/20);  $[a]_D^{20}$  = -81.8 (c 0.1, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.16 (s, 1H), 8.04 (d, J = 7.7 Hz, 1H), 7.65 (d, J = 7.8 Hz, 1H), 7.48 (t, J = 7.8 Hz, 1H), 7.37 – 7.28 (m, 5H), 5.33 (t, J = 5.2 Hz, 1H, H-1, <sup>1</sup>C<sub>4</sub> (L,  $\alpha$ )), 4.84 (d, J = 11.6 Hz, 1H), 4.50 (d, J = 11.6 Hz, 1H), 3.96 – 3.83 (m, 1H), 3.69 (d, J = 7.2 Hz, 1H), 3.19 (dd, J = 14.1, 4.6 Hz, 1H), 2.95 (dd, J = 13.9, 6.2 Hz, 1H), 1.32 (d, J = 6.4 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  206.19, 171.50, 140.04, 137.27, 132.28, 130.04, 129.99, 129.11, 129.04, 128.60, 128.38, 128.20, 84.55, 77.48, 77.16, 76.84, 74.21, 73.07, 72.84, 44.74, 17.90; HMRS (ESI) calcd for C<sub>20</sub>H<sub>24</sub>O<sub>5</sub>N [M + NH<sub>4</sub>]<sup>+</sup> 358.1649, found 358.1652.

### (2S,3S,6R)-3-Benzyloxy-2-methyl-6-(1-naphthyl)-tetrahydro-4H-pyran-4-one (4 $r\alpha$ ):

To a solution of α-naphthylamine (**3j**) (36.0 mg, 0.25 mmol) in tetrahydrofuran (THF) (4 mL) were added nitrosonium tetrafluoroborate (44.0 mg, 0.38 mmol) at -40 °C under argon. Then, the acetonitrile-dry ice bath was removed and the mixture was stirred at room temperature for 0.5 h, during this period, a large amount of solid suspension was observed. Then the rhamnal **1f** (31.0 mg, 0.1 mmol) and bis(dibenzylideneacetone)palladium (Pd(dba)<sub>2</sub>) (8.7 mg, 0.015 mmol) were added to the reaction mixture, and the mixture was stirred at room temperature for 1 h. After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat.NaHCO<sub>3</sub>, 20 mL) and the aqueous layer was extracted with ethyl acetate (20 mL \* 3). The combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was evaporated to dryness. The residue was purified by column

chromatography on silica gel (ethyl acetate/petroleum ether: 1/10) to afford  $4\mathbf{r}\alpha$  as a white foam (20.8 mg, 60%).  $R_f = 0.29$  (ethyl acetate/petroleum ether: 1/6);  $[a]_D^{18} = -278.3$  (c 0.2, CHCl<sub>3</sub>);  $^1$ H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.36 (d, J = 8.1 Hz, 1H), 7.88 – 7.78 (m, 2H), 7.57 – 7.45 (m, 3H), 7.41 – 7.28 (m, 6H), 5.97 (dd, J = 6.7, 2.4 Hz, 1H, H-1,  $^1$ C<sub>4</sub> (L,  $\alpha$ )), 4.91 (d, J = 11.5 Hz, 1H), 4.55 (d, J = 11.5 Hz, 1H), 3.72 (d, J = 8.2 Hz, 1H), 3.68 – 3.60 (m, 1H), 3.28 (dd, J = 14.6, 2.7 Hz, 1H), 3.13 (dd, J = 14.6, 6.9 Hz, 1H), 1.20 (d, J = 6.1 Hz, 3H);  $^{13}$ C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  207.31, 137.55, 134.43, 134.21, 131.63, 129.51, 128.84, 128.57, 128.39, 128.13, 126.48, 126.13, 126.05, 125.01, 124.78, 85.27, 73.45, 72.69, 71.60, 44.88, 18.56; HMRS (ESI) calcd for  $C_{23}H_{22}O_3Na$  [M + Na]<sup>+</sup> 369.1462, found 369.1468.

### (2S,3S,6R)-3-Benzyloxy-2-methyl-6-(2-methyl-5-fluorophenyl)-tetrahydro-4H-py ran-4-one (4sα):

To a solution of 5-fluoro-2-methoxy-aniline (**3k**) (35.0 mg, 0.25 mmol) in tetrahydrofuran (THF) (4 mL) were added nitrosonium tetrafluoroborate (44.0 mg, 0.38 mmol) at -40 °C under argon. Then, the acetonitrile-dry ice bath was removed and the mixture was stirred at room temperature for 0.5 h, during this period, a large amount of solid suspension was observed. Then the rhamnal **1f** (31.0 mg, 0.1 mmol) and bis(dibenzylideneacetone)palladium (Pd(dba)<sub>2</sub>) (8.7 mg, 0.015 mmol) were added to the reaction mixture, and the mixture was stirred at room temperature for 1 h. After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat.NaHCO<sub>3</sub>, 20 mL) and the aqueous layer was extracted with ethyl acetate (20 mL \* 3). The combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: 1/10) to afford **4sα** as a

white foam (21.7 mg, 63%).  $R_f = 0.33$  (ethyl acetate/petroleum ether: 1/6);  $[a]_D^{20} = -32.9$  (c 0.5, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.39 – 7.28 (m, 5H), 7.23 (dd, J = 9.2, 3.1 Hz, 1H), 6.98 – 6.92 (m, 1H), 6.79 (dd, J = 9.0, 4.3 Hz, 1H), 5.39 (dd, J = 7.7, 4.9 Hz, 1H, H-1, <sup>1</sup>C<sub>4</sub> (L, α)), 4.77 (d, J = 11.7 Hz, 1H), 4.49 (d, J = 11.7 Hz, 1H), 4.31 – 4.23 (m, 1H), 3.80 (s, 3H), 3.61 (dd, J = 4.9, 0.9 Hz, 1H), 2.89 (dd, J = 14.2, 7.7 Hz, 1H), 2.79 (ddd, J = 14.2, 4.8, 0.9 Hz, 1H), 1.29 (d, J = 6.7 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 207.34, 157.22 (d, J = 239.0 Hz), 152.42, 137.30, 130.45 (d, J = 6.8 Hz), 128.63, 128.31, 128.19, 114.99 (d, J = 22.9 Hz), 114.62 (d, J = 24.5 Hz), 111.56 (d, J = 8.1 Hz), 84.14, 73.70, 72.66, 68.54, 55.97, 45.30, 16.81; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -122.92; HMRS (ESI) calcd for  $C_{20}H_{21}O_{4wβ}a$  [M + Na]<sup>+</sup> 367.1317, found 367.1313.

### (2S,3S,6R)-3-Benzyloxy-2-methyl-6-(3,5-bis-trifluoromethylphenyl)-tetrahydro-4 H-pyran-4-one (4tα):

To a solution of 3,5-bis(trifluoromethyl)aniline (31) (65.0 mg, 0.25 mmol) in tetrahydrofuran (THF) (4 mL) were added nitrosonium tetrafluoroborate (44.0 mg, 0.38 mmol) at -40 °C under argon. Then, the acetonitrile-dry ice bath was removed and the mixture was stirred at room temperature for 0.5 h, during this period, a large amount of solid suspension was observed. Then the rhamnal 1f (31.0 mg, 0.1 mmol) and bis(dibenzylideneacetone)palladium (Pd(dba)<sub>2</sub>) (8.7 mg, 0.015 mmol) were added to the reaction mixture, and the mixture was stirred at room temperature for 1 h. After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat.NaHCO<sub>3</sub>, 20 mL) and the aqueous layer was extracted with ethyl acetate (20 mL \* 3). The combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica

gel (ethyl acetate/petroleum ether: 1/10) to afford  $\mathbf{4t\alpha}$  as a white foam (29.8 mg, 69%).  $R_f = 0.31$  (ethyl acetate/petroleum ether: 1/6);  $[a]_D^{17} = -56.4$  (c 0.3, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.86 (s, 2H), 7.82 (s, 1H), 7.38 – 7.29 (m, 5H), 5.28 (t, J = 5.8 Hz, 1H, H-1, <sup>1</sup>C<sub>4</sub> (L,  $\alpha$ )), 4.78 (d, J = 11.6 Hz, 1H), 4.48 (d, J = 11.6 Hz, 1H), 4.06 (p, J = 6.5 Hz, 1H), 3.68 (dd, J = 5.9, 0.9 Hz, 1H), 3.14 (dd, J = 14.0, 6.4 Hz, 1H), 2.88 (ddd, J = 14.0, 5.3, 0.9 Hz, 1H), 1.33 (d, J = 6.6 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  205.26, 142.49, 136.97, 132.27 (q, J = 33.4 Hz, -CF<sub>3</sub>), 128.69, 128.39, 128.35, 126.93 – 126.89 (m), 123.28 (q, J = 272.9 Hz), 122.31 – 122.21 (m), 84.01, 74.04, 73.23, 72.85, 45.04, 17.14; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -62.84 (s, 6F); HMRS (ESI) calcd for  $C_{22}H_{19}O_5F_6$  [M + HCO<sub>2</sub>] 477.1143, found 477.1143.

### (2S,3S,6R)-3-Benzyloxy-2-methyl-6-(4-biphenyl)-tetrahydro-4H-pyran-4-one (4u $\alpha$ ):

To a solution of 4-aminodiphenyl (**3m**) (42.0 mg, 0.25 mmol) in tetrahydrofuran (THF) (4 mL) were added nitrosonium tetrafluoroborate (44.0 mg, 0.38 mmol) at -40 °C under argon. Then, the acetonitrile-dry ice bath was removed and the mixture was stirred at room temperature for 0.5 h, during this period, a large amount of solid suspension was observed. Then the rhamnal **1f** (31.0 mg, 0.1 mmol) and bis(dibenzylideneacetone)palladium (Pd(dba)<sub>2</sub>) (8.7 mg, 0.015 mmol) were added to the reaction mixture, and the mixture was stirred at room temperature for 1 h. After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat.NaHCO<sub>3</sub>, 20 mL) and the aqueous layer was extracted with ethyl acetate (20 mL \* 3). The combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: 1/10) to afford **4uα** as a white foam (24.6 mg, 66%).

 $R_f = 0.26$  (ethyl acetate/petroleum ether: 1/6);  $[a]_D^{21} = -119.8$  (c 0.4, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.60 – 7.53 (m, 4H), 7.47 – 7.40 (m, 4H), 7.37 – 7.28 (m, 6H), 5.35 (dd, J = 6.4, 3.5 Hz, 1H, H-1, <sup>1</sup>C<sub>4</sub> (L,  $\alpha$ )), 4.87 (d, J = 11.5 Hz, 1H), 4.51 (d, J = 11.5 Hz, 1H), 3.91 – 3.82 (m, 1H), 3.69 (d, J = 7.9 Hz, 1H), 3.19 (dd, J = 14.2, 3.5 Hz, 1H), 2.98 (dd, J = 14.2, 6.6 Hz, 1H), 1.32 (d, J = 6.3 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  206.60, 141.18, 140.67, 138.13, 137.42, 128.94, 128.59, 128.39, 128.16, 127.79, 127.60, 127.57, 127.25, 84.91, 74.66, 73.25, 72.15, 44.65, 18.33; HMRS (ESI) calcd for C<sub>25</sub>H<sub>28</sub>O<sub>3</sub>N [M + NH<sub>4</sub>]<sup>+</sup> 390.2064, found 390.2072.

### (2R,3R,6R)-3-Benzyloxy-2-benzyloxymethyl-6-(4-methoxyphenyl)-tetrahydro-4H -pyran-4-one (4aβ):

To a solution of  $4a\alpha$  (10.0 mg, 0.023 mmol) in ether (Et<sub>2</sub>O) (1 mL) was added HBF<sub>4</sub> (50  $\mu$ L, 50% V/V in Et<sub>2</sub>O), and the mixture was stirred at room temperature for 1 h. After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat.NaHCO<sub>3</sub>, 10 mL) and the aqueous layer was extracted with ethyl acetate (10 mL \* 3). The combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: 1/10) to afford  $4a\beta$  as a white foam (9.2 mg, 92%). R<sub>f</sub> = 0.30 (ethyl acetate/petroleum ether: 1/6); [a]<sub>D</sub><sup>16</sup> = +105.0 (c 0.1, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.34 – 7.29 (m, 12H), 6.90 (d, J = 8.7 Hz, 2H), 4.94 (d, J = 11.1 Hz, 1H), 4.66 (d, J = 12.2 Hz, 1H), 4.63 (dd, J = 10.6, 2.9 Hz, 1H, H-1), 4.56 (d, J = 12.2 Hz, 1H), 4.50 (d, J = 11.1 Hz, 1H), 4.27 (d, J = 8.9 Hz, 1H), 3.83 – 3.81 (m, 3H), 3.81 (s, 3H, MeO-), 2.82 (dd, J = 13.8, 10.7 Hz, 1H), 2.71 (dd, J = 13.8, 3.1 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  206.04, 159.66, 138.38, 137.63, 132.40, 128.54, 128.52, 128.39, 128.09, 127.87, 127.78, 127.24, 114.14,

81.00, 79.90, 79.35, 73.71, 73.67, 69.39, 55.48, 50.11; HMRS (ESI) calcd for HMRS (ESI) calcd for  $C_{27}H_{29}O_5[M + H]^+$  433.2010, found 433.2006.

### (2R,3R,6R)-3-Methoxy-2-methoxymethyl-6-(4-methoxyphenyl)-tetrahydro-4H-p yran-4-one (4bβ):

To a solution of **4ba** (10.0 mg, 0.036 mmol) in ether (Et<sub>2</sub>O) (1 mL) was added HBF<sub>4</sub> (50  $\mu$ L, 50% V/V in Et<sub>2</sub>O), and the mixture was stirred at room temperature for 1 h. After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat.NaHCO<sub>3</sub>, 10 mL) and the aqueous layer was extracted with ethyl acetate (10 mL \* 3). The combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: 1/6) to afford **4bβ** as a white foam (8.3 mg, 83%). R<sub>f</sub> = 0.27 (ethyl acetate/petroleum ether: 1/3);  $[a]_D^{15}$  = +132.8 (c 0.1, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.30 (d, J = 8.8 Hz, 2H), 6.89 (d, J = 8.8 Hz, 2H), 4.61 (dd, J = 11.3, 2.7 Hz, 1H, H-1, <sup>4</sup>C<sub>1</sub> (D,  $\beta$ )), 4.00 (d, J = 9.9 Hz, 1H), 3.80 (s, 3H), 3.75 – 3.70 (m, 3H), 3.56 (s, 3H), 3.46 (s, 3H), 2.78 (ddd, J = 13.7, 11.3, 0.8 Hz, 1H), 2.70 (dd, J = 13.7, 2.8 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  206.13, 159.68, 132.20, 127.32, 114.14, 82.09, 80.97, 79.48, 71.83, 59.89, 59.84, 55.47, 49.96; HMRS (ESI) calcd for C<sub>15</sub>H<sub>21</sub>O<sub>5</sub> [M + H]<sup>+</sup> 281.1384, found 281.1385.

# (2R,3R,6R)-3-*Tert*-butyldimethylsilyloxy-2-hydroxymethyl-6-(4-methoxyphenyl)-tetrahydro-4H-pyran-4-one (4cβ):

To a solution of **4cα** (10.0 mg, 0.021 mmol) in ether (2 mL) was added HBF<sub>4</sub> (50  $\mu$ L, 50% V/V in Et<sub>2</sub>O), and the mixture was stirred at room temperature for 1 h. After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat.NaHCO<sub>3</sub>, 10 mL) and the aqueous layer was extracted with ethyl acetate (10 mL \* 3). The combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: 1/6) to afford **4cβ** as a colorless oil (5.8 mg, 75%). R<sub>f</sub> = 0.31 (ethyl acetate/petroleum ether: 1/3); [ $\alpha$ ]<sub>D</sub><sup>19</sup> = +96.7 (c 0.2, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.29 (d, J = 8.6 Hz, 2H), 6.91 (d, J = 8.7 Hz, 2H), 4.67 (dd, J = 11.2, 2.4 Hz, 1H, H-1, <sup>4</sup>C<sub>1</sub>(D,  $\beta$ )), 4.36 (d, J = 9.4 Hz, 1H), 4.04 – 3.95 (m, 1H), 3.89 – 3.76 (m, 1H), 3.81 (s, 3H), 3.70 – 3.64 (m, 1H), 2.76 (dd, J = 13.8, 11.3 Hz, 1H), 2.69 (dd, J = 13.8, 2.7 Hz, 1H), 2.03 – 2.00 (m, 1H, -OH), 0.94 (s, 9H), 0.20 (s, 3H), 0.07 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 205.44, 159.88, 132.10, 127.39, 114.25, 82.51, 79.35, 75.32, 62.71, 55.50, 49.19, 25.92, 18.62, -4.13, -5.45; HMRS (ESI) calcd for C<sub>19</sub>H<sub>31</sub>O<sub>5</sub>Si [M + H]<sup>+</sup> 367.1936, found 367.1938.

### (2R,3S,6R)-3-Benzyloxy-2-benzyloxymethyl-6-(4-methoxyphenyl)-tetrahydro-4H -pyran-4-one (4dβ):

To a solution of  $4d\alpha$  (10.0 mg, 0.023 mmol) in ether (1 mL) was added HBF<sub>4</sub> (50  $\mu$ L, 50% V/V in Et<sub>2</sub>O), and the mixture was stirred at room temperature for 1 h. After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat.NaHCO<sub>3</sub>, 10 mL) and the aqueous layer was extracted with ethyl acetate (10 mL \* 3). The combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: 1/10) to afford  $4d\beta$  as a colorless oil (6.4 mg, 64%).  $R_f = 0.35$  (ethyl acetate/petroleum ether: 1/6);  $[a]_D^{21} =$ 

+30.5 (c 0.2, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.34 – 7.25 (m, 12H), 6.88 (d, J = 8.5 Hz, 2H), 4.62 – 4.51 (m, 3H, H-1, Bn), 4.47 (d, J = 12.0 Hz, 1H, Bn), 4.41 (d, J = 11.9 Hz, 1H, Bn), 3.91 (t, J = 6.0 Hz, 1H, H-4), 3.86 – 3.77 (m, 3H, H-5, H-6a, H-6b), 3.80 (s, 3H), 3.20 – 3.12 (m, 1H), 2.48 (d, J = 13.2 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 207.06, 159.71, 138.19, 137.21, 132.70, 128.59, 128.53, 128.25, 128.18, 127.85, 127.42, 114.14, 80.13, 79.86, 79.69, 73.67, 72.24, 68.58, 55.48, 47.30; HMRS (ESI) calcd for  $C_{27}H_{29}O_5$  [M + H]<sup>+</sup> 433.2010, found 433.2008.

## (2R,3R,6R)-3-Benzyloxy-2-methyl-6-(4-methoxyphenyl)-tetrahydro-4H-pyran-4-one (4eβ):

To a solution of **4eα** (10.0 mg, 0.03 mmol) in ether (1 mL) was added HBF<sub>4</sub> (50  $\mu$ L, 50% V/V in Et<sub>2</sub>O), and the mixture was stirred at room temperature for 1 h. After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat.NaHCO<sub>3</sub>, 10 mL) and the aqueous layer was extracted with ethyl acetate (10 mL \* 3). The combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: 1/10) to afford **4eβ** as a white foam (9.2 mg, 92%). R<sub>f</sub>= 0.41 (ethyl acetate/petroleum ether: 1/6); [ $\alpha$ ]<sub>D</sub><sup>16</sup> = +187.1 (c 0.1, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.42 – 7.27 (m, 7H), 6.89 (d, J = 8.7 Hz, 2H), 4.99 (d, J = 11.5 Hz, 1H), 4.62 (dd, J = 10.7, 3.3 Hz, 1H, H-1, <sup>4</sup>C<sub>1</sub>(D, β)), 4.54 (d, J = 11.5 Hz, 1H), 3.80 (s, 3H), 3.82 – 3.74 (m, 2H), 2.76 (dd, J = 13.6, 11.1 Hz, 1H), 2.70 (dd, J = 13.7, 3.4 Hz, 1H), 1.46 – 1.44 (m, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 205.72, 159.65, 137.59, 132.43, 128.60, 128.45, 128.17, 127.24, 114.18, 85.06, 79.11, 77.80, 73.45, 55.47, 50.14, 19.51; HMRS (ESI) calcd for C<sub>20</sub>H<sub>22</sub>O<sub>4</sub>Na [M + Na]<sup>+</sup> 349.1810, found 349.1817.

(2S,3S,6S)-3-Benzyloxy-2-methyl-6-(4-methoxyphenyl)-tetrahydro-4H-pyran-4-o ne (4fβ):

To a solution of **4fa** (10.0 mg, 0.03 mmol) in ether (1 mL) was added HBF<sub>4</sub> (50  $\mu$ L, 50% V/V in Et<sub>2</sub>O), and the mixture was stirred at room temperature for 1 h. After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat.NaHCO<sub>3</sub>, 10 mL) and the aqueous layer was extracted with ethyl acetate (10 mL \* 3). The combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: 1/10) to afford **4fB** as a white foam (9.0 mg, 90%). R<sub>f</sub> = 0.42 (ethyl acetate/petroleum ether: 1/6);  $[a]_D^{22} = -224.9$  (c 0.7, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.42 – 7.25 (m, 7H), 6.90 – 6.87 (m, 2H), 4.99 (d, J = 11.5 Hz, 1H), 4.62 (dd, J = 10.5, 3.5 Hz, 1H, H-1, <sup>1</sup>C<sub>4</sub>(L,  $\beta$ )), 4.54 (d, J = 11.5 Hz, 1H), 3.80 (s, 3H), 3.79 – 3.74 (m, 2H), 2.79 – 2.67 (m, 2H), 1.45 (dd, J = 3.9, 1.8 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  205.69, 159.69, 137.64, 132.49, 128.61, 128.45, 128.17, 127.24, 114.21, 85.11, 79.12, 77.82, 73.47, 55.48, 50.15, 19.52; HMRS (ESI) calcd for C<sub>20</sub>H<sub>22</sub>O<sub>4</sub>Na [M + Na]<sup>+</sup> 349.1811, found 349.1815.

(2R,3R,6R)-3-Benzyloxy-2-benzyloxymethyl-6-phenyl-tetrahydro-4H-pyran-4-on e (4hβ):

To a solution of  $4h\alpha$  (10.0 mg, 0.025 mmol) in ether (1 mL) was added HBF<sub>4</sub> (50  $\mu$ L, 50% V/V in Et<sub>2</sub>O), and the mixture was stirred at room temperature for 5 h. After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat.NaHCO<sub>3</sub>, 10 mL) and the aqueous layer was extracted with

ethyl acetate (10 mL \* 3). The combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: 1/10) to afford  $4h\beta$  as a white foam (6.1 mg, 61%). R<sub>f</sub> = 0.37 (ethyl acetate/petroleum ether: 1/6);  $[a]_D^{20}$  = +84.8 (c 0.2, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.39 – 7.28 (m, 15H), 4.94 (d, J = 11.1 Hz, 1H), 4.69 (t, J = 7.0 Hz, 1H, H-1), 4.66 (d, J = 12.3 Hz, 1H), 4.58 (d, J = 12.3 Hz, 1H), 4.50 (d, J = 11.1 Hz, 1H), 4.28 (d, J = 9.5 Hz, 1H), 3.87 – 3.81 (m, 3H), 2.76 (d, J = 6.9 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  205.84, 140.27, 138.44, 137. 66, 128.77, 128.55, 128.53, 128.40, 128.31, 128.10, 127.85, 127.79, 125.83, 81.12, 79.92, 79.57, 73.75, 73.71, 69.44, 50.18. The <sup>1</sup>H/<sup>13</sup>C NMR spectroscopic data are coincide with the previous report. <sup>[1]</sup>

### (2R,3R,6R)-3-Benzyloxy-2-benzyloxymethyl-6-(4-bromophenyl)-tetrahydro-4H-p yran-4-one (4iβ):

To a solution of  $4i\alpha$  (10.0 mg, 0.021 mmol) in ether (Et<sub>2</sub>O) (1 mL) was added HBF<sub>4</sub> (75  $\mu$ L, 50% V/V in Et<sub>2</sub>O), and the mixture was stirred at room temperature for 5 h. After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat.NaHCO<sub>3</sub>, 10 mL) and the aqueous layer was extracted with ethyl acetate (10 mL \* 3). The combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: 1/10) to afford  $4i\beta$  as a white foam (5.1 mg, 51%). R<sub>f</sub> = 0.38 (ethyl acetate/petroleum ether: 1/6);  $[a]_D^{20}$  = +133.6 (c 0.2, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.50 (d, J = 8.4 Hz, 2H), 7.35 – 7.24 (m, 12H), 4.93 (d, J = 11.1 Hz, 1H), 4.65 (dd, J = 11.1, 3.3 Hz, 1H, H-1, <sup>4</sup>C<sub>1</sub>(D,  $\beta$ )), 4.57 (d, J = 12.2 Hz, 1H), 4.49 (d, J = 11.1 Hz, 1H), 4.27 – 4.23 (m, 1H), 3.86 –

3.78 (m, 1H), 2.77 – 2.65 (m, 1H);  $^{13}$ C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  205.43, 139.19, 138.22, 137.45, 131.86, 128.55, 128.54, 128.39, 128.14, 127.85, 127.50, 122.16, 80.93, 79.67, 78.76, 73.69, 73.67, 69.22, 49.94; HMRS (ESI) calcd for  $C_{26}H_{25}O_4NaBr$  [M + Na]<sup>+</sup> 503.0828, found 503.0826.

### (2R,3R,6R)-3-Benzyloxy-2-benzyloxymethyl-6-(4-nitrophenyl)-tetrahydro-4H-py ran-4-one (4jβ):

To a solution of 4jα (10.0 mg, 0.022 mmol) in ether (Et<sub>2</sub>O) (1 mL) was added HBF<sub>4</sub> (50  $\mu$ L, 50% V/V in Et<sub>2</sub>O), and the mixture was stirred at room temperature for 5 h. After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat.NaHCO<sub>3</sub>, 10 mL) and the aqueous layer was extracted with ethyl acetate (10 mL \* 3). The combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: 1/6) to afford 4iß as a white foam (6.3 mg, 63%).  $R_f = 0.30$  (ethyl acetate/petroleum ether: 1/3);  $[\alpha]_D^{19} =$ +137.8 (c 0.2, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.24 (d, J = 8.8 Hz, 2H), 7.56 (d, J = 8.7 Hz, 2H, 7.38 - 7.28 (m, 10H), 4.95 (d, J = 11.1 Hz, 1H), 4.80 (dd, J = 11.6, 2.5)Hz, 1H, H-1,  ${}^{4}C_{1}(D, \beta)$ ), 4.65 (d, J = 12.2 Hz, 1H), 4.58 (d, J = 12.2 Hz, 1H), 4.51 (d, J= 11.1 Hz, 1H), 4.28 (d, J = 9.3 Hz, 1H, H-4), 3.89 – 3.82 (m, 3H), 2.81 (dd, J = 13.8, 2.6 Hz, 1H), 2.68 (ddd, J = 13.8, 11.7, 0.9 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$ 204.70, 147.80, 147.16, 138.11, 137.35, 128.59, 128.42, 128.23, 127.95, 127.87, 126.53, 124.03, 80.96, 79.54, 78.16, 73.78, 73.72, 69.16, 49.71; HMRS (ESI) calcd for  $C_{26}H_{29}O_6N_2 [M + NH_4]^+ 465.2021$ , found 465.2018.

# (2R,3R,6R)-3-Benzyloxy-2-benzyloxymethyl-6-(4-ethoxyphenyl)-tetrahydro-4H-p yran-4-one (4kβ):

To a solution of 4kα (10.0 mg, 0.022 mmol) in ether (Et<sub>2</sub>O) (1 mL) was added HBF<sub>4</sub> (50  $\mu$ L, 50% V/V in Et<sub>2</sub>O), and the mixture was stirred at room temperature for 1 h. After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat.NaHCO<sub>3</sub>, 10 mL) and the aqueous layer was extracted with ethyl acetate (10 mL \* 3). The combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: 1/10) to afford 4kβ as a white foam (9.0 mg, 90%).  $R_f = 0.25$  (ethyl acetate/petroleum ether: 1/6);  $[a]_D^{20} =$ +123.6 (c 0.1, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.35 - 7.27 (m, 12H), 6.89 (d, J=8.7 Hz, 2H), 4.94 (d, J = 11.1 Hz, 1H), 4.65 (d, J = 12.2 Hz, 1H), 4.61 (dd, J = 10.8, 2.9 Hz, 1H, H-1,  ${}^{4}C_{1}(D, \beta)$ ), 4.56 (d, J = 12.2 Hz, 1H), 4.49 (d, J = 11.1 Hz, 1H), 4.27 (d, J= 8.8 Hz, 1H, 4.03 (q, J = 7.0 Hz, 2H), 3.84 - 3.80 (m, 3H), 2.81 - 2.74 (m, 1H), 2.71(dd, J = 13.8, 3.0 Hz, 1H), 1.41 (t,  $J = 7.0 \text{ Hz}, 3\text{H}); ^{13}\text{C NMR}$  (100 MHz, CDCl<sub>3</sub>)  $\delta$ 206.12, 159.00, 138.35, 137.60, 132.18, 128.54, 128.52, 128.39, 128.09, 127.87, 127.78, 127.22, 114.67, 80.96, 79.87, 79.38, 73.68, 73.66, 69.33, 63.64, 50.10, 14.95; HMRS (ESI) calcd for  $C_{28}H_{31}O_5 [M + H]^+$  447.2166, found 447.2167.

### (2R,3R,6R)-3-Benzyloxy-2-benzyloxymethyl-6-(4-hydroxy-2-nitrophenyl)-tetrahy dro-4H-pyran-4-one (4lβ):

To a solution of  $4l\alpha$  (10.0 mg, 0.022 mmol) in ether (Et<sub>2</sub>O) (1 mL) was added HBF<sub>4</sub> (50  $\mu$ L, 50% V/V in Et<sub>2</sub>O), and the mixture was stirred at room temperature for 5 h. After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat.NaHCO<sub>3</sub>, 10 mL) and the aqueous layer was extracted with

ethyl acetate (10 mL \* 3). The combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: 1/3) to afford  $\mathbf{4l\beta}$  as a white foam (6.2 mg, 62%). R<sub>f</sub> = 0.25 (ethyl acetate/petroleum ether: 1/3);  $[a]_D^{20}$  = +277.1 (c 0.2, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.35 – 7.27 (m, 11H), 7.12 (s, 1H, -OH), 7.08 (s, 1H), 6.79 (d, J = 7.5 Hz, 1H), 5.12 (d, J = 10.5 Hz, 1H, H-1, <sup>4</sup>C<sub>1</sub>(D,  $\beta$ )), 4.97 (d, J = 11.2 Hz, 1H, Bn), 4.61 (d, J = 11.9 Hz, 1H, Bn), 4.54 (d, J = 11.8 Hz, 1H, Bn), 4.46 (d, J = 11.1 Hz, 1H, Bn), 4.07 (d, J = 9.9 Hz, 1H, H-4), 3.91 – 3.83 (m, 2H, H-5, H-6a), 3.77 (dd, J = 10.8, 5.4 Hz, 1H, H-6b), 2.93 (d, J = 13.5 Hz, 1H, H-2a), 2.72 – 2.63 (m, 1H, H-2b); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  204.70, 156.40, 148.10, 137.37, 136.89, 128.73, 128.63, 128.45, 128.39, 128.25, 125.83, 120.62, 111.40, 79.88, 79.46, 74.75, 73.93, 73.69, 69.68, 48.43; HMRS (ESI) calcd for C<sub>26</sub>H<sub>25</sub>O<sub>7</sub>NNa [M + Na]<sup>+</sup> 486.1524, found 486.1525.

# (2S,3S,6S)-3-Benzyloxy-2-methyl-6-(4-acetylphenyl)-tetrahydro-4H-pyran-4-one (4mβ):

To a solution of  $4m\alpha$  (10.0 mg, 0.029 mmol) in ether (Et<sub>2</sub>O) (1 mL) was added HBF<sub>4</sub> (50  $\mu$ L, 50% V/V in Et<sub>2</sub>O), and the mixture was stirred at room temperature for 5 h. After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat.NaHCO<sub>3</sub>, 10 mL) and the aqueous layer was extracted with ethyl acetate (10 mL \* 3). The combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: 1/5) to afford  $4m\beta$  as a white foam (6.0 mg, 60%). R<sub>f</sub> = 0.36 (ethyl acetate/petroleum ether: 1/3);  $[a]_D^{20}$  = -235.8 (c 0.1, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.96 (d, J = 8.3 Hz, 2H), 7.46 (d, J = 8.2 Hz, 2H), 7.43 – 7.31 (m, 5H), 5.00 (d, J = 11.4 Hz, 1H), 4.74 (dd, J = 11.4, 2.5

Hz, 1H, H-1,  ${}^{1}$ C<sub>4</sub> (L, β)), 4.55 (d, J = 11.4 Hz, 1H), 3.85 – 3.76 (m, 1H), 2.77 (dd, J = 13.7, 2.6 Hz, 1H), 2.71 – 2.64 (m, 1H), 2.60 (s, 3H), 1.48 (d, J = 5.3 Hz, 3H);  ${}^{13}$ C NMR (100 MHz, CDCl<sub>3</sub>) δ 204.96, 197.75, 145.37, 137.43, 136.94, 128.87, 128.62, 128.46, 128.23, 125.85, 84.84, 78.60, 77.94, 73.50, 50.02, 26.81, 19.46; HMRS (ESI) calcd for  $C_{21}H_{23}O_{4}$  [M + H]<sup>+</sup> 339.1591, found 339.1599.

#### (2S,3S,6S)-3-Benzyloxy-2-methyl-6-phenyl-tetrahydro-4H-pyran-4-one (4nβ):

To a solution of **4nα** (10.0 mg, 0.034 mmol) in ether (Et<sub>2</sub>O) (1 mL) was added HBF<sub>4</sub> (75  $\mu$ L, 50% V/V in Et<sub>2</sub>O), and the mixture was stirred at room temperature for 5 h. After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat.NaHCO<sub>3</sub>, 10 mL) and the aqueous layer was extracted with ethyl acetate (10 mL \* 3). The combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: 1/10) to afford **4nβ** as a white foam (4.5 mg, 45%). R<sub>f</sub> = 0.43 (ethyl acetate/petroleum ether: 1/6); [ $\alpha$ ]<sub>D</sub><sup>18</sup> = -86.7 (c 0.1, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.42 – 7.29 (m, 10H), 5.00 (d, J = 11.4 Hz, 1H), 4.67 (dd, J = 8.5, 5.6 Hz, 1H, H-1), 4.55 (d, J = 11.4 Hz, 1H), 3.82 – 3.74 (m, 2H), 2.77 – 2.69 (m, 2H), 1.46 (d, J = 5.4 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 205.51, 140.33, 137.63, 128.81, 128.61, 128.45, 128.33, 128.18, 125.82, 85.08, 79.35, 77.90, 73.49, 50.24, 19.50; HMRS (ESI) calcd for C<sub>19</sub>H<sub>20</sub>O<sub>3</sub>Na [M + Na]+ 319.1305, found 319.1310.

# (2S,3S,6S)-3-Benzyloxy-2-methyl-6-(4-bromophenyl)-tetrahydro-4H-pyran-4-one (4oβ):

To a solution of **4οα** (10.0 mg, 0.027 mmol) in ether (Et<sub>2</sub>O) (1 mL) was added HBF<sub>4</sub> (75  $\mu$ L, 50% V/V in Et<sub>2</sub>O), and the mixture was stirred at room temperature for 5 h. After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat.NaHCO<sub>3</sub>, 10 mL) and the aqueous layer was extracted with ethyl acetate (10 mL \* 3). The combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: 1/10) to afford **4οβ** as a white foam (4.2 mg, 42%). R<sub>f</sub> = 0.43 (ethyl acetate/petroleum ether: 1/6); [ $\alpha$ ]<sub>D</sub><sup>19</sup> = -125.9 (c 0.1, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.51 – 7.47 (m, 2H), 7.42 – 7.30 (m, 5H), 7.24 (d, J = 8.4 Hz, 2H), 4.99 (d, J = 11.4 Hz, 1H), 4.64 (dd, J = 11.0, 3.1 Hz, 1H, H-1, <sup>1</sup>C<sub>4</sub> (L,  $\beta$ )), 4.54 (d, J = 11.4 Hz, 1H), 3.83 – 3.74 (m, 2H), 2.73 (dd, J = 13.7, 3.1 Hz, 1H), 2.67 (dd, J = 13.5, 11.1 Hz, 1H), 1.46 (d, J = 5.4 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 205.13, 139.34, 137.47, 131.92, 128.63, 128.47, 128.23, 127.49, 122.19, 84.88, 78.57, 77.89, 76.84, 73.50, 50.09, 19.47; HMRS (ESI) calcd for HMRS (ESI) calcd for C<sub>19</sub>H<sub>19</sub>O<sub>3</sub>BrNa [M + Na]<sup>+</sup> 397.0405, found 397.0409.

# (2S,3S,6S)-3-Benzyloxy-2-methyl-6-(3-nitrophenyl)-tetrahydro-4H-pyran-4-one (4pβ):

To a solution of  $4p\alpha$  (10.0 mg, 0.029 mmol) in ether (Et<sub>2</sub>O) (1 mL) was added HBF<sub>4</sub> (50  $\mu$ L, 50% V/V in Et<sub>2</sub>O), and the mixture was stirred at room temperature for 3 h. After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat.NaHCO<sub>3</sub>, 10 mL) and the aqueous layer was extracted with ethyl acetate (10 mL \* 3). The combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. The

solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: 1/5) to afford  $4p\beta$  as a white foam (6.5 mg, 65%).  $R_f = 0.48$  (ethyl acetate/petroleum ether: 1/3);  $[a]_D^{20} = -104.5$  (c 0.2, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.29 (t, J = 1.8 Hz, 1H), 8.18 (ddd, J = 8.1, 2.2, 1.0 Hz, 1H), 7.66 (d, J = 7.7 Hz, 1H), 7.55 (t, J = 7.9 Hz, 1H), 7.43 – 7.31 (m, 5H), 5.00 (d, J = 11.4 Hz, 1H), 4.79 (dd, J = 11.6, 2.5 Hz, 1H, H-1, <sup>1</sup>C<sub>4</sub> (L,  $\beta$ )), 4.56 (d, J = 11.4 Hz, 1H), 3.88 – 3.76 (m, 2H), 2.81 (dd, J = 13.7, 2.6 Hz, 1H), 2.73 – 2.64 (m, 1H), 1.49 (d, J = 5.5 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  204.47, 148.63, 142.43, 137.34, 131.82, 129.79, 128.66, 128.50, 128.30, 123.23, 120.89, 84.70, 78.00, 77.87, 73.57, 49.92, 19.43; HMRS (ESI) calcd for C<sub>19</sub>H<sub>23</sub>O<sub>5</sub>N<sub>2</sub> [M + NH<sub>4</sub>]<sup>+</sup> 359.1602, found 359.1603.

## (2S,3S,6S)-3-Benzyloxy-2-methyl-6-(3-carboxyphenyl)-tetrahydro-4H-pyran-4-o ne (4qβ):

To a solution of  $4q\alpha$  (10.0 mg, 0.029 mmol) in ether (Et<sub>2</sub>O) (1 mL) was added HBF<sub>4</sub> (75 μL, 50% V/V in Et<sub>2</sub>O), and the mixture was stirred at room temperature for 5 h. After the completion of the reaction, the mixture was diluted with brine (10 mL) and the aqueous layer was extracted with ethyl acetate (10 mL \* 3). The combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (MeOH/DCM: 1/20) to afford  $4q\beta$  as a white foam (5.2 mg, 52%). R<sub>f</sub> = 0.24 (MeOH/DCM: 1/20);  $[a]_D^{20}$  = -48.0 (c 0.1, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.12 (s, 1H), 8.07 (d, J = 7.8 Hz, 1H), 7.62 (d, J = 7.7 Hz, 1H), 7.49 (t, J = 7.7 Hz, 1H), 7.42 – 7.32 (m, 5H), 5.00 (d, J = 11.4 Hz, 1H, Bn), 4.75 (dd, J = 10.9, 3.1 Hz, 1H, H-1,  $^{1}$ C<sub>4</sub> (L,  $\beta$ )), 4.56 (d, J = 11.4 Hz, 1H, Bn), 3.85 – 3.78 (m, 2H, H-4, H-5), 2.80 (dd, J = 13.7, 3.2 Hz, 1H, H-2a), 2.74 (dd, J = 13.6, 11.1 Hz, 1H, H-2b), 1.48 (d, J = 5.3 Hz, 3H, H-6);  $^{13}$ C NMR (100 MHz, CDCl<sub>3</sub>) δ 205.03

(C-3), 170.78 (-CO<sub>2</sub>H), 141.02, 137.52, 131.22, 130.10, 129.82, 129.07, 128.64, 128.49, 128.24, 127.61, 84.94, 78.66, 78.00, 73.56 (Ph- $CH_2$ -), 50.07, 19.47 (C-6); HMRS (ESI) calcd for  $C_{20}H_{24}O_5N$  [M + NH<sub>4</sub>]<sup>+</sup> 358.1649, found 358.1652.

# (2S,3S,6S)-3-Benzyloxy-2-methyl-6-(1-naphthyl)-tetrahydro-4H-pyran-4-one (4rβ):

To a solution of 4ra (10.0 mg, 0.029 mmol) in ether (Et<sub>2</sub>O) (1 mL) was added  $HBF_4$  (75  $\mu L$ , 50% V/V in  $Et_2O$ ), and the mixture was stirred at room temperature for 2.5 h. After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat.NaHCO<sub>3</sub>, 10 mL) and the aqueous layer was extracted with ethyl acetate (10 mL \* 3). The combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: 1/10) to afford 4rß as a white foam (4.1 mg, 41%).  $R_f = 0.35$  (ethyl acetate/petroleum ether: 1/6);  $[a]_D^{20} =$ -167.8 (c 0.1, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.95 (d, J = 8.3 Hz, 1H), 7.89 -7.86 (m, 1H), 7.82 (d, J = 8.2 Hz, 1H), 7.67 (d, J = 7.1 Hz, 1H), 7.57 – 7.47 (m, 3H), 7.45 - 7.33 (m, 5H), 5.39 (dd, J = 10.6, 3.4 Hz, 1H, H-1,  ${}^{1}C_{4}(L, \beta)$ ), 5.04 (d, J = 11.5 Hz, 1H), 4.59 (d, J = 11.5 Hz, 1H), 4.00 - 3.92 (m, 1H), 3.87 (d, J = 8.7 Hz, 1H), 2.98 - 2.87(m, 2H), 1.53 (d, J = 5.9 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  205.77, 137.61, 135.74, 133.90, 130.09, 129.12, 128.90, 128.63, 128.46, 128.20, 126.63, 125.91, 125.59, 123.14, 122.88, 85.19, 78.16, 76.47, 73.51, 49.36, 19.64; HMRS (ESI) calcd for  $C_{23}H_{22}O_3Na [M + Na]^+ 369.1462$ , found 369.1467.

# (2S,3S,6S)-3-Benzyloxy-2-methyl-6-(2-methyl-5-fluorophenyl)-tetrahydro-4H-py ran-4-one $(4s\beta)$ :

To a solution of 4sα (10.0 mg, 0.058 mmol) in ether (Et<sub>2</sub>O) (1 mL) was added HBF<sub>4</sub> (75  $\mu$ L, 50% V/V in Et<sub>2</sub>O), and the mixture was stirred at room temperature for 3 h. After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat.NaHCO<sub>3</sub>, 10 mL) and the aqueous layer was extracted with ethyl acetate (10 mL \* 3). The combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: 1/10) to afford 4sß as a white foam (4.5 mg, 45%).  $R_f = 0.39$  (ethyl acetate/petroleum ether: 1/6);  $[a]_D^{20} =$ -106.0 (c 0.1, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.42 – 7.30 (m, 5H), 7.24 (dd, J =9.2, 3.1 Hz, 1H), 6.96 - 6.90 (m, 1H), 6.77 (dd, J = 9.0, 4.3 Hz, 1H), 5.00 (d, J = 11.6 Hz, 1H), 4.95 (dd, J = 11.5, 2.2 Hz, 1H, H-1,  ${}^{1}C_{4}(L, \beta)$ ), 4.54 (d, J = 11.6 Hz, 1H), 3.79 (s, 3H), 3.82 - 3.72 (m, 2H), 2.87 (dd, J = 13.7, 2.3 Hz, 1H), 2.44 (ddd, J = 13.6, 11.5, 1.0Hz, 1H), 1.46 (d, J = 5.7 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  205.63,  $\delta$  157.46 (d, J= 238.4 Hz), 151.52, 137.64, 130.80 (d, J = 7.1 Hz), 128.60, 128.44, 128.16, 114.60 (d, J = 23.0 Hz), 113.17 (d, J = 24.8 Hz), 111.26 (d, J = 8.1 Hz), 84.99, 77.68, 73.48, 73.44, 55.92, 48.66, 19.51;  $^{19}$ F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -123.03; HMRS (ESI) calcd for  $C_{20}H_{21}O_4F [M + Na]^+ 367.1317$ , found 367.1308.

#### (2S,3S,6S)-3-Benzyloxy-2-methyl-6-(3,5-bis-trifluoromethylphenyl)-tetrahydro-4 H-pyran-4-one (4tβ):

To a solution of  $4t\alpha$  (10.0 mg, 0.023 mmol) in ether (Et<sub>2</sub>O) (1mL) was added HBF<sub>4</sub> (75  $\mu$ L, 50% V/V in Et<sub>2</sub>O), and the mixture was stirred at room temperature for 5 h.

After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat.NaHCO<sub>3</sub>, 10 mL) and the aqueous layer was extracted with ethyl acetate (10 mL \* 3). The combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: 1/10) to afford **4tβ** as a white foam (3.6 mg, 36%).  $R_f$ = 0.37 (ethyl acetate/petroleum ether: 1/6);  $[a]_D^{20}$  = -94.2 (c 0.2, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.89 – 7.78 (m, 3H), 7.43 – 7.32 (m, 5H), 5.00 (d, J = 11.4 Hz, 1H), 4.80 (dd, J = 11.7, 2.4 Hz, 1H, H-1,  $^{1}$ C<sub>4</sub>(L, β)), 4.56 (d, J = 11.4 Hz, 1H), 3.87 – 3.77 (m, 2H), 2.82 (dd, J = 13.7, 2.6 Hz, 1H), 2.72 – 2.62 (m, 1H), 1.49 (d, J = 5.5 Hz, 3H);  $^{13}$ C NMR (100 MHz, CDCl<sub>3</sub>) δ 204.12, 142.87, 137.30, 132.21(q, J = 32.1 Hz), 128.68, 128.51, 128.34, 126.93 – 126.89 (m), 123.28 (q, J = 272.9 Hz), 122.31 – 122.21 (m), 84.60, 78.09, 77.67, 73,60, 49.89, 19.39;  $^{19}$ F NMR (376 MHz, CDCl<sub>3</sub>) δ -62.85 (s, 6F); HMRS (ESI) calcd for C<sub>22</sub>H<sub>19</sub>O<sub>5</sub>F<sub>6</sub> [M + HCO<sub>2</sub>]<sup>-</sup> 477.1143, found 477.1144.

# (2S,3S,6S)-3-Benzyloxy-2-methyl-6-(4-biphenyl)-tetrahydro-4H-pyran-4-one (4uβ):

To a solution of  $4u\alpha$  (10.0 mg, 0.027 mmol) in ether (Et<sub>2</sub>O) (1 mL) was added HBF<sub>4</sub> (50  $\mu$ L, 50% V/V in Et<sub>2</sub>O), and the mixture was stirred at room temperature for 5 h. After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat.NaHCO<sub>3</sub>, 10 mL) and the aqueous layer was extracted with ethyl acetate (10 mL \* 3). The combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: 1/10) to afford  $4u\beta$  as a white foam (3.5 mg, 35%). R<sub>f</sub> = 0.33 (ethyl acetate/petroleum ether: 1/6);  $[a]_D^{20}$  = -76.4

(c 0.1, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.58 (t, J = 8.1 Hz, 4H), 7.47 – 7.32 (m, 10H), 5.01 (d, J = 11.4 Hz, 1H), 4.72 (t, J = 7.1 Hz, 1H, H-1), 4.56 (d, J = 11.4 Hz, 1H), 3.87 – 3.76 (m, 2H), 2.79 (d, J = 6.6 Hz, 2H), 1.48 (d, J = 5.6 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  205.54, 141.37, 140.79, 139.23, 137.57, 128.95, 128.62, 128.47, 128.20, 127.59, 127.27, 126.32, 85.05, 79.16, 77.94, 73.49, 50.13, 19.53; HMRS (ESI) calcd for  $C_{25}H_{24}O_3Na$  [M + Na]<sup>+</sup> 395.1617, found 395.1612.

#### (4R,5S,E)-4,6-Di(benzyloxy)-5-hydroxy1-(4-bromophenyl)-3-ono-1-hexene (6):

To a solution of 4iα (10.0 mg, 0.021 mmol) in ether (Et<sub>2</sub>O) (1 mL) was added HBF<sub>4</sub>  $(75 \mu L, 50\% \text{ V/V} \text{ in Et}_2\text{O})$ , and the mixture was stirred at room temperature for 5 h. After the completion of the reaction, the mixture was diluted with saturated sodium bicarbonate solution (sat.NaHCO3, 10 mL) and the aqueous layer was extracted with ethyl acetate (10 mL \* 3). The combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was evaporated to dryness. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether: 1/10) to afford 6h as a white foam (2.5 mg, 25%).  $R_f = 0.13$  (ethyl acetate/petroleum ether: 1/6);  $[\alpha]_D^{20} = 0$  (c 0.2, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.62 (d, J = 16.0 Hz, 1H, Ph-HC=CH), 7.51 (d, J = 8.5 Hz, 2H), 7.38 (d, J = 8.5 Hz, 2H), 7.35 - 7.27 (m, 10H), 7.13 (d, J = 16.0 Hz)1H, Ph-HC=CH-CO), 4.64 (d, J = 11.6 Hz, 1H, Bn), 4.54 (d, J = 11.8 Hz, 1H, Bn), 4.50  $(d, J = 11.8 \text{ Hz}, 2H, Bn), 4.16 - 4.10 \text{ (m, } 2H, H-4, H-5), } 3.69 - 3.61 \text{ (m, } 2H, H-6a,b), }$ 2.63 (br, 1H, -OH); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 199.60, 142.55, 137.82, 137.13, 133.60, 132.29, 130.10, 128.70, 128.56, 128.34, 127.96, 125.15, 122.14, 84.14, 73.59, 73.19, 71.41, 70.31. HMRS (ESI) calcd for  $C_{26}H_{26}O_4Br [M + H]^+ 481.1009$ , found 481.1011.

(2S,3S,4S,6S)-3-Benzyloxy-4-hydroxy-2-methyl-6-(4-methoxyphenyl)-tetrahydro-4H-pyran (7):

To the solution of 4fB (20.0 mg, 0.06 mmol) in THF (2 mL) was added NaBH<sub>4</sub> (0.6 mmol). Then, the mixture was stirred for 1 h. The solution was taken up in 20 mL of sat. NH<sub>4</sub>Cl, then it was extracted with ethyl acetate (3\*20 mL). The organic layer was dried over  $Na_2SO_4$ , and the solvent was removed under rotary evaporation. The residue was purified through silica (petroleum ether/ethyl acetate: 3/1) to afford a colorless oil 7 (8.5 mg, 42%),  $R_f = 0.24$  (ethyl acetate/petroleum ether: 1/3) and 8 (8.0 mg, 40%),  $R_f =$ 0.26 (ethyl acetate/petroleum ether: 1/3). For compound 7,  $[a]_D^{26} = -86.4$  (c 0.08, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.39 (d, J = 4.4 Hz, 4H), 7.33 (dd, J = 8.5, 4.1 Hz, 1H), 7.28 (d, J = 8.6 Hz, 2H), 6.87 (d, J = 8.7 Hz, 2H), 4.83 (d, J = 11.3 Hz, 1H, Bn), 4.74 (d, J = 11.4 Hz, 1H, Bn), 4.41 (dd, J = 11.6, 1.6 Hz, 1H, H-1), 3.89 - 3.82(m, 1H, H-3), 3.79 (s, 3H, -OMe), 3.51 (dq, J = 8.9, 6.2 Hz, 1H, H-5), 3.07 (t, J = 8.9Hz, 1H, H-4), 2.23 - 2.18 (m, 1H, H-2a), 2.15 (s, 1H, -OH), 1.76 (dd, J = 24.3, 11.6Hz, 1H, H-2b), 1.41 (d, J = 6.2 Hz, 3H, -Me); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  159.33, 138.50, 133.70, 128.86, 128.23, 128.10, 127.48, 113.99, 86.64, 77.48, 75.66, 75.37, 73.02, 55.45, 40.96, 18.89. HMRS (ESI) calcd for  $C_{20}H_{24}O_4Na [M + Na]^+$  351.1572, found 351.1569.

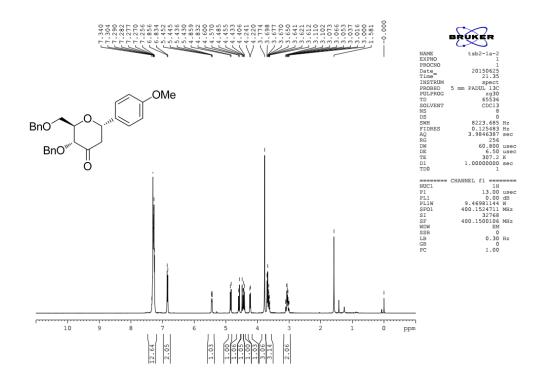
# (2S,3S,4R,6S)-3-Benzyloxy-4-hydroxy-2-methyl-6-(4-methoxyphenyl)-tetrahydro -4H-pyran (8):

To the solution of  $4f\beta$  (20.0 mg, 0.06 mmol) in THF (2 mL) was added 1 M LiBHEt<sub>3</sub> (0.6 mL, 0.6 mmol) at 0 °C. Then, the mixture was stirred 0 °C for 24 h. The solution was taken up in 20 mL of sat. NH<sub>4</sub>Cl, and extracted with ethyl acetate (3\*20 ml) and the solution was taken up in 20 mL of sat.

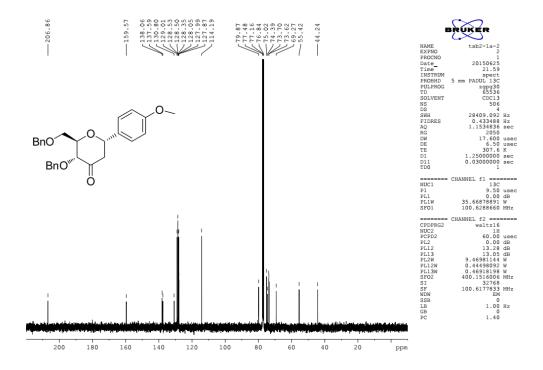
mL). The organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>, and the solvent was removed under rotary evaporation. The residue was purified through silica (petroleum ether/ethyl acetate: 3/1) to afford a colorless oil **8** (16.0 mg, 78%), R<sub>f</sub> = 0.26 (ethyl acetate/petroleum ether: 1/3). [a]<sub>D</sub><sup>26</sup> = -38.8 (c 0.02, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.41 – 7.33 (m, 5H), 7.28 (d, J = 8.6 Hz, 2H), 6.86 (d, J = 8.7 Hz, 2H), 4.79 (dd, J = 11.5, 1.5 Hz, 1H, H-1), 4.69 (d, J = 11.5 Hz, 1H, Bn), 4.58 (d, J = 11.5 Hz, 1H, Bn), 4.30 – 4.28 (m, 1H, H-3), 3.96 – 3.87 (m, 1H, H-5), 3.78 (s, 3H, -OMe), 3.21 (dd, J = 9.5, 3.0 Hz, 1H, H-4), 2.52 (s, 1H, -OH), 2.20 – 2.13 (m, 1H, H-2a), 1.80 (dd, J = 13.7, 12.2 Hz, 1H, H-2b), 1.31 (d, J = 6.2 Hz, 3H, -Me); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  159.13, 137.81, 134.45, 128.74, 128.28, 128.13, 127.42, 113.93, 80.97, 72.91, 71.69, 70.81, 64.45, 55.43, 39.21, 18.81; HMRS (ESI) calcd for C<sub>20</sub>H<sub>24</sub>O<sub>4</sub>Na [M + Na]<sup>+</sup> 351.1572, found 351.1574.

# (2S,3S,4R,6S)-3-Benzyloxy-4-dimethylamino-2-methyl-6-(4-methoxyphenyl)-tetr ahydro-4H-pyran (9):

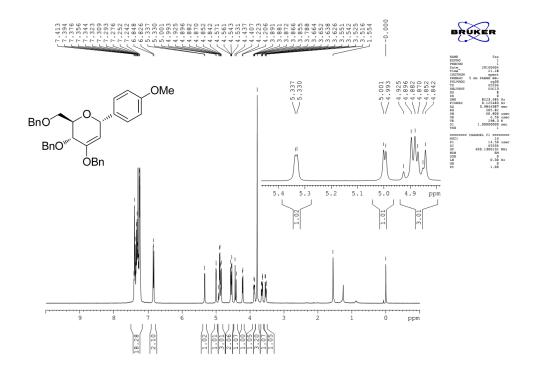
To the solution of  $4f\beta$  (50.0 mg, 0.15 mmol) and ammonium acetate (115.0 mg, 1.5 mmol) in methanol (4 mL) was added NaBH<sub>3</sub>CN (94.0 mg, 1.5 mmol) at room temperature. The mixture was stirred at room temperature for 24 h. The solution was taken up in 20 mL of water and extracted with ethyl acetate (3\*20 mL). The organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>, and the solvent was removed under rotary evaporation. Then the residue was dissolved in acetonitrile (4 mL), and was added 45% aq. formaldehyde (1 mL) and NaBH<sub>3</sub>CN (47.0 mg, 7.5 mmol), the mixture was stirred at room temperature for 24 h. The resulting mixture was quenched with brine (20 mL) and the aqueous layer was extracted with ethyl acetate (3\*20 ml). The organic layer was washed with water then dried over Na<sub>2</sub>SO<sub>4</sub>, and the solvent was removed under rotary evaporation. The residue was purified through silica gel (petroleum ether/ ethyl acetate:


3/1) to afford a colorless oil **9** (27.1 mg, 50%),  $R_f$  = 0.40 (ethyl acetate/petroleum ether: 1/3);  $[a]_D^{20}$  = -81.8 (c 0.2, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.38 – 7.26 (m, 7H), 6.86 (d, J = 8.7 Hz, 2H), 4.86 (dd, J = 11.1, 2.5 Hz, 1H, H-1), 4.73 (d, J = 11.6 Hz, 1H, Ph- $CH_2$ -), 4.51 (d, J = 11.6 Hz, 1H, Ph- $CH_2$ -), 4.30 – 4.21 (m, 1H, H-5), 3.78 (s, 3H, MeO-), 3.43 (d, J = 6.2 Hz, 1H, H-4), 2.75 (s, 1H, H-3), 2.44 (s, 6H, -NMe<sub>2</sub>), 2.19 (ddd, J = 14.1, 4.8, 2.8 Hz, 1H, H-2a), 1.80 – 1.71 (m, 1H, H-2b), 1.30 (d, J = 6.3 Hz, 3H, Me-); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  159.12, 138.40, 135.19, 128.51, 127.92, 127.40, 113.93, 83.95(br, -C-NMe<sub>2</sub>), 73.27, 72.35, 71.66, 59.34, 55.44, 44.98, 37.22(br, C2), 19.24; HMRS (ESI) calcd for C<sub>22</sub>H<sub>30</sub>O<sub>3</sub>N [M + H]<sup>+</sup> 356.2220, found 356.2224.

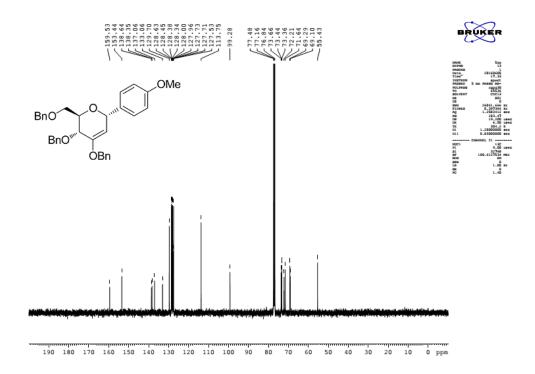
#### 8) Reference


[1] C.-F. Liu, D.-C. Xiong, X.-S. Ye, J. Org. Chem. 2014, 79, 4676-4686.

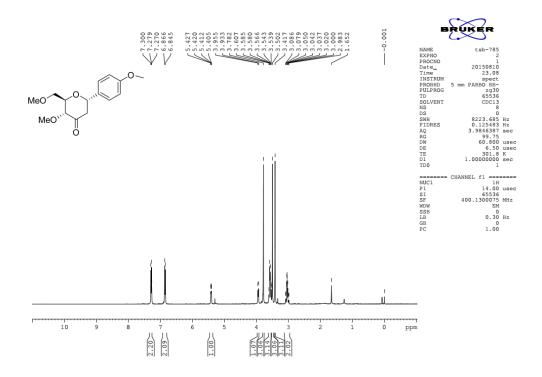
#### 9) Spectral data


<sup>1</sup>H NMR spectrum of **4a**α, 400MHz, CDCl<sub>3</sub>

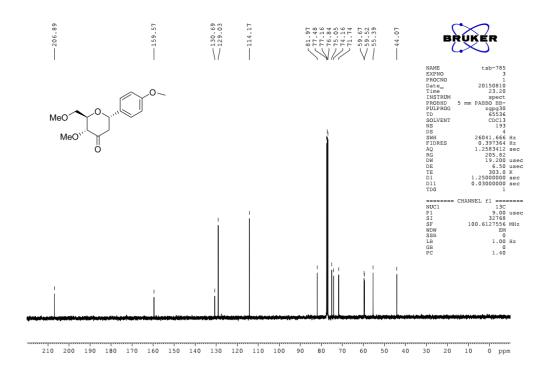



### $^{13}$ C NMR spectrum of $4a\alpha$ , 100MHz, CDCl $_3$

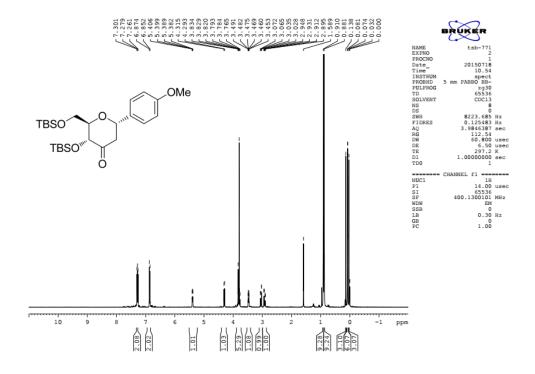



<sup>1</sup>H NMR spectrum of **5a**, 400MHz, CDCl<sub>3</sub>

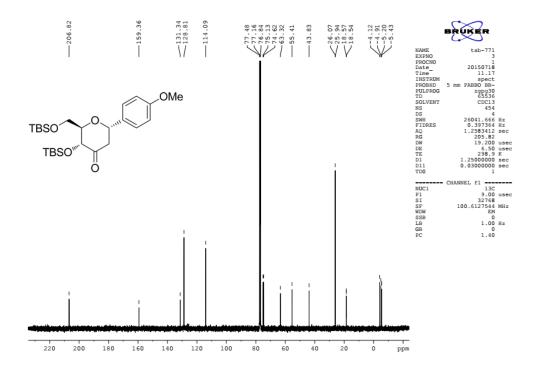



#### <sup>13</sup>C NMR spectrum of **5a**, 100MHz, CDCl<sub>3</sub>

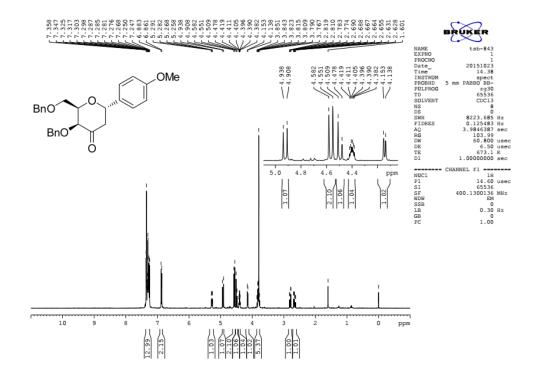



<sup>1</sup>H NMR spectrum of **4bα**, 400MHz, CDCl<sub>3</sub>

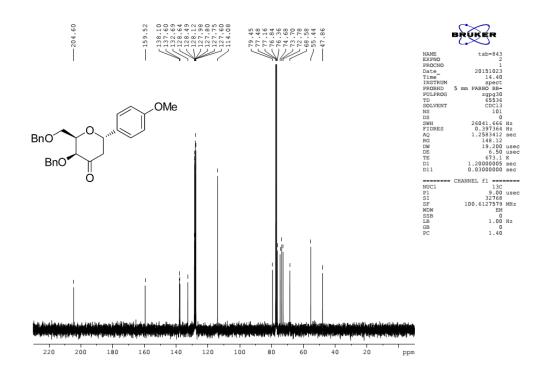



### $^{13}$ C NMR spectrum of **4b** $\alpha$ , 100MHz, CDCl<sub>3</sub>

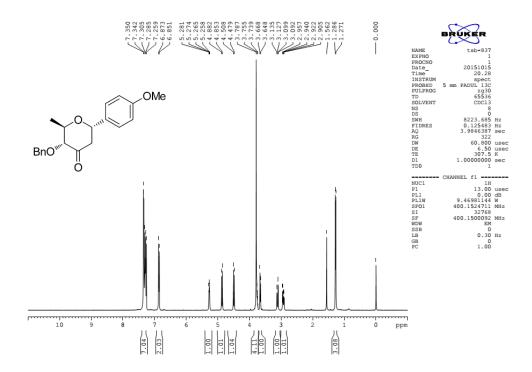



#### <sup>1</sup>H NMR spectrum of **4cα**, 400MHz, CDCl<sub>3</sub>

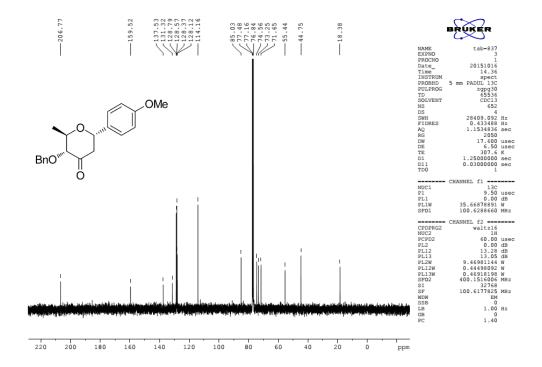



### $^{13}\text{C}$ NMR spectrum of $4c\alpha$ , 100MHz, $\text{CDCl}_3$

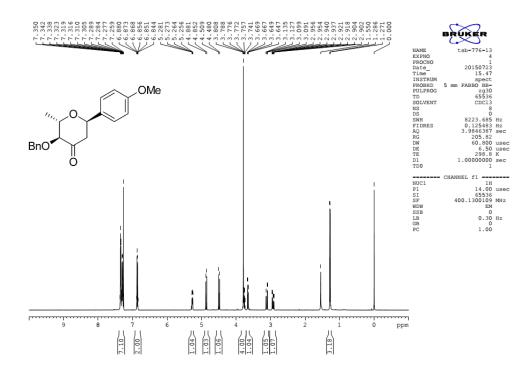



 $^{1}$ H NMR spectrum of **4d** $\alpha$ , 400MHz, CDCl<sub>3</sub>

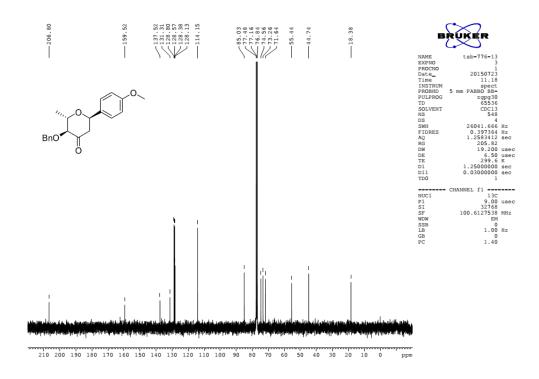



### $^{13}$ C NMR spectrum of $4d\alpha$ , 100MHz, CDCl<sub>3</sub>

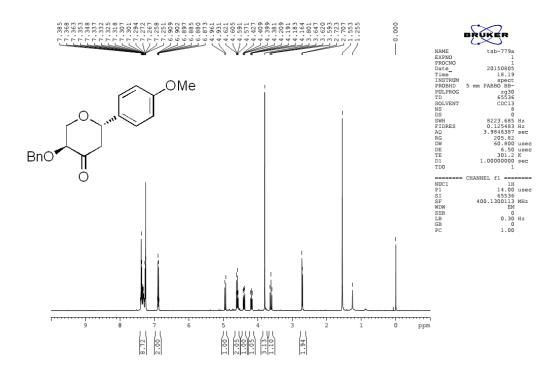



### <sup>1</sup>H NMR spectrum of **4ea**, 400MHz, CDCl<sub>3</sub>

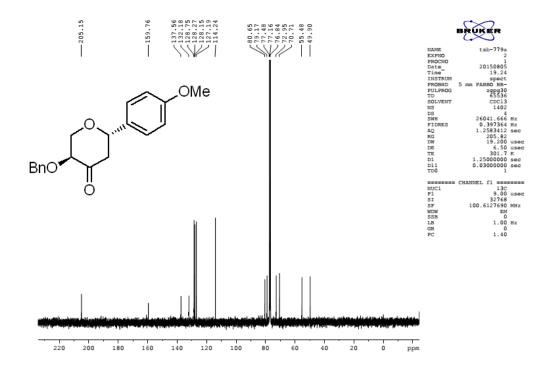



 $^{13}$ C NMR spectrum of  $4e\alpha$ , 100MHz, CDCl $_3$ 




### <sup>1</sup>H NMR spectrum of **4fa**, 400MHz, CDCl<sub>3</sub>

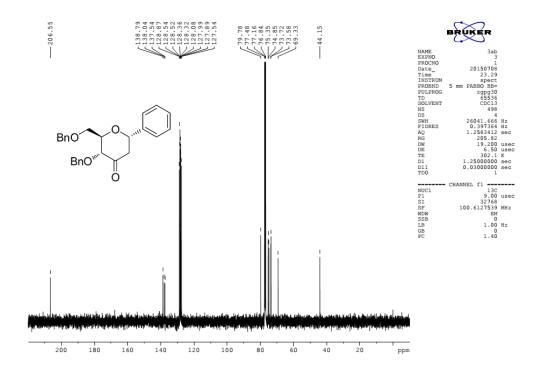



 $^{13}\text{C}$  NMR spectrum of  $4f\alpha$ , 100MHz,  $\text{CDCl}_3$ 

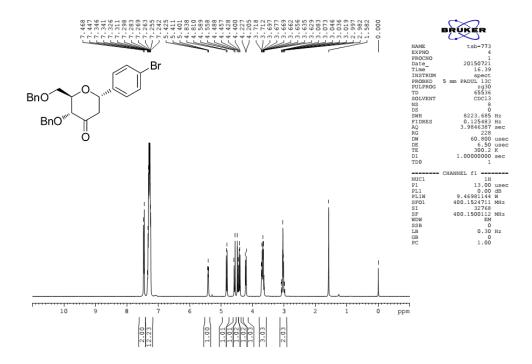



 $^{1}$ H NMR spectrum of  $\mathbf{4g}\boldsymbol{\beta}$ , 400MHz, CDCl $_{3}$ 

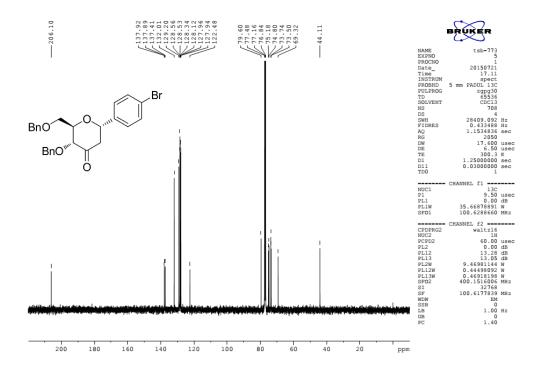



 $^{13}$ C NMR spectrum of  $4g\beta$ , 100MHz, CDCl<sub>3</sub>

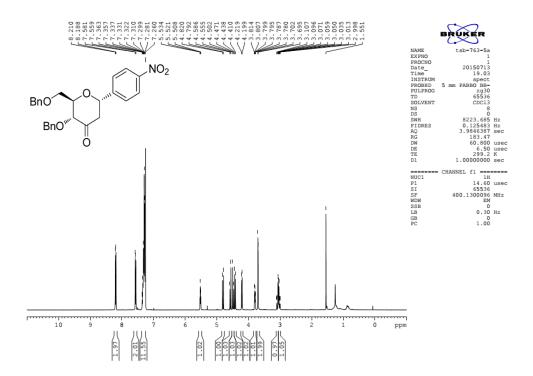



 $^{1}$ H NMR spectrum of **4h** $\alpha$ , 400MHz, CDCl<sub>3</sub>

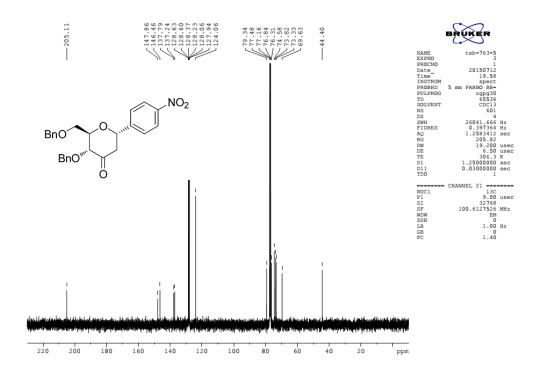



 $^{13}\text{C}$  NMR spectrum of  $4h\alpha,\,100\text{MHz},\,\text{CDCl}_3$ 

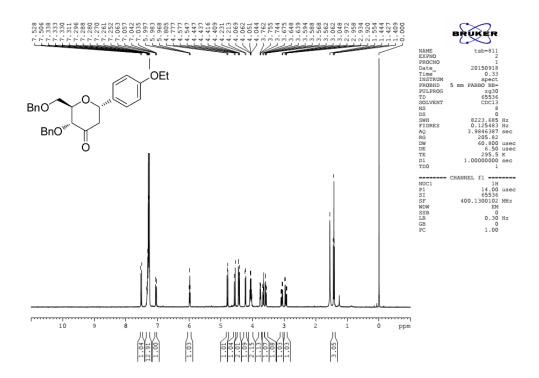



### $^{1}$ H NMR spectrum of $4i\alpha$ , 400MHz, CDCl $_{3}$

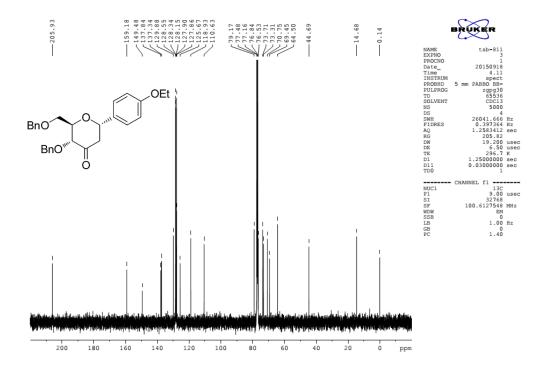



 $^{13}$ C NMR spectrum of **4i** $\alpha$ , 100MHz, CDCl<sub>3</sub>

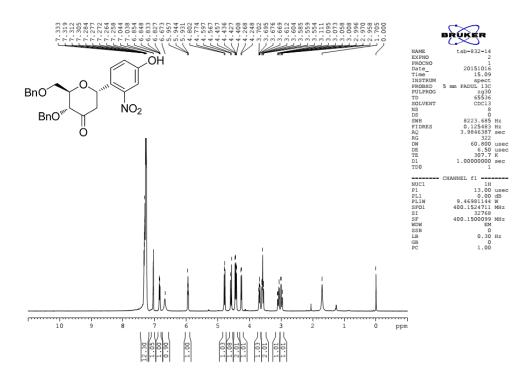



### $^{1}$ H NMR spectrum of **4j** $\alpha$ , 400MHz, CDCl<sub>3</sub>

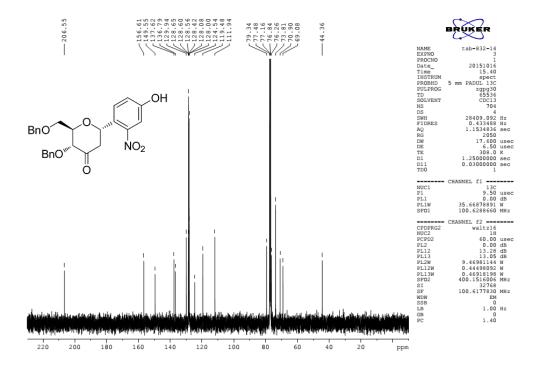



 $^{13}$ C NMR spectrum of  $4j\alpha$ , 100MHz, CDCl $_3$ 

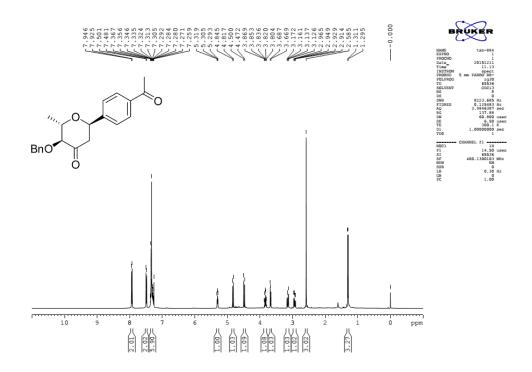



 $^{1}$ H NMR spectrum of  $4k\alpha$ , 400MHz, CDCl $_{3}$ 

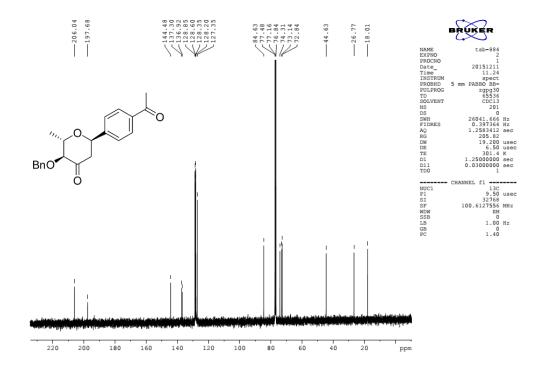



 $^{13}\text{C}$  NMR spectrum of  $4k\alpha$ , 100MHz,  $\text{CDCl}_3$ 

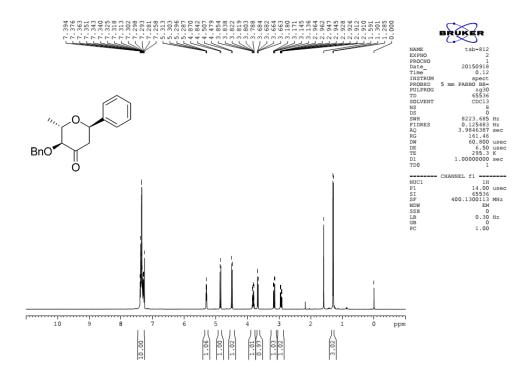



#### <sup>1</sup>H NMR spectrum of **4la**, 400MHz, CDCl<sub>3</sub>

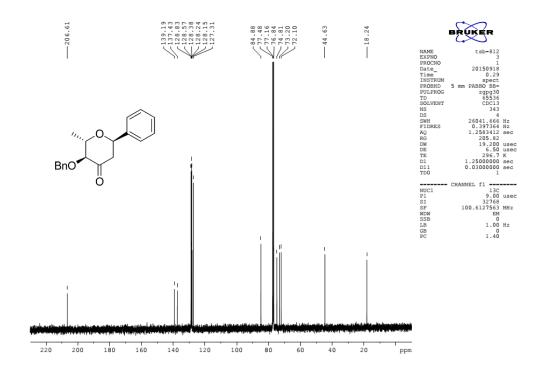



 $^{13}$ C NMR spectrum of 41 $\alpha$ , 100MHz, CDCl $_3$ 

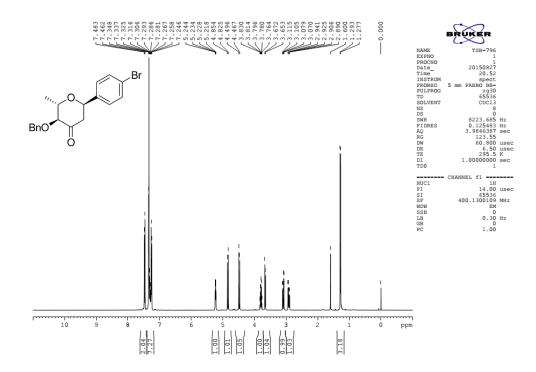



 $^{1}$ H NMR spectrum of  $4m\alpha$ , 400MHz, CDCl $_{3}$ 

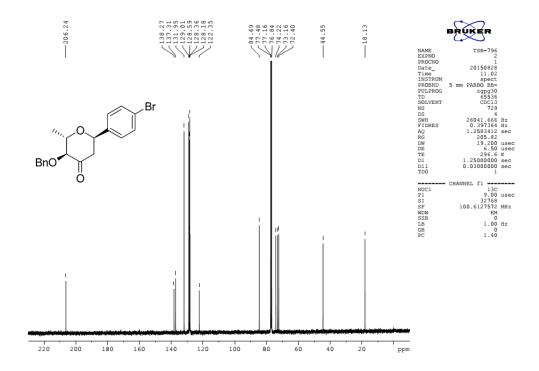



 $^{13}$ C NMR spectrum of  $4m\alpha$ , 100MHz, CDCl $_3$ 

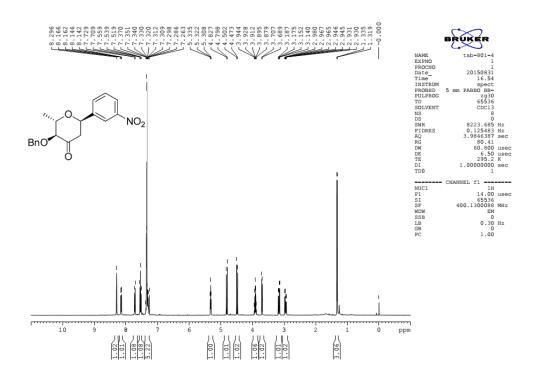



<sup>1</sup>H NMR spectrum of **4nα**, 400MHz, CDCl<sub>3</sub>

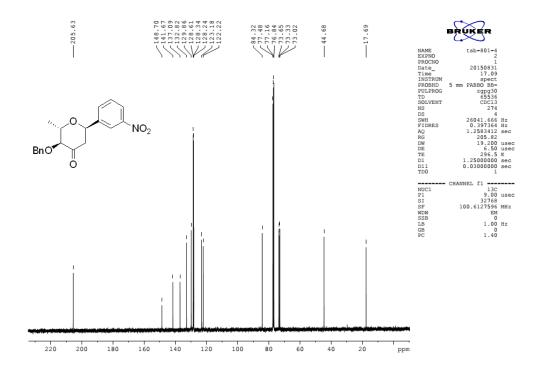



 $^{13}\text{C}$  NMR spectrum of  $4n\alpha$ , 100MHz,  $\text{CDCl}_3$ 

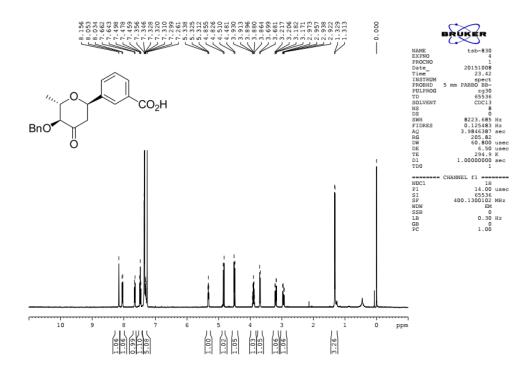



<sup>1</sup>H NMR spectrum of **4οα**, 400MHz, CDCl<sub>3</sub>

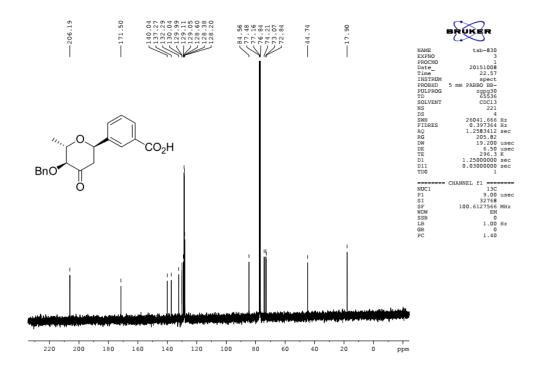



 $^{13}\text{C}$  NMR spectrum of  $40\alpha$ , 100MHz,  $\text{CDCl}_3$ 

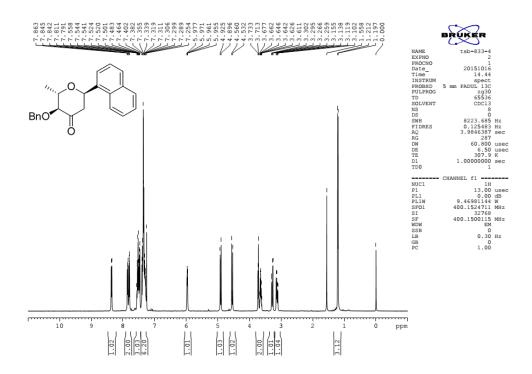



 $^{1}$ H NMR spectrum of  $4p\alpha$ , 400MHz, CDCl<sub>3</sub>

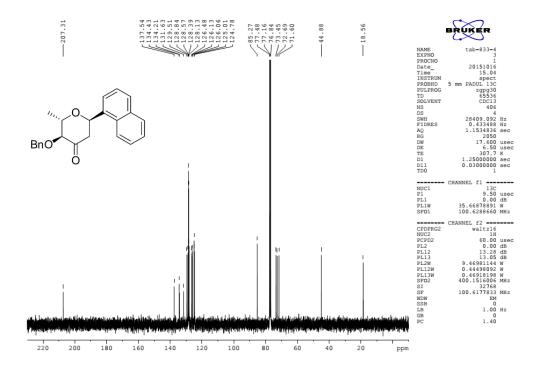



 $^{13}$ C NMR spectrum of  $4p\alpha$ , 100MHz, CDCl<sub>3</sub>

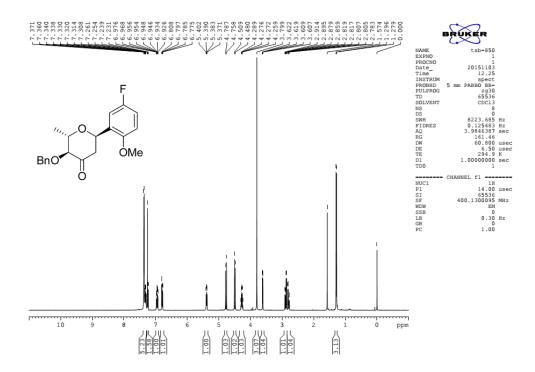



<sup>1</sup>H NMR spectrum of **4qα**, 400MHz, CDCl<sub>3</sub>

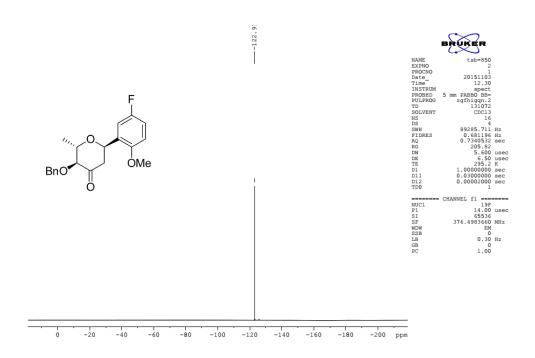



 $^{13}\text{C}$  NMR spectrum of  $4q\alpha$ , 100MHz, CDCl $_3$ 

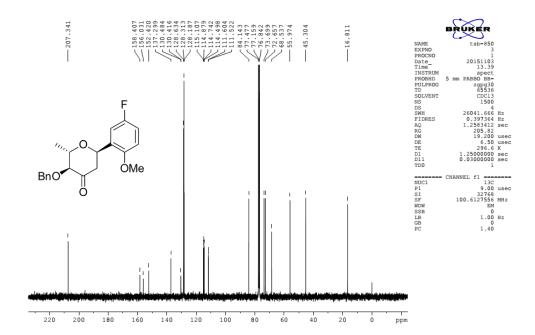



#### <sup>1</sup>H NMR spectrum of **4rα**, 400MHz, CDCl<sub>3</sub>

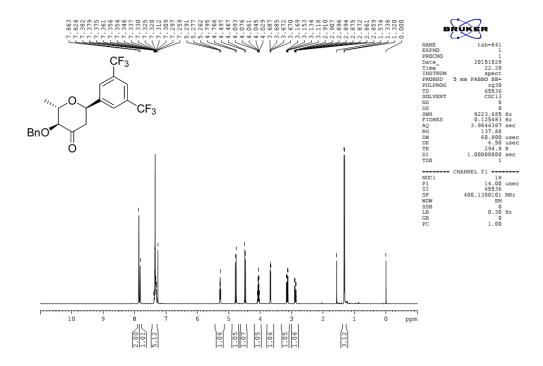



 $^{13}$ C NMR spectrum of  $4r\alpha$ , 100MHz, CDCl<sub>3</sub>

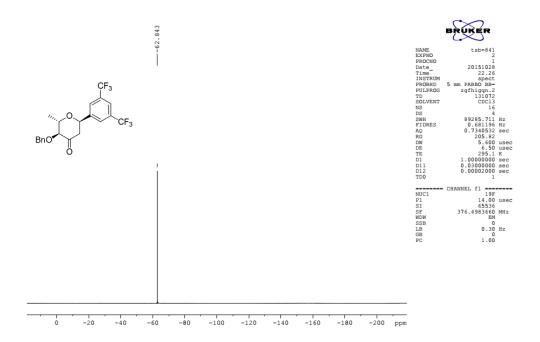



## <sup>1</sup>H NMR spectrum of **4sα**, 400MHz, CDCl<sub>3</sub>

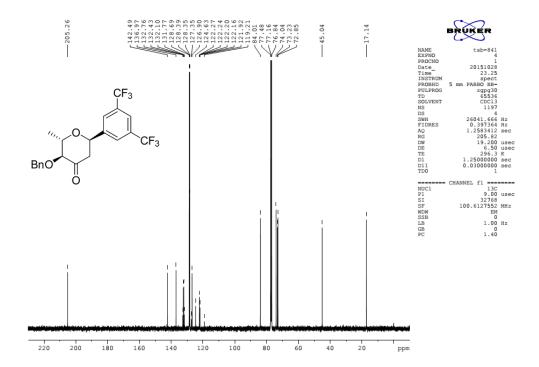



 $^{19}$ F NMR spectrum of **4sa**, 376MHz, CDCl<sub>3</sub>

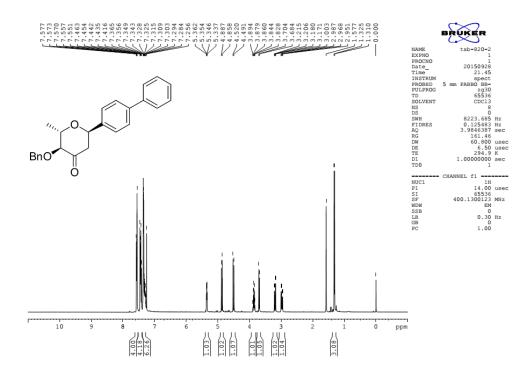



### <sup>13</sup>C NMR spectrum of **4sα**, 100MHz, CDCl<sub>3</sub>

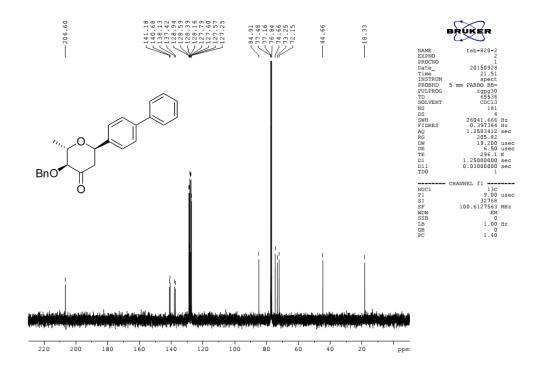



#### <sup>1</sup>H NMR spectrum of **4tα**, 400MHz, CDCl<sub>3</sub>

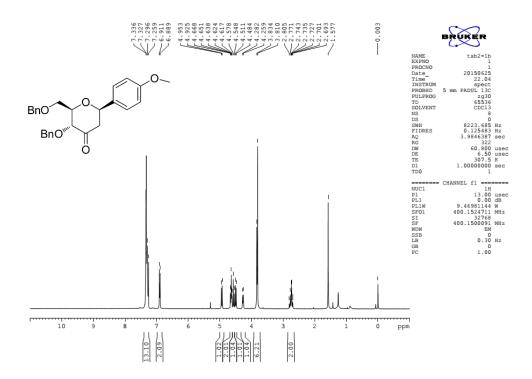



 $^{19}$ F NMR spectrum of  $4t\alpha$ , 376MHz, CDCl<sub>3</sub>

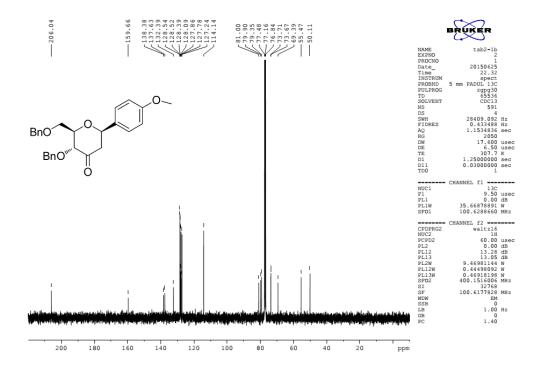



### <sup>13</sup>C NMR spectrum of **4tα**, 100MHz, CDCl<sub>3</sub>

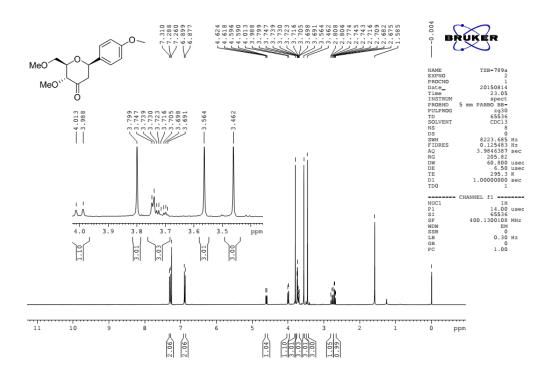



 $^{1}$ H NMR spectrum of  $4u\alpha$ , 400MHz, CDCl $_{3}$ 

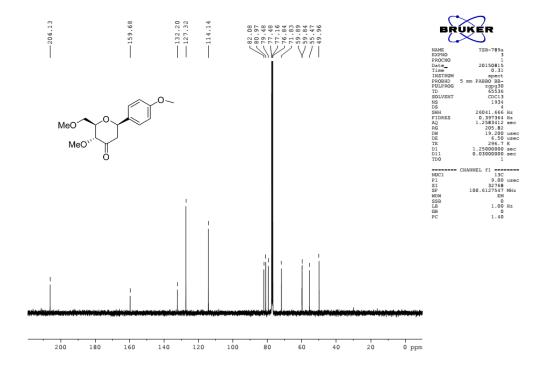



 $^{13}$ C NMR spectrum of  $4u\alpha$  100MHz, CDCl<sub>3</sub>

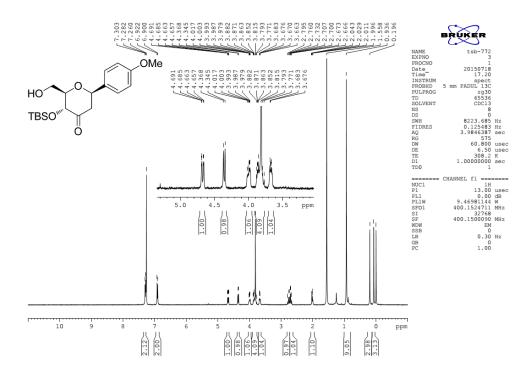



<sup>1</sup>H NMR spectrum of **4aβ**, 400MHz, CDCl<sub>3</sub>

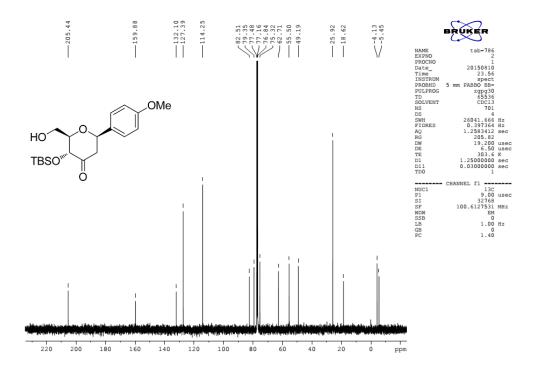



<sup>13</sup>C NMR spectrum of **4aβ**, 100MHz, CDCl<sub>3</sub>

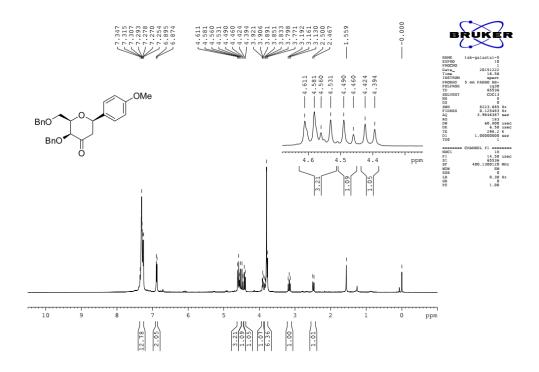



<sup>1</sup>H NMR spectrum of **4bβ**, 400MHz, CDCl<sub>3</sub>

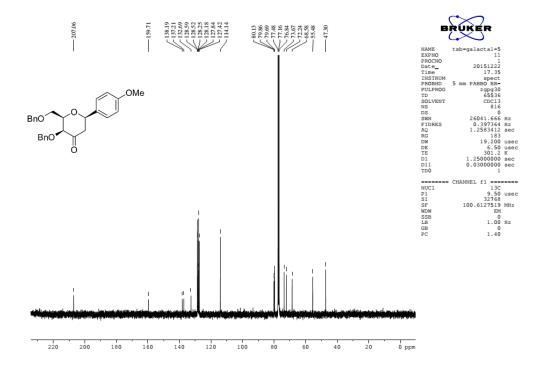



 $^{13}$ C NMR spectrum of **4b\beta**, 100MHz, CDCl<sub>3</sub>

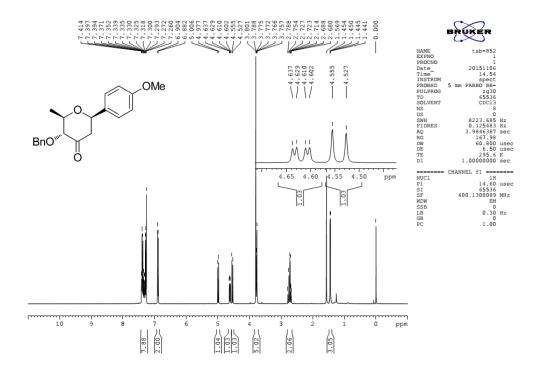



<sup>1</sup>H NMR spectrum of **4cβ**, 400MHz, CDCl<sub>3</sub>

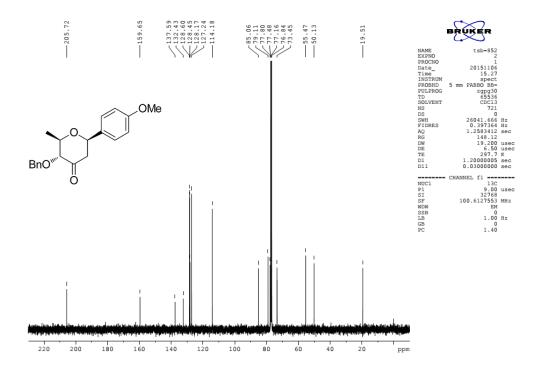



 $^{13}$ C NMR spectrum of  $4c\beta$ , 100MHz, CDCl<sub>3</sub>

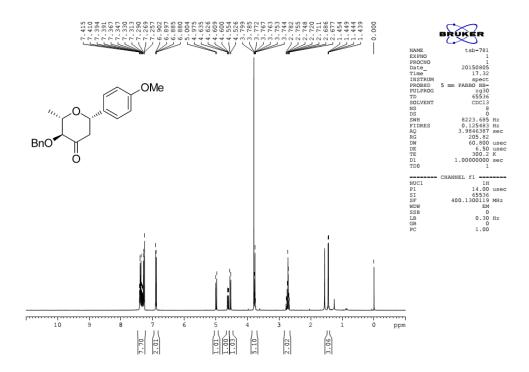



<sup>1</sup>H NMR spectrum of **4dβ**, 400MHz, CDCl<sub>3</sub>

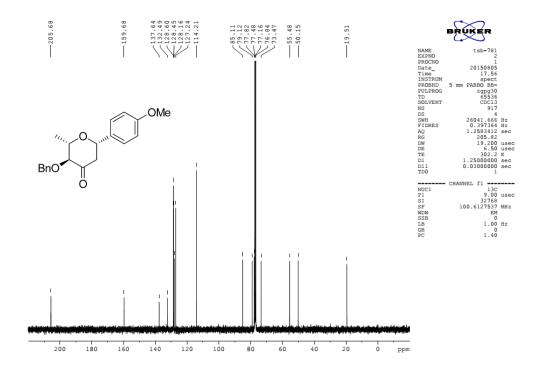



 $^{13}$ C NMR spectrum of **4d\beta**, 100MHz, CDCl<sub>3</sub>

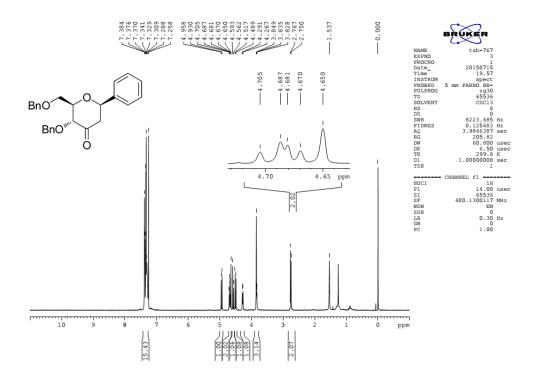



#### <sup>1</sup>H NMR spectrum of **4eβ**, 400MHz, CDCl<sub>3</sub>

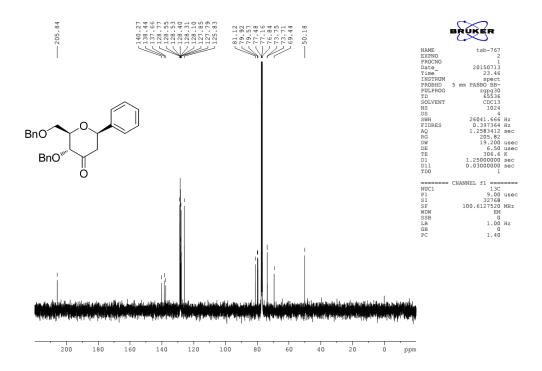



 $^{13}$ C NMR spectrum of  $4e\beta$ , 100MHz, CDCl<sub>3</sub>

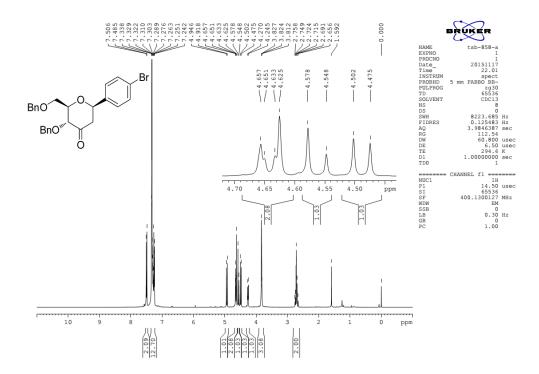



#### <sup>1</sup>H NMR spectrum of **4fβ**, 400MHz, CDCl<sub>3</sub>

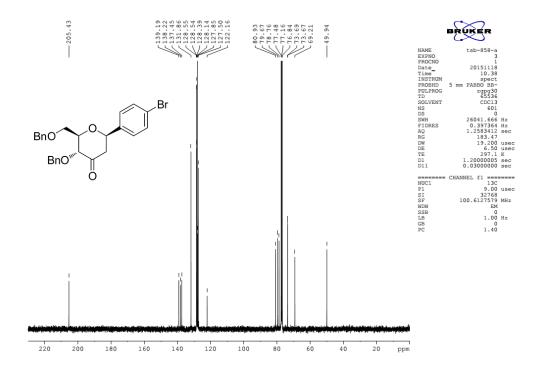



 $^{13}$ C NMR spectrum of **4f\beta**, 100MHz, CDCl<sub>3</sub>

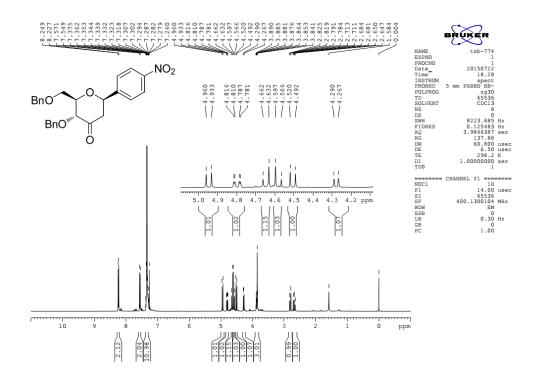



<sup>1</sup>H NMR spectrum of **4hβ**, 400MHz, CDCl<sub>3</sub>

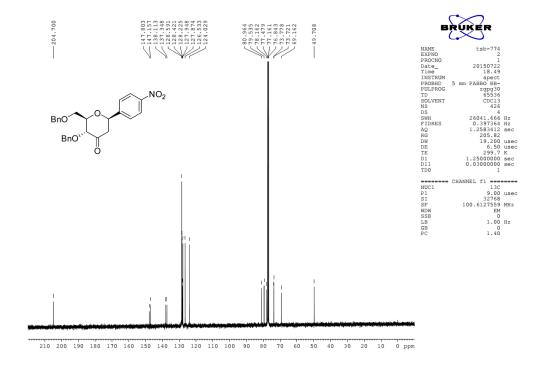



 $^{13}C$  NMR spectrum of  $4h\beta,\,100\text{MHz},\,\text{CDCl}_3$ 

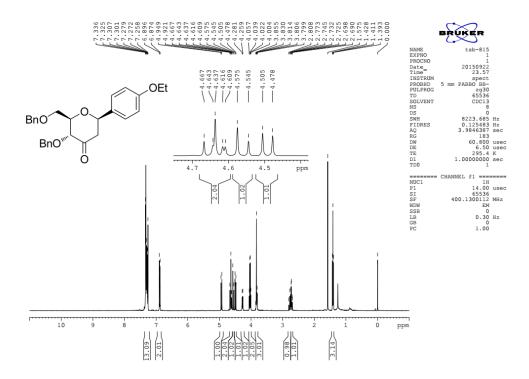



#### <sup>1</sup>H NMR spectrum of **4iβ**, 400MHz, CDCl<sub>3</sub>

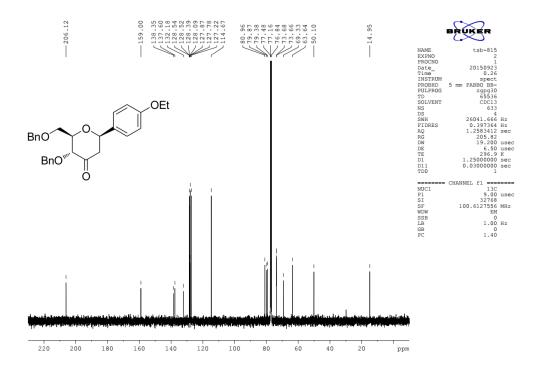



 $^{13}$ C NMR spectrum of **4i\beta**, 100MHz, CDCl<sub>3</sub>

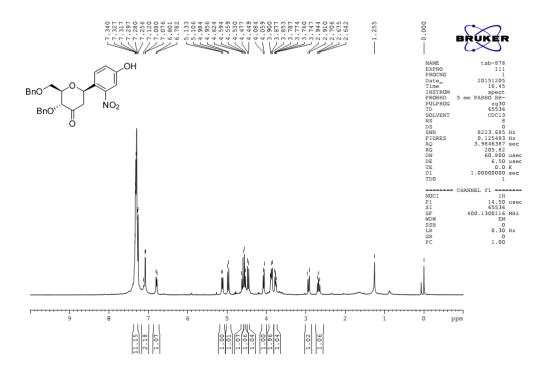



#### $^{1}$ H NMR spectrum of $\mathbf{4j}\boldsymbol{\beta}$ , 400MHz, CDCl<sub>3</sub>

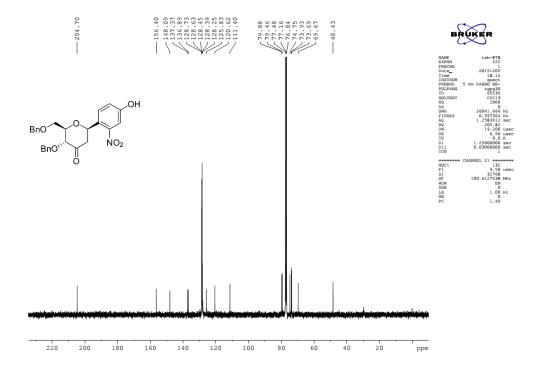



 $^{13}$ C NMR spectrum of **4j\beta**, 100MHz, CDCl<sub>3</sub>

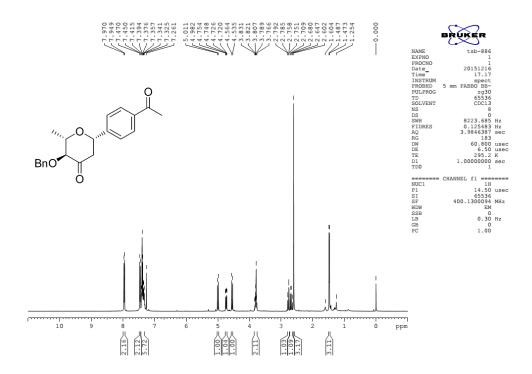



 $^{1}$ H NMR spectrum of  $4k\beta$ , 400MHz, CDCl $_{3}$ 

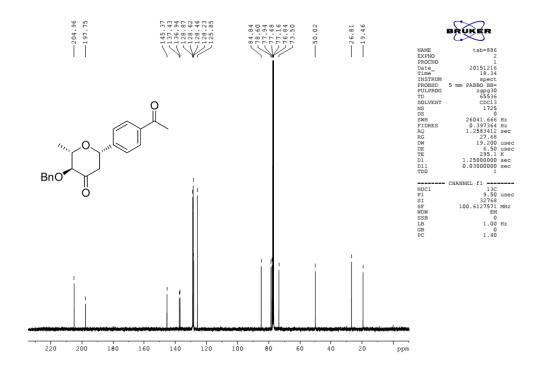



 $^{13}C$  NMR spectrum of  $4k\beta,\,100\text{MHz},\,\text{CDCl}_3$ 

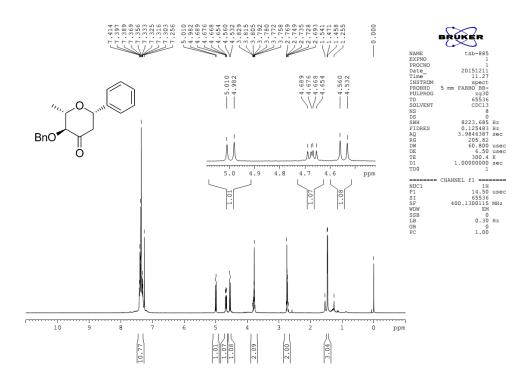



## $^{1}$ H NMR spectrum of $4l\beta$ , 400MHz, CDCl $_{3}$

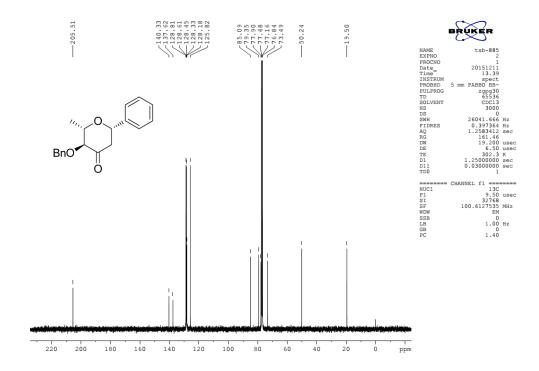



 $^{13}$ C NMR spectrum of 41 $\beta$ , 100MHz, CDCl $_3$ 

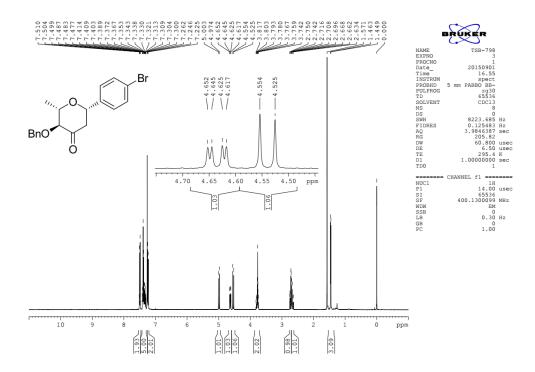



 $^{1}$ H NMR spectrum of  $4m\beta$ , 400MHz, CDCl $_{3}$ 

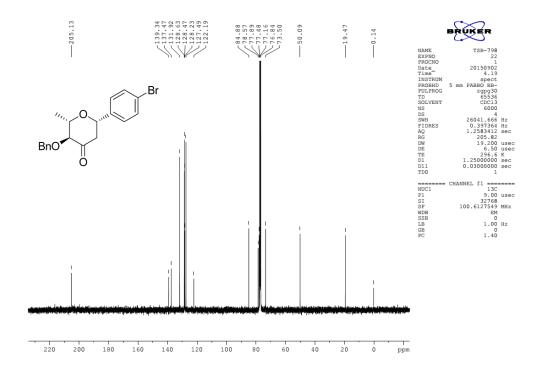



 $^{13}$ C NMR spectrum of  $4m\beta$ , 100MHz, CDCl $_3$ 




<sup>1</sup>H NMR spectrum of **4nβ**, 400MHz, CDCl<sub>3</sub>

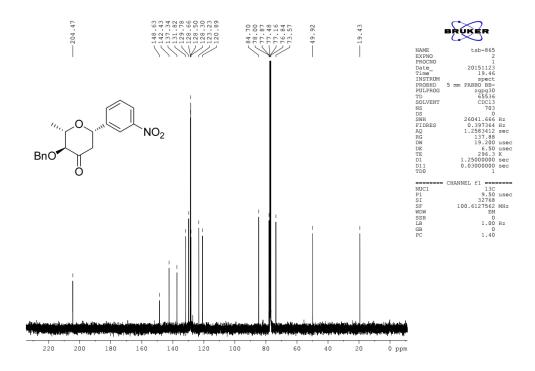



 $^{13}$ C NMR spectrum of  $4n\beta$ , 100MHz, CDCl $_3$ 

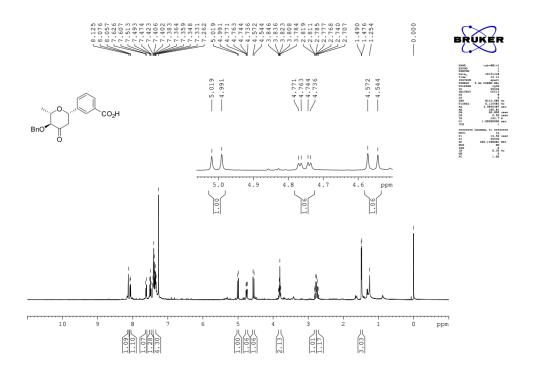



## <sup>1</sup>H NMR spectrum of **4oβ**, 400MHz, CDCl<sub>3</sub>

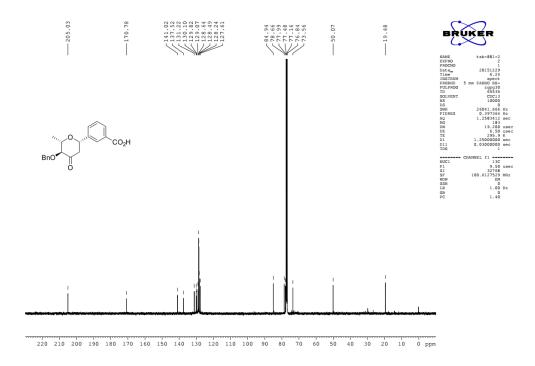



 $^{13}$ C NMR spectrum of  $40\beta$ , 100MHz, CDCl $_3$ 

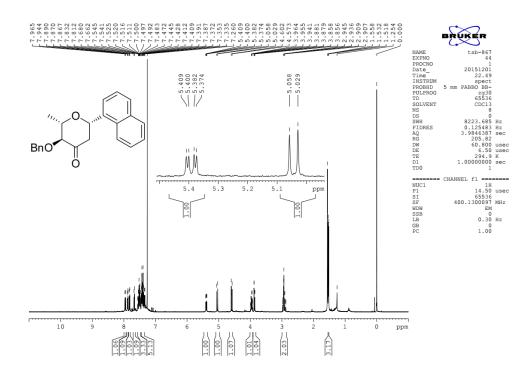



 $^{1}$ H NMR spectrum of  $4p\beta$ , 400MHz, CDCl $_{3}$ 

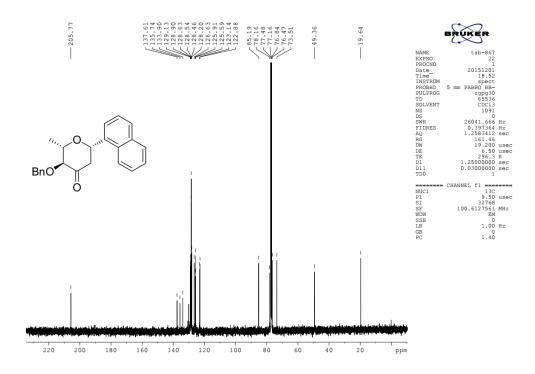



 $^{13}$ C NMR spectrum of  $4p\beta$ , 100MHz, CDCl<sub>3</sub>

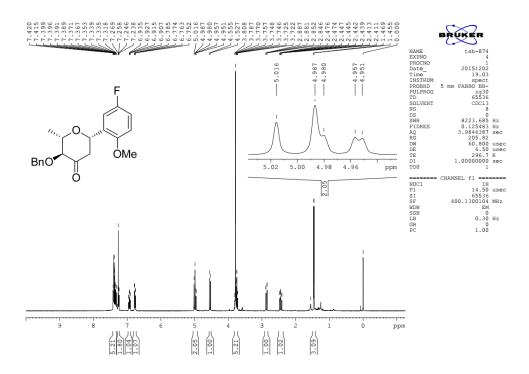



<sup>1</sup>H NMR spectrum of **4qβ**, 400MHz, CDCl<sub>3</sub>

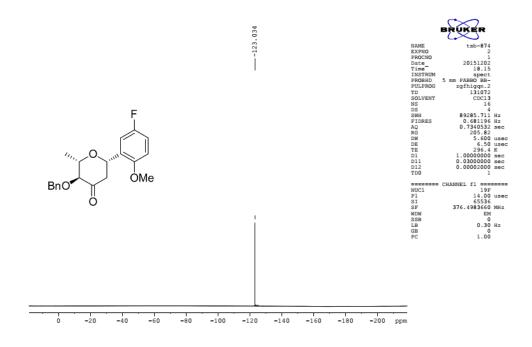



 $^{13}$ C NMR spectrum of  $4q\beta$ , 100MHz, CDCl<sub>3</sub>

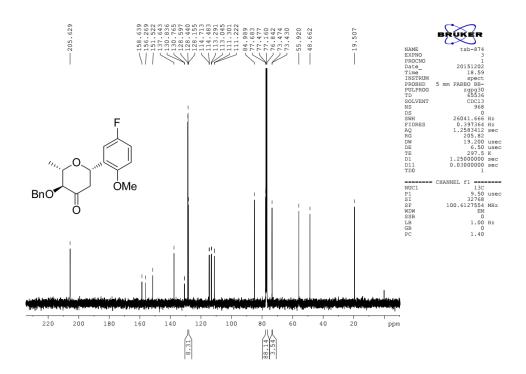



## $^{1}$ H NMR spectrum of $4r\beta$ , 400MHz, CDCl $_{3}$

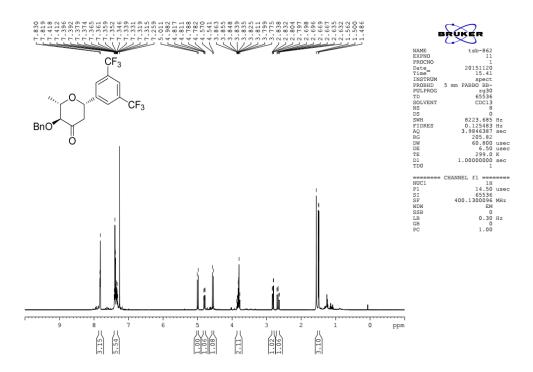



 $^{13}$ C NMR spectrum of  $4r\beta$ , 100MHz, CDCl<sub>3</sub>

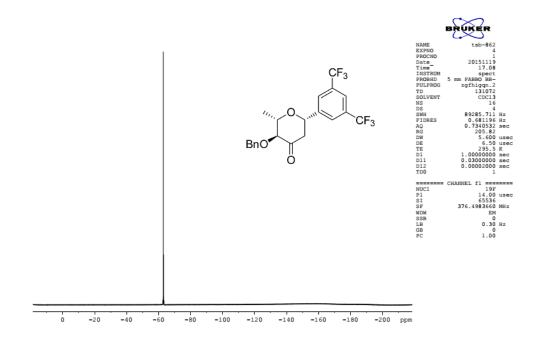



# <sup>1</sup>H NMR spectrum of **4sβ**, 400MHz, CDCl<sub>3</sub>

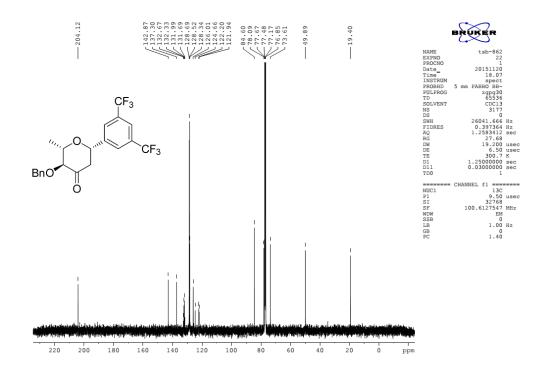



 $^{19}$ C NMR spectrum of  $4s\beta$ , 376MHz, CDCl<sub>3</sub>

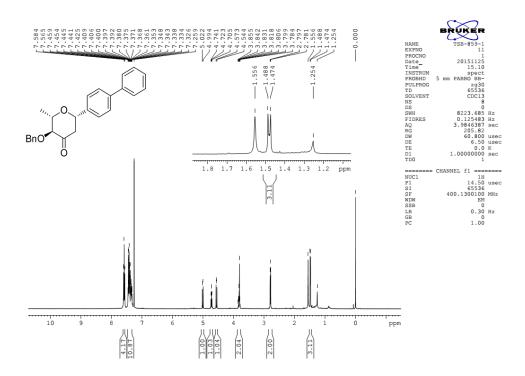



## <sup>13</sup>C NMR spectrum of **4sβ**, 100MHz, CDCl<sub>3</sub>

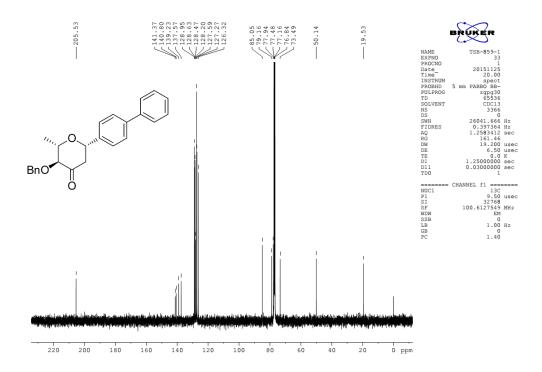



#### <sup>1</sup>H NMR spectrum of **4tβ**, 400MHz, CDCl<sub>3</sub>

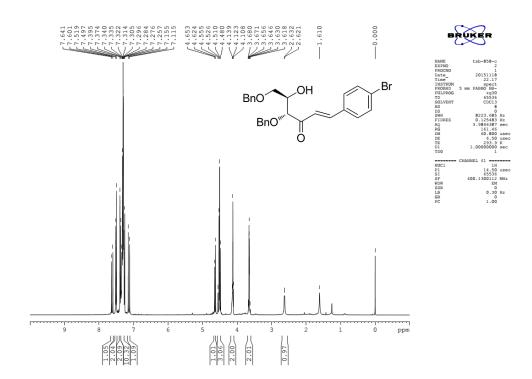



 $^{19}$ F NMR spectrum of  $4t\beta$ , 376MHz, CDCl<sub>3</sub>

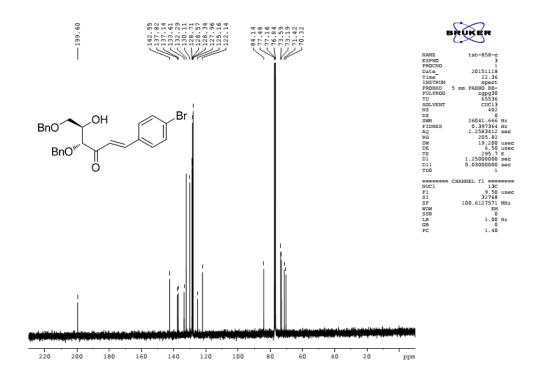



## <sup>13</sup>C NMR spectrum of **4tβ**, 100MHz, CDCl<sub>3</sub>

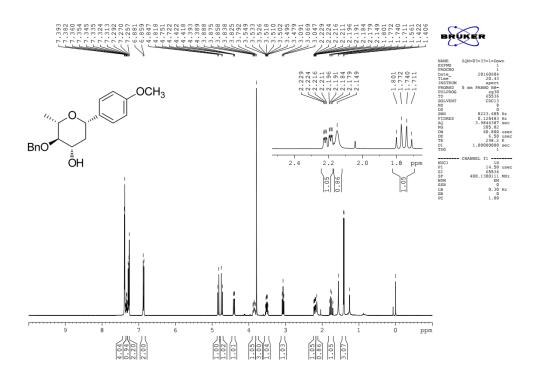



 $^{1}$ H NMR spectrum of  $4u\beta$ , 400MHz, CDCl $_{3}$ 

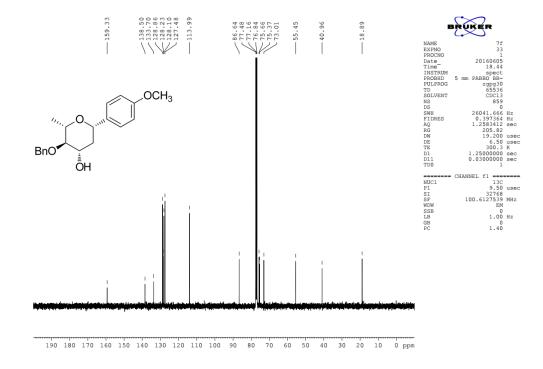



 $^{13}$ C NMR spectrum of  $4u\beta$ , 100MHz, CDCl<sub>3</sub>

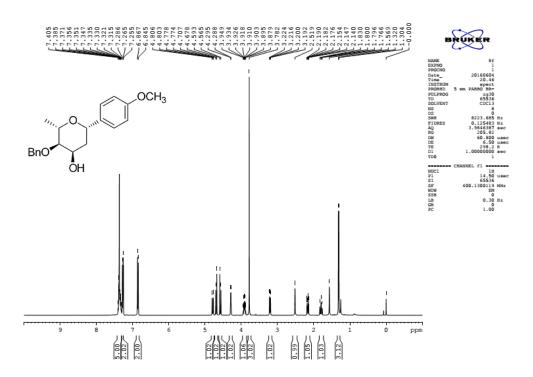



#### <sup>1</sup>H NMR spectrum of **6**, 400MHz, CDCl<sub>3</sub>

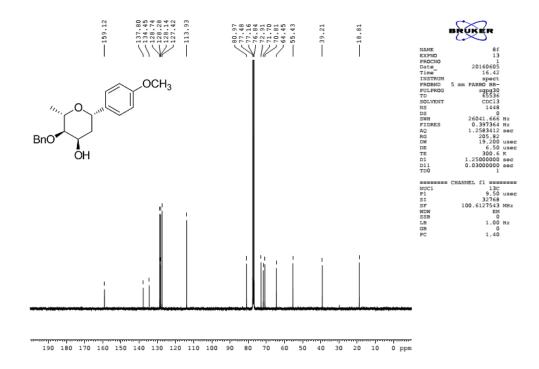



# $^{13}$ C NMR spectrum of **6**, 100MHz, CDCl<sub>3</sub>

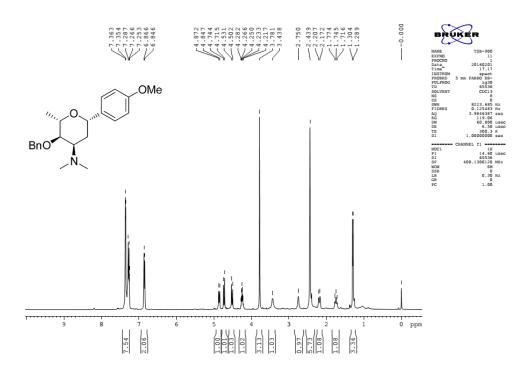



#### <sup>1</sup>H NMR spectrum of **7**, 400MHz, CDCl<sub>3</sub>




 $^{13}$ C NMR spectrum of 7, 100MHz, CDCl $_3$ 

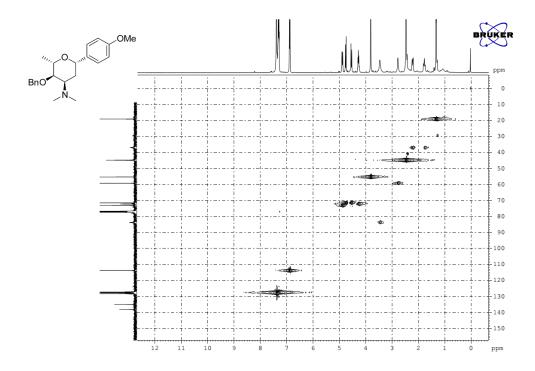



#### <sup>1</sup>H NMR spectrum of **8**, 400MHz, CDCl<sub>3</sub>

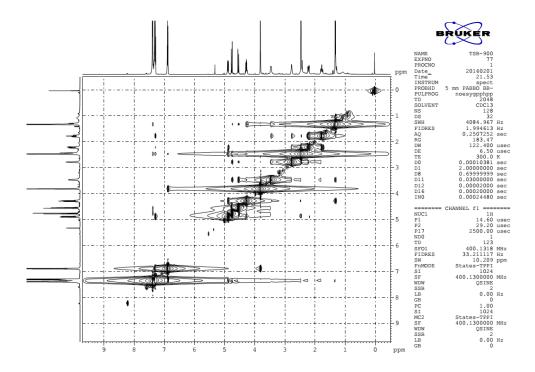


 $^{13}$ C NMR spectrum of **8**, 100MHz, CDCl<sub>3</sub>




# $^{1}$ H NMR spectrum of **9**, 400MHz, CDCl<sub>3</sub>




## <sup>13</sup>C NMR spectrum of **9**, 100MHz, CDCl<sub>3</sub>



#### HSQC spectrum of 9, 100MHz, CDCl<sub>3</sub>



#### NOE spectrum of 9, 400MHz, CDCl<sub>3</sub>

