SUPPORTING INFORMATION

Hierarchically mesostructured aluminum current collector for enhancing the performance of supercapacitors

Yilun Huang^{†,‡,§}, Yuyao Li^{†,‡,§}, Qianming Gong^{†,‡,§*}, Guanlei Zhao^{",⊥}, Pengjie Zheng["], Junfei Bai^{†,‡,§}, Jianning Gan^{†,‡,§}, Ming Zhao^{†,‡,§}, Yang Shao^{†,§}, Dazhi Wang[▽], Lei Liu^{",⊥*}, Guisheng Zou^{",⊥}, Daming Zhuang^{†,‡,§}, Ji Liang["], Hongwei Zhu^{†,‡,§}, Cewen Nan^{†,‡,§}

 [†] School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China.
 [‡] State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, PR China.

§ Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing 100084, PR China.

// Department of Mechanical Engineering, Tsinghua University, Beijing 100084, PR China.

⊥ State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, PR China.

▽ Beijing HCC Energy Technology Co., Ltd, Beijing 100085, PR China.

Figure S1. SEM images of picosecond laser-treated Al foils with different processing parameters. (a) With a high energy density (i.e., the fluence of 0.71 J cm^{-2}), the Al foil became wrinkled due to the heat accumulation and the untreated zones were relatively small. (b) With a low energy density (i.e., the fluence of 0.08 J cm^{-2}), the Al foil exhibited discontinuous and shallow scanned tracks in the surface, which only brought about a limited enhancement in electrochemical performance.

Figure S2. SEM images of the laser-treated samples with different scanning spaces, which were named as Laser-Al-30 (a) and Laser-Al-100 (b), respectively.

Figure S3. SEM image of Pristine-Al.

Figure S4. (a) N₂ adsorption/desorption isotherms and (b) pore size distributions of Laser-Al and Pristine-Al.

Figure S5. EDX results of the Laser-Al (a) and Pristine-Al (b). It can be seen that the content of O has a slight decline after the laser treatment. Although these data might be different from those of XPS tests, they demonstrated the similar trend of the O content reduction.

Table S1. The Al:O ratio after different laser treatment.

	Fluence of laser treatment (J cm ⁻²)				
Samples	0	0.08	0.13	0.15	0.19
	(Pristine-Al)			(Laser-Al in the manuscript)	
Al:0*	0.7745	0.7777	0.7817	0.8052	0.7759

* The data was determined by XPS.

Figure S6. The Al:O ratio vs. the laser fluence.

Sample	5	Sheet resistivity (Ω m ⁻¹)	Average value (Ωm^{-1})
	1	0.657	
Pristine-Al	2	0.829	0.682
-	3	0.560	
	1	0.376	
Laser-Al	2	0.257	0.325
_	3	0.341	

 Table S2. Detailed data of the sheet resistivity.

Figure S7. XRD patterns of Laser-Al and Pristine-Al.

Figure S8. (a) CV curves for the coin supercapacitors with Pristine-Al as current collectors at different scan rates from 5 to 100 mV s⁻¹. (b, c) GCD curves for Pristine-Al samples obtained at different current densities from 0.1 to 100 A g⁻¹.

Table S3.	Detailed	mechanical	testing	data.

Samples		Fractured force (N)	Average value (N)
	1	13.68	
Pristine-Al	2	16.19	14.86
	3	14.72	_
	1	8.54	
Aged Pristine-Al	2	10.49	9.13
	3	8.37	
	1	17.53	-
Tanan Al	2	15.31	
Laser-Al	3	16.59	- 10.00
	4	17.22	_
	1	17.68	
Aged Laser-Al	2	15.19	15.69
	3	14.21	_

Figure S9. The typical load-displacement curves of aged Pristine-Al (a) and aged Laser-Al (b).