Supporting Information

Structure and Solution Dynamics of Lithium Methyl Carbonate as a Protective Layer For Lithium Metal

Haodong Liu, [†] Xuefeng Wang, [†] Hongyao Zhou, [†] Hee-Dae Lim, [†] Xing Xing, [†] Qizhang Yan, [†] Ying Shirley Meng, ^{†‡} and Ping Liu^{†‡}*

[†]Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA [‡]Sustainable Power and Energy Center, University of California San Diego, La Jolla, CA 92093, USA

* E-mail (P. Liu) piliu@eng.ucsd.edu

1. Experimental Method

1.1 Material synthesis, electrolyte preparation, and electrochemical test

Battery grade dimethyl carbonate (DMC), ethylene carbonate (EC), and premixed LP30 electrolyte (1 M LiPF₆ in 1:1 vol ratio EC/DMC) were purchased from BASF. LiI beads (Ultra dry, >99%) was acquired from Alpha Aesar.

The lithium methyl carbonate (LMC) was synthesized via one step reaction by dissolving 2.677 g LiI into either DMC or EC/DMC (1:1 weight ratio). After sitting inside an Ar filled glove box (MTI corporation) for 24 hours, the precipitates were filtered, and then washed by DMC for 3 times. The washed products were dried in the glovebox antechamber under vacuum for 2 hours.

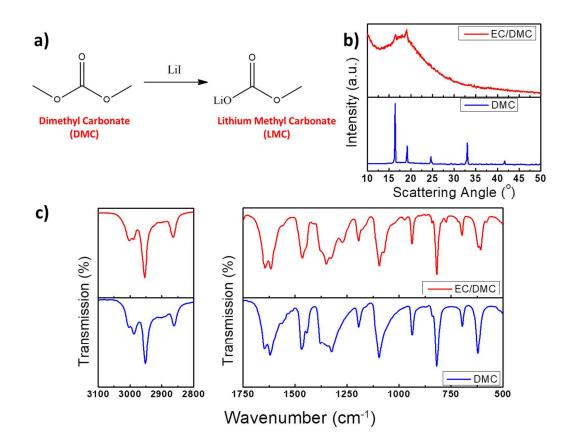
0.1 M, and 0.2 M LiI-EC/DMC electrolytes were prepared by dissolving 0.1338 g, and 0.2677 g LiI into 10g EC/DMC (1:1 weight ratio) inside an Ar filled glove box, respectively.

Li||Cu 2032-type coin cells were used for all the electrochemical studies in this work. Galvanostatic cycling was conducted on an LBT-5V5A battery tester (Arbin instruments). The cycled Cu was recovered by disassembling the coin cell. All the samples were washed by DMC for 3 times and dried in the glovebox antechamber under vacuum.

1.2 X-ray diffraction

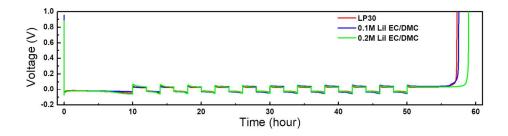
The crystal structure of synthesized materials was identified by X-ray diffraction (XRD), acquired using a Bruker D2 advance diffractometer with a Bragg- Brentano θ -2 θ geometry and a Cu K α source ($\lambda = 1.54$ Å). Samples were sealed inside the glovebox by kapton tape, which were scanned from 10° to 50° at a scan rate of 0.05° s⁻¹.

1.3 Fourier transform infrared spectroscopy


Fourier transform infrared spectra (FTIR) of synthesized materials were conducted using PerkinElmer Spectrometer UATR two (attenuated total reflectance mode, diamond crystal), which were scanned from 4000 cm⁻¹ to 500 cm⁻¹ with a resolution 1 cm⁻¹ and averaged over 4 scans.

1.4 Cryo-TEM

Micrographs were recorded on a field emission gun (FEG) JEM-2100F Cryo TEM, equipped with a OneView camera and operated at 200 keV. The Li metal was directly deposited in a lacey carbon grid at 0.5 mA/cm^2 for 20mins. The TEM samples were loaded onto the cooling holder in a home-made glovebox and transferred to TEM system with continuously Ar flowing. The images were taken at a magnification of 500 kx when the temperature of samples reached about 100 K. All the processes avoid any exposure to air and liquid N₂, minimizing the potential damage to Li metal.


1.5 Scanning electron microscopy

Focused ion beam (FIB) etching technique was used to get the cross-section image of the deposited Li metal film. Gallium was used as the source of sputtering ions at an acceleration voltage of 30 kV. 5 nA current was first applied to etch a large triangle void and then 0.3 nA was used to clean the cross-section surface to remove the damage. The sample was adhered to a double-sided carbon tape and placed on a specimen holder. The prepared sample was sealed in a laminate plastic bag inside the glovebox for transferring to the SEM. The approximate time of sample exposed to air (from a sealed environment to the SEM stage) was less than 3 s.

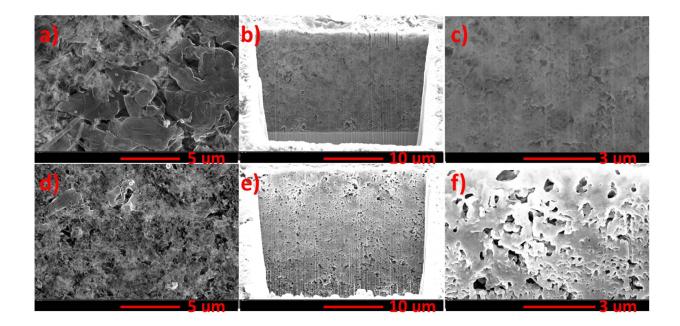


Figure S1. a) The reaction schematic of DMC and LiI; b) XRD and c) ATIR spectra of precipitates from LiI-DMC and LiI-EC/DMC.

The peaks at 3002 cm⁻¹, 2988 cm⁻¹, 2952 cm⁻¹, and 2862 cm⁻¹ are assigned to the C-H stretch of CH₃. There are CO₂ stretch features at 1646 cm⁻¹, 1620 cm⁻¹, 1378 cm⁻¹, 1349 cm⁻¹, and 1324 cm⁻¹. The C-H bend peaks are 1468 cm⁻¹, and 1442 cm⁻¹. The C-O stretch signatures are observed at 1194 cm⁻¹, 1095 cm⁻¹, 1074 cm⁻¹, and 936 cm⁻¹. A few peaks at 818 cm⁻¹, 696 cm⁻¹, and 620 cm⁻¹ come from the CO₂ bend modes. Those peak assignments are consistent with previous studies on the LMC structure.¹⁻⁴

Figure S2. The comparison of Li||Cu cell voltage profiles cycled in LP30, 0.1 M LiI-EC/DMC, and 0.2 M LiI-EC/DMC electrolytes at 0.5 mA cm⁻². Prior to the test, a condition cycle was carried out on all the cells, in this step a Li film was first deposited onto the Cu foil at 0.5 mA cm⁻² for 10 hours, and then fully stripped to 1 V. Another Li film (5 mAh cm⁻²) was deposited again, only 1 mAh cm⁻² capacity of Li film was stripped and plated for 10 cycles. Finally, the Li film was fully stripped to 1 V. The current density during this test was 0.5 mA cm⁻².

Figure S3. SEM images of plated Li on LMC coated Cu foil after 15 repeating plating and stripping, at 0.5 mA/cm², for 1 mAh/cm². a) is the top view and b), c) are the cross section view of LMC coated Cu cycled in LMC saturated LP30; d) is the top view and e), f) are the cross section view of LMC coated Cu cycled in LP30.

REFERENCES

1. Xu, K.; Zhuang, G. R. V.; Allen, J. L.; Lee, U.; Zhang, S. S.; Ross, P. N.; Jow, T. R., Syntheses and Characterization of Lithium Alkyl Mono- and Dicarbonates as Components of Surface Films in Li-lon Batteries. *J. Phys. Chem. B* **2006**, *110*, 7708-7719.

2. Liu, H. D.; Zhou, H. Y.; Lee, B. S.; Xing, X.; Gonzalez, M.; Liu, P., Suppressing Lithium Dendrite Growth with a Single-Component Coating. *ACS Appl. Mater. Inter.* **2017**, *9*, 30635-30642.

3. Gireaud, L.; Grugeon, S.; Laruelle, S.; Pilard, S.; Tarascon, J. M., Identification of Li Battery Electrolyte Degradation Products Through Direct Synthesis and Characterization of Alkyl Carbonate Salts. *J. Electrochem. Soc.* **2005**, *152*, A850-A857.

4. Aurbach, D.; Daroux, M. L.; Faguy, P. W.; Yeager, E., Identification of Surface-Films Formed on Lithium in Propylene Carbonate Solutions. *J. Electrochem. Soc.* **1987**, *134*, 1611-1620.