Supporting Information

Carvone-Derived P-Stereogenic Phosphines: Design, Synthesis, and Use in Allene-Imine [3 + 2] Annulation
Andrew J. Smaligo, Sriramurthy Vardhineedi, and Ohyun Kwon*
Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569
*ohyun@chem.ucla.edu
Table of Contents

1. General Information S2
2. Catalyst Preparation S3
2.1. Preparation of the Mesylates $\mathbf{2}$ and $\mathbf{2}^{\prime}$ S3
2.2. Dialkylation of the Mesylates to Prepare the Phosphine Oxides 3a, 3e, 3e', 3f, and $\mathbf{3 f}^{\prime}$. S4
2.3. Preparation of the Phosphine Oxides $\mathbf{3 b}, \mathbf{3 c}$, and $\mathbf{3 d}$ S6
2.4. General Procedure for Reduction of the Phosphine Oxides S8
3. Allenoate-Imine [3+2] Annulation S11
3.1. General Procedure for Allenoate-Imine [3+2] Annulations S11
3.2. Proposed Transition States S12
3.3. Analytical Data for the Pyrroline Products. S12
4. Separation of Enantiomers S19
4.1. HPLC Conditions S19
4.2. Copies of HPLC Traces S20
5. References S57
6. Copies of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{31} \mathrm{P}$ NMR Spectra S58
7. ORTEP Representations of the Phosphine Oxides 3b and 3c S94

1. General Information

Unless otherwise stated, reactions were performed in flame-dried glassware fitted with rubber septa under an argon atmosphere and were stirred with Teflon-coated magnetic stirring bars. Liquid reagents and solvents were transferred via syringe using standard Schlennk techniques. Benzene and dichloromethane were freshly distilled over calcium hydride. Tetrahydrofuran (THF) was distilled over sodium/benzophenone ketyl. All other solvents and reagents were used as received unless otherwise noted. Reaction temperatures above $23{ }^{\circ} \mathrm{C}$ refer to oil bath temperatures. Thin layer chromatography was performed using Silicycle silica gel 60 F-254 precoated plates (0.25 mm) and visualized by UV irradiation and cerium ammonium molybdate stain. SiliCycle Silica-P silica gel (particle size 40-63 $\mu \mathrm{m}$) was used for flash column chromatography. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker AV-500, DRX-500 and AV-400 MHz spectrometers with ${ }^{13} \mathrm{C}$ operating frequencies of 125 , 125 and 100 MHz , respectively. Chemical shifts (δ) are reported in ppm relative to the residual solvent $\mathrm{CD}(\mathrm{H}) \mathrm{Cl}_{3}$ signal ($\delta=7.26$ for ${ }^{1} \mathrm{H}$ NMR and $\delta=77.0$ for ${ }^{13} \mathrm{C}$ NMR). Data for ${ }^{1} \mathrm{H}$ NMR spectra are reported as follows: chemical shift, multiplicity, coupling constants (Hz), and number of hydrogens. Data for ${ }^{13} \mathrm{C}$ NMR spectra are reported in terms of chemical shift. The following abbreviations were used to explain the multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quint $=$ quintet, $\mathrm{m}=$ multiplet. HRMS (ESI) was recorded on an IonSpec Ultima 7T FTICR using samples in $\mathrm{CH}_{3} \mathrm{CN}$. MALDI mass data was obtained on an $\mathrm{AB} /$ PerSpective DE-STR TOF instrument using samples in $\mathrm{CH}_{3} \mathrm{CN}$ with 2,5-dihydroxybenzoic acid as a matrix. X-ray crystallographic data were collected using a Bruker SMART CCD based diffractometer equipped with a low-temperature apparatus operating at 100 K . Melting points (mp) are uncorrected and were collected on an Electrothermal ${ }^{\circledR}$ capillary melting point apparatus. Optical rotations were determined using an Autopol IV polarimeter and a $50-\mathrm{mm}$ cell at concentrations close to $1 \mathrm{~g} / 100 \mathrm{~mL}$. All values of ee were determined through chiral HPLC using a Shimadzu CBM Lite system.

Abbreviations. $\mathrm{Ms}=$ methanesulfonyl, $\mathrm{Ts}=p$-toluenesulfonyl, $\mathrm{Ns}=p$-nitrobenzenesulfonyl, $\mathrm{Bs}=$ benzenesulfonyl, $\mathrm{PMP}=p$-methoxyphenyl, $\mathrm{Ar}=$ aryl, THF $=$ tetrahydrofuran, $\mathrm{EtOAc}=$ ethyl acetate, $\mathrm{MeOH}=$ methanol, $\mathrm{Et}_{3} \mathrm{~N}=$ triethylamine, $\mathrm{HOAc}=$ acetic acid, $\mathrm{PhOH}=$ phenol.

2. Catalyst Preparation

The diol 1 was prepared on $100-\mathrm{g}$ scale following a literature procedure. ${ }^{1}$ Only one purification was required: distillation of the ester precursor to the diol 1.

2.1. Preparation of the Mesylates 2 and 2'

A solution of methanesulfonyl chloride $(97.0 \mathrm{~mL}, 1250 \mathrm{mmol})$ was added dropwise to a stirred solution of the diol $\mathbf{1}$ $(85 \mathrm{~g}, 500 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(174 \mathrm{~mL}, 1250 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.4 \mathrm{M})$ at $0^{\circ} \mathrm{C}$. After stirring at $0{ }^{\circ} \mathrm{C}$ for 30 min , the mixture was warmed to room temperature and stirred for an additional 24 h . Upon completion (TLC), the reaction was quenched through the addition of saturated aqueous $\mathrm{NaHCO}_{3}(400 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 400 \mathrm{~mL})$; the combined organic phases were washed with brine, dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$), and concentrated (rotary evaporation) to provide the dimesylate 2 as a viscous liquid ($160 \mathrm{~g}, 98 \%$ yield). IR (film) $v_{\max }$ 3355, 2930, 2360, $1646 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.07(\mathrm{t}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~s}, 1 \mathrm{H}), 4.73(\mathrm{~s}, 1 \mathrm{H}), 4.10$ (dd, $J=10.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{dd}, J=10.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.10-3.03(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{~s}, 3 \mathrm{H}), 2.97(\mathrm{~s}, 3 \mathrm{H}), 2.25-2.12$ $(\mathrm{m}, 3 \mathrm{H}), 2.06-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.5,112.2,85.6$, $70.4,44.3,44.2,42.1,38.2,37.1,23.4,14.7$; LRMS (MALDI) calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{6} \mathrm{~S}_{2} \mathrm{~m} / \mathrm{z} 326.09$, found 326.1.

A stirred solution of the dimesylate $2(16.3 \mathrm{~g}, 50.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(4: 1,0.2 \mathrm{M})$ was cooled to $-78^{\circ} \mathrm{C}$ in an acetone/dry ice bath. Ozone was bubbled through the cooled solution until a blue color was observed. The solution was purged with argon for 30 min and then thiophenol ($7.65 \mathrm{~mL}, 75.0 \mathrm{mmol}$) and iron(II) sulfate heptahydrate (16.7 $\mathrm{g}, 60.0 \mathrm{mmol}$) were added sequentially. The cooling bath was removed and the mixture was warmed to room temperature and stirred overnight. Water (100 mL) was added and then the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 100 \mathrm{~mL})$. The combined organic phases were washed with saturated aqueous NaHCO_{3} and brine, dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$), and concentrated (rotary evaporation). The residue was purified through flash column chromatography $\left(\mathrm{SiO}_{2}\right.$; EtOAc/hexanes, 1:2) to give the dimesylate $\mathbf{2}^{\prime}$ as a white solid ($11.4 \mathrm{~g}, 80 \%$ yield). When performed on $150-\mathrm{mmol}$ scale, a similar procedure was followed, except for purification. The crude product was triturated in diethyl ether for 10 min and the filter cake collected and dried under vacuum to give the dimesylate 2^{\prime} as a white solid (ca. 65% yield, average from five runs). m.p. $95-96{ }^{\circ} \mathrm{C}$ (decomp); IR (film) $v_{\max } 3027,2940,1332,1171 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 5.04(\mathrm{~s}, 1 \mathrm{H}), 4.26(\mathrm{dd}, J=4.2,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{dd}, J=5.2,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{~s}, 3 \mathrm{H}), 2.16-$ $1.88(\mathrm{~m}, 5 \mathrm{H}), 1.62-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.14(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 87.8,71.0,42.9,41.3,38.3$, 37.3, 31.8, 25.5, 12.8; HRMS (ESI-TOF) calcd for $\mathrm{HC}_{9} \mathrm{H}_{18} \mathrm{O}_{6} \mathrm{~S}_{2} 287.0623$, found 287.0625.

2.2. Dialkylation of the Mesylates to Prepare the Phosphine Oxides 3a, 3e, 3e', 3f, and 3f'

n-Butyllithium (2.1 M solution in hexanes, 3.0 equiv) was added via syringe over 30 min to a stirred solution of arylphosphine (1.5 equiv) in THF $\left(0.1 \mathrm{M}\right.$) at $-78{ }^{\circ} \mathrm{C}$ under argon. The orange solution was warmed to room temperature and stirred for 2 h . The resulting bright yellow suspension was cooled to $-78^{\circ} \mathrm{C}$ and then a solution of the dimesylate $\mathbf{2}$ (1.0 equiv) in THF (0.5 M) was added dropwise via cannula over 1 h . The resulting mixture was warmed to room temperature and stirred for an additional 48 h . Upon completion (TLC), the reaction was quenched through the addition of half-saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The THF was removed through rotary evaporation, and the aqueous phase was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were carefully treated with 35% aqueous $\mathrm{H}_{2} \mathrm{O}_{2}$ (5.0 equiv) and stirred for $1 \mathrm{~h} .{ }^{a}$ The mixture was washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were washed with brine, dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$), and concentrated (rotary evaporation). The residue was purified through flash column chromatography (SiO_{2}; $\mathrm{EtOAc} / \mathrm{MeOH}, 98: 2$) to give the phosphine oxide $\mathbf{3}$. The phosphine oxides $\mathbf{3 e} / \mathbf{3} \mathbf{e}^{\prime}$ and $\mathbf{3 f} / \mathbf{3} \mathbf{f}^{\prime}$ were prepared following a similar procedure; the crude products were purified through flash column chromatography (SiO_{2}; $\mathrm{EtOAc} / \mathrm{MeOH}$, $100: 0 \rightarrow 95: 5$) to give the phosphine oxide $\mathbf{3 e} / \mathbf{3}$ followed by the phosphine oxide $\mathbf{3} \mathbf{e}^{\prime} / \mathbf{3} \mathbf{f}^{\prime}$.

${ }^{\text {a }}$ Hydrogen peroxide is extremely dangerous and care must be taken to avoid generation of highly reactive and

 potentially explosive organoperoxide compounds. It is important to wash with sodium thiosulfate to quench any such species, as well as use peroxide test strips.

Phosphine Oxide 3a (85% yield); IR (film) $v_{\max } 3387,2964,2359,1653 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78-$ $7.74(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.47(\mathrm{~m}, 3 \mathrm{H}), 5.28(\mathrm{~s}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 2.92-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.66(\mathrm{ddd}, J=19.5,14.0,6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.44(\mathrm{td}, J=29.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.03(\mathrm{~m}, 4 \mathrm{H}), 1.84(\mathrm{t}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.5,134.0\left(\mathrm{~d}, J_{\mathrm{CP}}=89 \mathrm{~Hz}\right), 131.3\left(\mathrm{~d}, J_{\mathrm{CP}}=2.7 \mathrm{~Hz}\right), 130.2\left(\mathrm{~d}, J_{\mathrm{CP}}=8.8 \mathrm{~Hz}\right)$, $128.5\left(\mathrm{~d}, J_{\mathrm{CP}}=10.8 \mathrm{~Hz}\right), 112.6,45.1,44.1,42.4\left(\mathrm{~d}, J_{\mathrm{CP}}=24.6 \mathrm{~Hz}\right), 42.1\left(\mathrm{~d}, J_{\mathrm{CP}}=24.6 \mathrm{~Hz}\right), 27.3,26.0,23.8,20.2(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=6.6 \mathrm{~Hz}\right), 13.6\left(\mathrm{~d}, J_{\mathrm{CP}}=16.0 \mathrm{~Hz}\right) ;{ }^{31} \mathrm{P}$ NMR ($161 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 54.8$; HRMS (ESI-TOF) calcd for $\mathrm{HC}_{16} \mathrm{H}_{21} \mathrm{OP}$ 261.1408, found 261.1407.

Phosphine Oxide 3 e (54% yield, 80% combined yield); m.p. $79-82^{\circ} \mathrm{C}$; IR (film) $v_{\text {max }} 2968,2876,1436,1168 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.79-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.45(\mathrm{~m}, 3 \mathrm{H}), 2.53-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.27(\mathrm{~m}, 3 \mathrm{H}), 2.12-$
$1.95(\mathrm{~m}, 3 \mathrm{H}), 1.72-1.58(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 133.6\left(\mathrm{~d}, J_{\mathrm{CP}}=89.2 \mathrm{~Hz}\right)$, $131.5\left(\mathrm{~d}, J_{\mathrm{CP}}=2.8 \mathrm{~Hz}\right), 130.3\left(\mathrm{~d}, J_{\mathrm{CP}}=9.3 \mathrm{~Hz}\right), 128.6\left(\mathrm{~d}, J_{\mathrm{CP}}=11.3 \mathrm{~Hz}\right), 42.2\left(\mathrm{~d}, J_{\mathrm{CP}}=46.3\right), 41.9\left(\mathrm{~d}, J_{\mathrm{CP}}=4.6 \mathrm{~Hz}\right)$, $41.9\left(\mathrm{~d}, J_{\mathrm{CP}}=4.0 \mathrm{~Hz}\right), 34.4\left(\mathrm{~d}, J_{\mathrm{CP}}=60.7 \mathrm{~Hz}\right), 26.7\left(\mathrm{~d}, J_{\mathrm{CP}}=1.5 \mathrm{~Hz}\right), 17.7\left(\mathrm{~d}, J_{\mathrm{CP}}=7.1 \mathrm{~Hz}\right), 13.7\left(\mathrm{~d}, J_{\mathrm{CP}}=15.6 \mathrm{~Hz}\right)$; ${ }^{31} \mathrm{P}$ NMR (202 MHz, CDCl_{3}) $\delta 56.0$; HRMS (ESI-TOF) calcd for $\mathrm{HC}_{13} \mathrm{H}_{17} \mathrm{OP}$ 221.1095, found 221.1095.

Phosphine Oxide $3 e^{\prime}\left(26 \%\right.$ yield, 80% combined yield); m.p. $97-98{ }^{\circ} \mathrm{C}$; IR (film) $v_{\max } 3048,2963,2936,1143 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.76-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.42(\mathrm{~m}, 3 \mathrm{H}), 2.87$ (quint, $\left.J=6.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.41(\mathrm{~d}, J=31.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.18(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.25-1.06(\mathrm{~m}, 2 \mathrm{H}), 1.03(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 131.7\left(\mathrm{~d}, J_{\mathrm{CP}}=2.8 \mathrm{~Hz}\right), 130.9\left(\mathrm{~d}, J_{\mathrm{CP}}=9.0 \mathrm{~Hz}\right), 130.4\left(\mathrm{~d}, J_{\mathrm{CP}}=90.8 \mathrm{~Hz}\right), 128.5\left(\mathrm{~d}, J_{\mathrm{CP}}\right.$ $=10.9 \mathrm{~Hz}), 43.2\left(\mathrm{~d}, J_{\mathrm{CP}}=7.2 \mathrm{~Hz}\right), 42.4\left(\mathrm{~d}, J_{\mathrm{CP}}=68.5 \mathrm{~Hz}\right), 40.2,36.6\left(\mathrm{~d}, J_{\mathrm{CP}}=58.0 \mathrm{~Hz}\right), 25.9,18.9\left(J_{\mathrm{CP}}=3.6 \mathrm{~Hz}\right)$, $13.5\left(\mathrm{~d}, J_{\mathrm{CP}}=13.1 \mathrm{~Hz}\right) ;{ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 57.9$; HRMS (ESI-TOF) calcd for $\mathrm{HC}_{13} \mathrm{H}_{17} \mathrm{OP} 221.1095$, found 221.1096.

Phosphine Oxide $3 f$ (53% yield, 82% combined yield); IR (film) $v_{\max }$ 2957, 2878, 1597, $1165 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70(\mathrm{dd}, J=8.7,10.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{dd}, J=2.0,8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.50-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.38-$ $2.24(\mathrm{~m}, 3 \mathrm{H}), 2.09-1.95(\mathrm{~m}, 3 \mathrm{H}), 1.69-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{dd}, J=12.3,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.95(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.1\left(\mathrm{~d}, J_{\mathrm{CP}}=2.8 \mathrm{~Hz}\right), 132.2\left(J_{\mathrm{CP}}=10.3 \mathrm{~Hz}\right), 124.8\left(\mathrm{~d}, J_{\mathrm{CP}}=95.2 \mathrm{~Hz}\right), 114.1\left(J_{\mathrm{CP}}=12.2\right.$ $\mathrm{Hz}), 55.2,42.4\left(J_{\mathrm{CP}}=68.1 \mathrm{~Hz}\right), 42.0\left(J_{\mathrm{CP}}=12.9 \mathrm{~Hz}\right), 41.9,34.7\left(J_{\mathrm{CP}}=62.0 \mathrm{~Hz}\right), 26.7\left(\mathrm{~d}, J_{\mathrm{CP}}=1.5 \mathrm{~Hz}\right), 17.8\left(J_{\mathrm{CP}}=\right.$ $7.1 \mathrm{~Hz}), 13.8\left(J_{\mathrm{CP}}=15.5 \mathrm{~Hz}\right) ;{ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 55.4$; HRMS (ESI-TOF) calcd for $\mathrm{HC}_{14} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{P} 251.1201$, found 251.1206.

Phosphine Oxide $\mathbf{3 f}^{\prime}$ (29% yield, 82% combined yield); IR (film) $v_{\max } 3012,2967,1597,1139 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65(\mathrm{dd}, J=8.8,10.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{dd}, J=2.2,8.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.84$ (quint, $J=7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.40(\mathrm{~d}, J=30.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.26-1.09(\mathrm{~m}, 2 \mathrm{H})$, $1.04(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.4\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 132.9\left(\mathrm{~d}, J_{\mathrm{CP}}=10.1 \mathrm{~Hz}\right), 121.6(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=96.5 \mathrm{~Hz}\right), 114.2\left(\mathrm{~d}, J_{\mathrm{CP}}=12.3 \mathrm{~Hz}\right), 55.4,43.3\left(\mathrm{~d}, J_{\mathrm{CP}}=7.2 \mathrm{~Hz}\right), 42.7\left(\mathrm{~d}, J_{\mathrm{CP}}=69.4 \mathrm{~Hz}\right), 40.4,37.1\left(\mathrm{~d}, J_{\mathrm{CP}}=36.8\right.$ $\mathrm{Hz}), 26.0,19.1\left(\mathrm{~d}, J_{\mathrm{CP}}=3.7 \mathrm{~Hz}\right), 13.6\left(\mathrm{~d}, J_{\mathrm{CP}}=13.6 \mathrm{~Hz}\right) ;{ }^{31} \mathrm{P}$ NMR $\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 57.2$; HRMS (ESI-TOF) calcd for $\mathrm{HC}_{14} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{P}$ 251.1201, found 251.1203.

2.3. Preparation of the Phosphine Oxides 3b, 3c, and 3d

A vial equipped with a magnetic stirrer bar was charged with the phosphine oxide $\mathbf{3 a}(3.00 \mathrm{~g}, 11.5 \mathrm{mmol}$) and Wilkinson's catalyst ($212 \mathrm{mg}, 0.230 \mathrm{mmol}$). Dry benzene (30 mL) was added and then the vial placed in a highpressure hydrogenation apparatus. After purging the system with H_{2}, the pressure of H_{2} gas was adjusted to 20 bar and the mixture stirred for 24 h at room temperature. After releasing the pressure, the solvent was removed through rotary evaporation. The residue was purified through flash column chromatography $\left(\mathrm{SiO}_{2} ; \mathrm{EtOAc} / \mathrm{MeOH}, 98: 2\right)$ to give the phosphine oxide $\mathbf{3 b}\left(2.7 \mathrm{~g}, 91 \%\right.$ yield) as a white solid. m.p. $91-95^{\circ} \mathrm{C}$; IR (film) $v_{\max } 2955,2862,1435,1167$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.75-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.47(\mathrm{~m}, 3 \mathrm{H}), 2.34-2.02(\mathrm{~m}, 6 \mathrm{H}), 1.91-1.79(\mathrm{~m}, 3 \mathrm{H})$, $1.01(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 134.1\left(\mathrm{~d}, J_{\mathrm{CP}}=\right.$ $88.8 \mathrm{~Hz}), 131.3\left(\mathrm{~d}, J_{\mathrm{CP}}=2.5 \mathrm{~Hz}\right), 130.2\left(\mathrm{~d}, J_{\mathrm{CP}}=9.0 \mathrm{~Hz}\right), 128.5\left(\mathrm{~d}, J_{\mathrm{CP}}=11.0 \mathrm{~Hz}\right), 44.8\left(\mathrm{~d}, J_{\mathrm{CP}}=29 \mathrm{~Hz}\right), 42.9\left(\mathrm{~d}, J_{\mathrm{CP}}\right.$ $=13.2 \mathrm{~Hz}), 42.4\left(\mathrm{~d}, J_{\mathrm{CP}}=67 \mathrm{~Hz}\right), 29.3,27.5\left(\mathrm{~d}, J_{\mathrm{CP}}=61.5 \mathrm{~Hz}\right), 23.5\left(\mathrm{~d}, J_{\mathrm{CP}}=6.8 \mathrm{~Hz}\right), 22.4,21.3,13.5\left(\mathrm{~d}, J_{\mathrm{CP}}=16.2\right.$ $\mathrm{Hz}) ;{ }^{31} \mathrm{P}$ NMR ($161 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 54.8; HRMS (ESI-TOF) calcd for $\mathrm{HC}_{16} \mathrm{H}_{23} \mathrm{OP}$ 263.1565, found 263.1554.

A mixture of AD-mix- $\alpha(8.0 \mathrm{~g})$ in 50% aqueous tert-butanol $(40 \mathrm{~mL})$ was stirred at room temperature until both phases were clear. The mixture was cooled to $0^{\circ} \mathrm{C}$ and then a solution of the phosphine oxide $\mathbf{3 a}(1.50 \mathrm{~g}, 5.72 \mathrm{mmol})$ in 50% aqueous tert-butanol (10 mL) was added dropwise. The resulting mixture was stirred vigorously at $0{ }^{\circ} \mathrm{C}$ for 24 h before the reaction was quenched through the addition of solid $\mathrm{Na}_{2} \mathrm{SO}_{3}(8.0 \mathrm{~g})$ at $0^{\circ} \mathrm{C}$. After stirring for an additional 30 min at room temperature, the mixture was extracted with $\operatorname{EtOAc}(3 \times 200 \mathrm{~mL})$. The combined organic phases were washed with brine, dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$), and concentrated (rotary evaporation). The residue was purified through flash column chromatography $\left(\mathrm{SiO}_{2} ; \mathrm{EtOAc} / \mathrm{MeOH}, 92: 8\right)$ to give the phosphine oxide $\mathbf{3 c}(1.58 \mathrm{~g}, 94 \%$ yield $)$ as a white solid. m.p. $167-171{ }^{\circ} \mathrm{C}$; IR (film) $v_{\max } 3353,2933,1435,1157 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.77-7.72(\mathrm{~m}$, $2 \mathrm{H}), 7.55-7.45(\mathrm{~m}, 3 \mathrm{H}), 4.27(\mathrm{~s}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=4.8,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dd}, J=4.8,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{dd}, J=$ $4.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{dd}, J=12.8,14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.32-2.10(\mathrm{~m}, 4 \mathrm{H}), 2.03-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{~s}$, $3 \mathrm{H}), 1.03(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 132.84\left(\mathrm{~d}, J_{\mathrm{CP}}=90 \mathrm{~Hz}\right), 131.7\left(\mathrm{~d}, J_{\mathrm{CP}}=2.5 \mathrm{~Hz}\right), 130.3\left(\mathrm{~d}, J_{\mathrm{CP}}\right.$ $=9.3 \mathrm{~Hz}), 128.6\left(\mathrm{~d}, J_{\mathrm{CP}}=11.3 \mathrm{~Hz}\right), 73.7,69.9,44.4\left(\mathrm{~d}, J_{\mathrm{CP}}=12.1 \mathrm{~Hz}\right), 44.0,43.3,42.3\left(\mathrm{~d}, J_{\mathrm{CP}}=66.2 \mathrm{~Hz}\right), 29.6\left(\mathrm{~d}, J_{\mathrm{CP}}\right.$ $=61.1 \mathrm{~Hz}), 26.3,19.5\left(\mathrm{~d}, J_{\mathrm{CP}}=7.1 \mathrm{~Hz}\right), 13.8\left(\mathrm{~d}, J_{\mathrm{CP}}=15.5 \mathrm{~Hz}\right) ;{ }^{31} \mathrm{P}$ NMR $\left(161 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 56.0$; HRMS (ESITOF) calcd for $\mathrm{HC}_{16} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{P}$ 295.1463, found 295.1465.

Diethyl zinc ($1.13 \mathrm{~mL}, 11 \mathrm{mmol}$) was added dropwise to a stirred solution of the phosphine oxide $\mathbf{3 a}(1.43 \mathrm{~g}, 5.5$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$ at $-30^{\circ} \mathrm{C}$. After stirring for 10 min , diiodomethane ($1.33 \mathrm{~mL}, 16.5 \mathrm{mmol}$) was added dropwise. The reaction mixture was slowly warmed to $0^{\circ} \mathrm{C}$ and stirred for 2 h , then warmed to room temperature and stirred for 24 h . Upon completion (TLC), the white suspension was hydrolyzed with water, washed with 1.0 M aqueous NaOH and brine, dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$), and concentrated (rotary evaporation). The residue was purified through flash column chromatography (SiO_{2}; EtOAc) to give the phosphine oxide $\mathbf{3 d}$ ($650 \mathrm{mg}, 43 \%$ yield) as a white solid. m.p. 98-101 ${ }^{\circ} \mathrm{C}$; IR (film) $v_{\max } 3059,2948,1487,1158 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.56-$ $7.43(\mathrm{~m}, 3 \mathrm{H}), 2.66$ (quint, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{dt}, J=4.8,30.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.03(\mathrm{~m}, 4 \mathrm{H}), 1.92-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.64$ (ddd, $J=5.9,14.0,19.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.52(\mathrm{dt}, J=4.9,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.40(\mathrm{dt}, J=$ $5.1,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.28(\mathrm{dt}, J=4.8,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.14(\mathrm{dt}, J=4.7,9.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 134.3$ $\left(\mathrm{d}, J_{\mathrm{CP}}=89.5 \mathrm{~Hz}\right), 131.3\left(\mathrm{~d}, J_{\mathrm{CP}}=2.6 \mathrm{~Hz}\right), 130.3\left(\mathrm{~d}, J_{\mathrm{CP}}=9.0 \mathrm{~Hz}\right), 128.5\left(\mathrm{~d}, J_{\mathrm{CP}}=11.2 \mathrm{~Hz}\right), 45.7,42.3\left(\mathrm{~d}, J_{\mathrm{CP}}=1.7\right.$ $\mathrm{Hz}), 42.0\left(\mathrm{~d}, J_{\mathrm{CP}}=55.1 \mathrm{~Hz}\right), 41.8,26.8\left(\mathrm{~d}, J_{\mathrm{CP}}=61.3 \mathrm{~Hz}\right), 25.3,18.4\left(\mathrm{~d}, J_{\mathrm{CP}}=6.9 \mathrm{~Hz}\right), 13.7,13.6\left(\mathrm{~d}, J_{\mathrm{CP}}=16.3 \mathrm{~Hz}\right)$, 9.6, 8.8; ${ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 55.0; HRMS (ESI-TOF) calcd for $\mathrm{HC}_{17} \mathrm{H}_{23} \mathrm{OP}$ 275.1565, found 275.1566.

2.4. General Procedure for Reduction of the Phosphine Oxides

A round-bottom flask equipped with a magnetic stirrer bar was charged with trichlorosilane (10.0 equiv) and $\mathrm{Et}_{3} \mathrm{~N}$ (11.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1 \mathrm{M})$ at $0{ }^{\circ} \mathrm{C}$ under argon protection. A solution of the phosphine oxide 3 (1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{M})$ was added dropwise. The mixture was warmed to room temperature and stirred for 12 h . Upon completion of the reaction (TLC), the mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and then the reaction was quenched through the addition of degassed saturated aqueous NaHCO_{3}. After stirring for 5 min , solid $\mathrm{K}_{2} \mathrm{CO}_{3}$ and anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ were added to the mixture with vigorous stirring. The mixture was warmed to room temperature and stirred for 1 h until it became clear. The suspension was filtered through a short plug of silica under argon; the filter cake was rinsed three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were concentrated (rotary evaporation with argon replenishment) to provide the phosphine 4 in a sufficiently pure form to be used directly as a catalyst.

Phosphine 4 a (95% yield); IR (film) $v_{\max } 3359,2967,1646,1439 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.30(\mathrm{~m}$, $4 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 1 \mathrm{H}), 4.97(\mathrm{~s}, 1 \mathrm{H}), 4.95(\mathrm{~s}, 1 \mathrm{H}), 2.75-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{td}, J=4.5,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{dd}, J=$ $6.5,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.94(\mathrm{dd}, J=13.5,25.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.78-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.7,130.2,129.9,128.2\left(\mathrm{~d}, J_{\mathrm{CP}}=4.3 \mathrm{~Hz}\right), 127.1,110.2,45.1\left(\mathrm{~d}, J_{\mathrm{CP}}=3.7\right.$ $\mathrm{Hz}), 44.2\left(\mathrm{~d}, J_{\mathrm{CP}}=4.1 \mathrm{~Hz}\right), 40.8\left(\mathrm{~d}, J_{\mathrm{CP}}=5.3 \mathrm{~Hz}\right), 25.8,25.6,25.0,24.9,23.8,13.1 ;{ }^{31} \mathrm{P} \operatorname{NMR}\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-$ 7.7; HRMS (ESI-TOF) calcd for $\mathrm{HC}_{16} \mathrm{H}_{21} \mathrm{P}$ 245.1459, found 245.1461.

Phosphine 4b (96\% yield); IR (film) $v_{\max } 3049$, 2951, 2929, 2864, 1719, $1432 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.57-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.33(\mathrm{~m}, 3 \mathrm{H}), 2.42-2.24(\mathrm{~m}, 4 \mathrm{H}), 2.09-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.68(\mathrm{~m}, 1 \mathrm{H})$, $1.57-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.87(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.7,130.0\left(\mathrm{~d}, J_{\mathrm{CP}}=13.6 \mathrm{~Hz}\right), 128.2\left(\mathrm{~d}, J_{\mathrm{CP}}=4.6 \mathrm{~Hz}\right), 127.3,45.5,45.1,43.7,40.5$, 29.9, 29.8, $24.8\left(\mathrm{~d}, J_{\mathrm{CP}}=11.0 \mathrm{~Hz}\right), 22.3,21.5,13.1 ;{ }^{31} \mathrm{P}$ NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-6.0$; HRMS (ESI-TOF) calcd for $\mathrm{HC}_{16} \mathrm{H}_{23} \mathrm{P} 247.1527$, found 247.1520 .

Phosphine 4c (91\% yield); IR (film) $v_{\max } 3394,3052,2930,1432 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.28(\mathrm{~m}, 4 \mathrm{H})$, $7.21-7.17(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{dd}, J=12.5,25.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{bs}$,
$1 \mathrm{H}), 2.33-1.92(\mathrm{~m}, 5 \mathrm{H}), 1.95-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 143.9\left(\mathrm{~d}, J_{\mathrm{CP}}=26.5 \mathrm{~Hz}\right), 129.7\left(\mathrm{~d}, J_{\mathrm{CP}}=14.0 \mathrm{~Hz}\right), 128.0\left(\mathrm{~d}, J_{\mathrm{CP}}=4.0 \mathrm{~Hz}\right), 126.6,74.2,69.1,46.5,46.4,43.5$, $43.4\left(\mathrm{~d}, J_{\mathrm{CP}}=2.6 \mathrm{~Hz}\right), 39.8\left(\mathrm{~d}, J_{\mathrm{CP}}=9.0 \mathrm{~Hz}\right), 27.2\left(\mathrm{~d}, J_{\mathrm{CP}}=17.5 \mathrm{~Hz}\right), 25.9\left(\mathrm{~d}, J_{\mathrm{CP}}=22.0 \mathrm{~Hz}\right), 13.5 ;{ }^{31} \mathrm{P}$ NMR $(202$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) -8.9; HRMS (ESI-TOF) calcd for $\mathrm{HC}_{16} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{P}$ 279.1514, found 279.1513.

Phosphine 4d (95\% yield); IR (film) $v_{\max } 3068,2930,2872,1432 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.27(\mathrm{~m}$, $4 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 1 \mathrm{H}), 2.48(\mathrm{dt}, J=5.4,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{dd}, J=13.0,26.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{dt}, J=4.6,13.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.11(\mathrm{dd}, J=6.7,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.98(\mathrm{dd}, J=6.6,13.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{dddd}, J=6.7,11.9,13.7,35.3 \mathrm{~Hz}, 1 \mathrm{H})$, $1.71(\mathrm{dt}, J=6.0,11.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{dt}, J=4.8,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.72(\mathrm{ddd}, J=5.7$, $13.7,19.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.29(\mathrm{dt}, J=5.0,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.15(\mathrm{dt}, J=4.8,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.09(\mathrm{dt}, J=4.7,9.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.1\left(\mathrm{~d}, J_{\mathrm{CP}}=27.0 \mathrm{~Hz}\right), 129.8\left(\mathrm{~d}, J_{\mathrm{CP}}=14.1 \mathrm{~Hz}\right), 128.1\left(\mathrm{~d}, J_{\mathrm{CP}}=4.0 \mathrm{~Hz}\right), 126.5,46.2(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=4.9 \mathrm{~Hz}\right), 44.6\left(\mathrm{~d}, J_{\mathrm{CP}}=2.6 \mathrm{~Hz}\right), 41.6,40.6\left(\mathrm{~d}, J_{\mathrm{CP}}=9.0 \mathrm{~Hz}\right), 25.7\left(\mathrm{~d}, J_{\mathrm{CP}}=17.7 \mathrm{~Hz}\right), 25.1,24.3\left(\mathrm{~d}, J_{\mathrm{CP}}=20.4\right.$ $\mathrm{Hz}), 13.5\left(\mathrm{~d}, J_{\mathrm{CP}}=76.2 \mathrm{~Hz}\right), 8.6\left(\mathrm{~d}, J_{\mathrm{CP}}=6.8 \mathrm{~Hz}\right), 8.4 ;{ }^{31} \mathrm{P}$ NMR $\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-9.4$; HRMS (ESI-TOF) calcd for $\mathrm{HC}_{17} \mathrm{H}_{23} \mathrm{P} 258.1537$, found 258.1537 .

Phosphine $4 \mathbf{e}$ (98% yield); IR (film) $v_{\max } 3069,2952,2928,1432 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.28(\mathrm{~m}$, $4 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.18(\mathrm{~m}, 2 \mathrm{H}), 2.12-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.78(\mathrm{~m}, 4 \mathrm{H}), 1.66-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.23-1.16(\mathrm{~m}$, $1 \mathrm{H}), 0.92(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.9\left(\mathrm{~d}, J_{\mathrm{CP}}=27.0 \mathrm{~Hz}\right), 129.9\left(\mathrm{~d}, J_{\mathrm{CP}}=13.9 \mathrm{~Hz}\right), 128.1$ $\left(\mathrm{d}, J_{\mathrm{CP}}=4.0 \mathrm{~Hz}\right), 126.6,44.2\left(\mathrm{~d}, J_{\mathrm{CP}}=5.2 \mathrm{~Hz}\right), 41.2\left(\mathrm{~d}, J_{\mathrm{CP}}=2.7 \mathrm{~Hz}\right), 40.6\left(\mathrm{~d}, J_{\mathrm{CP}}=9.1 \mathrm{~Hz}\right), 32.3\left(\mathrm{~d}, J_{\mathrm{CP}}=17.2 \mathrm{~Hz}\right)$, 27.6, $23.6\left(\mathrm{~d}, J_{\mathrm{CP}}=22.1 \mathrm{~Hz}\right), 13.6 ;{ }^{31} \mathrm{P}$ NMR $\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-6.59$; HRMS (ESI-TOF) calcd for $\mathrm{HC}_{13} \mathrm{H}_{17} \mathrm{P}$ 205.1146, found 205.1146 .

Phosphine $4 \mathbf{e}^{\prime}$ (94% yield); IR (film) $v_{\max } 2987,2854,1490 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39-7.30(\mathrm{~m}, 4 \mathrm{H})$, $7.29-7.23(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.16(\mathrm{~m}, 3 \mathrm{H}), 2.13-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.54(\mathrm{dd}, J=5.7$, $13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~m}, 1 \mathrm{H}), 1.05(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.03-0.96(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.7\left(\mathrm{~d}, J_{\mathrm{CP}}\right.$ $=26.1 \mathrm{~Hz}), 130.8\left(\mathrm{~d}, J_{\mathrm{CP}}=15.2 \mathrm{~Hz}\right), 127.9\left(\mathrm{~d}, J_{\mathrm{CP}}=4.4 \mathrm{~Hz}\right), 127.0,45.4\left(\mathrm{~d}, J_{\mathrm{CP}}=19.1 \mathrm{~Hz}\right), 42.7\left(\mathrm{~d}, J_{\mathrm{CP}}=2.3 \mathrm{~Hz}\right)$, $39.8\left(\mathrm{~d}, J_{\mathrm{CP}}=13.0 \mathrm{~Hz}\right), 27.5\left(\mathrm{~d}, J_{\mathrm{CP}}=8.5 \mathrm{~Hz}\right), 27.3\left(\mathrm{~d}, J_{\mathrm{CP}}=1.9 \mathrm{~Hz}\right), 23.3\left(\mathrm{~d}, J_{\mathrm{CP}}=4.0 \mathrm{~Hz}\right), 14.4\left(\mathrm{~d}, J_{\mathrm{CP}}=13.9 \mathrm{~Hz}\right)$; ${ }^{31}$ P NMR (202 MHz, CDCl_{3}) -4.79; HRMS (ESI-TOF) calcd for $\mathrm{HC}_{13} \mathrm{H}_{17} \mathrm{P}$ 205.1146, found 205.1149.

Phosphine $4 f$ (98% yield); IR (film) $v_{\max } 3058,2967,2853,1590,1473 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27-$ $7.23(\mathrm{~m}, 2 \mathrm{H}), 6.90-6.86(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.23-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.13-1.74(\mathrm{~m}, 6 \mathrm{H}), 1.62-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.20-$ $1.14(\mathrm{~m}, 1 \mathrm{H}), 0.91(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.8,133.1\left(\mathrm{~d}, J_{\mathrm{CP}}=24.4 \mathrm{~Hz}\right), 131.4\left(\mathrm{~d}, J_{\mathrm{CP}}\right.$ $=15.6 \mathrm{~Hz}), 113.9\left(\mathrm{~d}, J_{\mathrm{CP}}=4.9 \mathrm{~Hz}\right), 55.0,43.8\left(\mathrm{~d}, J_{\mathrm{CP}}=5.0 \mathrm{~Hz}\right), 41.1\left(\mathrm{~d}, J_{\mathrm{CP}}=2.6 \mathrm{~Hz}\right), 40.9\left(\mathrm{~d}, J_{\mathrm{CP}}=9.4 \mathrm{~Hz}\right), 32.0(\mathrm{~d}$, $J_{\mathrm{CP}}=17.4 \mathrm{~Hz}$), 27.5, $23.6\left(\mathrm{~d}, J_{\mathrm{CP}}=22.4 \mathrm{~Hz}\right), 13.5 ;{ }^{31} \mathrm{P} \operatorname{NMR}\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-8.15$; HRMS (ESI-TOF) calcd for $\mathrm{HC}_{14} \mathrm{H}_{19} \mathrm{OP} m / z 235.1252$, found 235.1252.

Phosphine $\mathbf{4 f}^{\prime}$ (99% yield); IR (film) $v_{\max } 2948,2871,1595,1498,1247 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28$ (dd, $J=6.4,8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{dt}, J=5.6,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.21-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.09-$ $1.99(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{dd}, J=5.6,13.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.38-1.32(\mathrm{~m}, 1 \mathrm{H}), 1.06-1.01(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{~d}, J=$ $6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.1,132.4\left(\mathrm{~d}, J_{\mathrm{CP}}=17.4 \mathrm{~Hz}\right), 129.7\left(\mathrm{~d}, J_{\mathrm{CP}}=23.6 \mathrm{~Hz}\right), 113.7\left(\mathrm{~d}, J_{\mathrm{CP}}=\right.$ $5.7 \mathrm{~Hz}), 55.0,45.4\left(\mathrm{~d}, J_{\mathrm{CP}}=18.8 \mathrm{~Hz}\right), 42.8\left(\mathrm{~d}, J_{\mathrm{CP}}=2.5 \mathrm{~Hz}\right), 40.1\left(\mathrm{~d}, J_{\mathrm{CP}}=13.1 \mathrm{~Hz}\right), 27.5\left(\mathrm{~d}, J_{\mathrm{CP}}=8.1 \mathrm{~Hz}\right), 27.5(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=2.0 \mathrm{~Hz}\right), 22.9\left(\mathrm{~d}, J_{\mathrm{CP}}=4.1 \mathrm{~Hz}\right), 14.4\left(\mathrm{~d}, J_{\mathrm{CP}}=13.8 \mathrm{~Hz}\right) ;{ }^{31} \mathrm{P}$ NMR $\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-6.81$; HRMS (ESI-TOF) calcd for $\mathrm{HC}_{14} \mathrm{H}_{19} \mathrm{OP} 235.1252$, found 235.1251.

3. Allenoate-Imine [3+2] Annulation

3.1. General Procedure for Allenoate-Imine [3+2] Annulations

A screw-capped vial equipped with a magnetic stirrer bar was charged with an arylimine $6(0.1 \mathrm{mmol})$ and a phosphine $4\left(0.015 \mathrm{mmol}\right.$, added as a stock solution in benzene $\left.{ }^{a}\right)$. An allenoate $\mathbf{5}(0.2 \mathrm{mmol})$ was added and then the vessel was purged with argon and sealed with a screw cap and Teflon. After stirring at room temperature until completion (indicated by disappearance of the imine via TLC), ${ }^{\text {b }}$ the mixture was loaded directly onto a silica gel column and purified through flash column chromatography $\left(\mathrm{SiO}_{2} ; \mathrm{EtOAc} /\right.$ hexanes, $\left.1: 4\right)$ to give the pyrroline product 7.
${ }^{a}$ The phosphine 4 was dissolved in benzene such that the concentration was $1.8 \mathrm{mg} / \mathrm{mL}$. The stock solution was stored in a Schlenk flask at $0^{\circ} \mathrm{C}$ under argon protection. Over the course of 2 weeks, there was no appreciable formation of the phosphine oxide, as determined through TLC or NMR spectroscopic analysis.
${ }^{b}$ The phosphines $\mathbf{4 e} / \mathbf{4} \mathbf{e}^{\prime}$ and $\mathbf{4 f} / \mathbf{4} f^{\prime}$ were more reactive relative to the phosphines $\mathbf{4 a}, \mathbf{4 b}, \mathbf{4 c}$, and $\mathbf{4 d}$, resulting in reduced reactions times (typically 6-12 hours required for completion).

Table S1. Optimization of the Allene-Imine [3 + 2] Annulation ${ }^{a}$

entry	$\mathbf{4 b}$ mol\%	solvent	temperature	additive	yield (\%)	ee (\%)
1	5	benzene	rt	-	58	93
2^{b}	5	benzene	rt	-	62	93
3	10	benzene	rt	-	77	92
4^{b}	10	benzene	rt	-	89	93
5	15	benzene	rt	-	94	93
6^{b}	15	benzene	rt	-	92	93
7	20	benzene	rt	-	93	93
8	15	toluene	rt	-	90	91
9	15	acetonitrile	rt	-	60	40
10	15	dichloromethane	rt	-	96	58
11	15	diethyl ether	rt	-	86	93
12	15	tetrahydrofuran	rt	-	84	83
13	15	methanol	rt	-	NR	N / A
14	15	benzene	$0{ }^{\circ} \mathrm{C}$	-	78	95
15^{c}	15	benzene	$0{ }^{\circ} \mathrm{C}$	-	82	94
16^{d}	15	benzene	$40^{\circ} \mathrm{C}$	-	90	92
17	15	benzene	rt	$\mathrm{H} \mathrm{H}_{2} \mathrm{O}(0.15$ equiv)	90	75
18	15	benzene	rt	$\mathrm{HOAc}(0.15$ equiv $)$	94	90
19	15	benzene	rt	$\mathrm{PhOH}(0.15$ equiv)	92	93

${ }^{a} 1.0$ equiv $\mathbf{6 a}(0.1 \mathrm{mmol}, 25.9 \mathrm{mg})$ and 2.0 equiv $5 \mathrm{e}(0.2 \mathrm{mmol}, 34 \mu \mathrm{~L}) .{ }^{b} 1.0$ equiv $\mathbf{6 a}(3.85 \mathrm{mmol}, 1.0 \mathrm{~g})$ and 1.2 equiv 5e ($4.63 \mathrm{mmol}, 0.78 \mathrm{~mL}$). ${ }^{c}$ Reaction allowed to run for $72 \mathrm{~h} .{ }^{d}$ Reaction complete within 3 h .

3.2. Proposed Transition States

Displayed below are proposed transition states for the reaction between the allenoate $\mathbf{5 e}$ and the imine $\mathbf{6 a}$ catalyzed by the phosphine $\mathbf{4 b}$. Calculated transition states are available in reference 2 h . The key stabilizing factor in the TS leading to the major S-enantiomer is hydrogen bonding between the imino N-sulfonyl oxygen atom and the two α methylene (α to the phosphorous) hydrogen atoms. In contrast, there is only one stabilizing hydrogen bond between the oxygen atom of the sulfonyl group and the α-methine hydrogen in the TS leading to the minor R-enantiomer. As the bond between the α-carbon of the phosphonium dienolate and the imino carbon ($\mathrm{C}_{\alpha}-\mathrm{C}_{\mathrm{imine}}$) forms, the pyramidalization of the C_{α} of the phosphonium enolate bends the bond between the α-carbon and the carbonyl carbon of the ester $\left(\mathrm{C}_{\alpha}-\mathrm{C}_{\text {ester }}\right)$ and the bond between the α-carbon and the β-carbon $\left(\mathrm{C}_{\alpha}-\mathrm{C}_{\beta}\right)$, placing the γ-carbon away from the approaching imine. In the absence of the second stabilizing hydrogen bond, the bond between the α-carbon of the phosphonium enolate and the imino carbon is formed to a lesser extent; at this point, the phosphonium dienolate is still relatively flat, causing greater steric repulsion between the imine and the γ-substituent. This arrangement enhances the preference for the TS leading to the major S-enantiomer, resulting in the greater enantioselectivity observed upon increasing the size of the γ-substituent.

disfavored

3.3. Analytical Data for the Pyrroline Products

Compounds 7aa/7aa', 7ba, 7bp', 7ca, 7da/7da', 7ea/7ea', 7eb, 7ec, 7ed, 7ee, and 7eg (in racemic form) have been synthesized previously; their spectral data are provided in the pertinent references. ${ }^{2}$ Complete spectral data are provided for all new compounds. Compounds 7ba, 7bh', 7bm', 7bp', 7ca, 7ch, 7ci', 7cn', and 7co' were obtained as an inseparable mixture of cis (major) and trans (minor) diastereomers. NMR spectral data are provided for the enantiomerically enriched samples of a mixture of the cis (major) and trans (minor) diastereomers.

7eb
Pyrroline 7eb (90\% yield, $92 \% \mathrm{ee})$; $[\alpha]_{\mathrm{D}}+83.9\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 23.0^{\circ} \mathrm{C}\right)$

Pyrroline 7ec (94\% yield, 95% ee $)$; $[\alpha]_{\mathrm{D}}+85.5\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 23.0^{\circ} \mathrm{C}\right)$

Pyrroline 7ed (96\% yield, 98% ee $)$; $[\alpha]_{\mathrm{D}}+129.2\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 23.0^{\circ} \mathrm{C}\right)$

7ee
Pyrroline 7ee (89% yield, 94% ee $)$; $[\alpha]_{\mathrm{D}}+106.7\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 23.0^{\circ} \mathrm{C}\right)$

Pyrroline 7eg (89% yield, 92% ee $)$; $[\alpha]_{\mathrm{D}}+130.1\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 23.0{ }^{\circ} \mathrm{C}\right)$

7aa'
Pyrroline 7aa' (93\% yield, 84% ee); $[\alpha]_{\mathrm{D}}-162.2$ ($\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 24.1^{\circ} \mathrm{C}$)
Recrystallization to $>99 \%$ ee; $-193.1\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 26.0^{\circ} \mathrm{C}\right.$)

Pyrroline 7da' (97\% yield, 94\% ee); $[\alpha]_{\mathrm{D}}-96.6\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25.3{ }^{\circ} \mathrm{C}\right.$)

Pyrroline 7ea' (94\% yield, 99\% ee); $[\alpha]_{\mathrm{D}}-111.8\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 24.7^{\circ} \mathrm{C}\right)$

Pyrroline 7bp' (96\% yield, 94% ee, $99: 1$ d.r.); $[\alpha]_{\mathrm{D}}-151.2$ (c $\left.=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 23.6{ }^{\circ} \mathrm{C}\right)$

7ef
Pyrroline 7ef (86% yield, 92% ee $)$; $[\alpha]_{\mathrm{D}}+85.1\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 23.1^{\circ} \mathrm{C}\right)$; IR (film) $v_{\max } 2968,2362,1720,1533$, $1326 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.34-8.31(\mathrm{~m}, 2 \mathrm{H}), 8.02-7.98(\mathrm{~m}, 2 \mathrm{H}), 7.59(\mathrm{~s}, 4 \mathrm{H}), 6.78-6.77(\mathrm{~m}, 1 \mathrm{H}), 5.92$ $(\mathrm{s}, 1 \mathrm{H}), 4.41(\mathrm{dd}, J=0.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.16(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.81(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 162.1,150.4,142.8,142.7,141.2,141.2,133.6,129.2,128.5,125.2,124.3,78.5,78.5,68.3,68.3,61.4,36.1$, 27.9, 14.0; LRMS (MALDI) calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+} 549.13$, found 549.2.

7ch
Pyrroline 7ch (93\% yield, 83% ee, $99: 1$ d.r.); m.p. $128-132{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}+156.2\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 23.0{ }^{\circ} \mathrm{C}\right)$; IR (film) $v_{\max }$ 2977, 2365, 1717, $1353 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.19(\mathrm{~m}, 4 \mathrm{H}), 7.06(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.98(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~s}, 1 \mathrm{H}), 4.58-4.51(\mathrm{~m}, 1 \mathrm{H}), 4.08-3.89(\mathrm{~m}, 2 \mathrm{H}), 2.40$ $(\mathrm{s}, 3 \mathrm{H}), 2.30-2.21(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.09(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 161.7,161.4,143.6,139.4,134.3,133.4,129.6,129.4,129.3,129.2,129.2,127.7,127.6,124.0,123.9,115.3,115.1$, $68.8,62.2,62.1,60.7,29.9,21.4,13.6,10.3$; HRMS (ESI-TOF) calcd for $\mathrm{HC}_{22} \mathrm{H}_{25} \mathrm{FNO}_{4} \mathrm{~S} 418.1488$, found 418.1489.

7ei'
Pyrroline 7ei' (94\% yield, 99\% ee); [$\alpha]_{\mathrm{D}}-20.6\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 24.0^{\circ} \mathrm{C}\right.$); IR (film) $v_{\max } 2963,2924,1723,1167 \mathrm{~cm}^{-}$ ${ }^{1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{~d}, J$ $=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 4.52(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-4.03(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.16$ ($\mathrm{s}, 3 \mathrm{H}$), $1.16(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.1,151.3,150.0,143.7,140.6,135.0$, 132.1, 129.5, 128.0, 109.5, 106.3, 63.4, 60.6, 36.3, 27.5, 21.4, 13.9, 13.4; HRMS (ESI-TOF) calcd for $\mathrm{HC}_{23} \mathrm{H}_{29} \mathrm{NO}_{5} \mathrm{~S}$ 432.1845 , found 432.1845 .

7ej'
Pyrroline 7ej' (94\% yield, 98% ee); m.p. $118-122{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}-171.5$ ($\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 23.2{ }^{\circ} \mathrm{C}$); IR (film) $v_{\max } 2965$, 2905, 1718, 1247, $1165 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.06$ (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{dd}, J=1.7,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.72-6.68(\mathrm{~m}, 2 \mathrm{H}), 5.94(\mathrm{~s}, 2 \mathrm{H}), 5.79(\mathrm{~s}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.11(\mathrm{dq}, J=1.1,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.5,147.4,146.9,143.8,141.1,134.1,134.0,133.5,129.5,127.9,121.4,108.9,107.4,100.9,77.7,68.2,60.8$, 35.9, 27.9, 21.4, 13.9; HRMS (ESI-TOF) calcd for $\mathrm{HC}_{25} \mathrm{H}_{29} \mathrm{NO}_{6} \mathrm{~S} 472.1794$, found 472.1796 .

7ek'
Pyrroline 7ek'(98\% yield, 98% ee); m.p. $92-95^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}-107.0\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 23.8^{\circ} \mathrm{C}\right)$; IR (film) $v_{\max } 2966,2229$, $1719,1166 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.63-7.56(\mathrm{~m}, 4 \mathrm{H}), 7.29(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $6.76(\mathrm{q}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{~s}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}), 0.79(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.2,144.9,144.2,142.3,133.4,133.1,131.8,129.7$, 128.8, $127.9,118.6,111.5,78.0,67.8,61.1,35.8,27.7,21.5,13.9$; HRMS (ESI-TOF) calcd for $\mathrm{HC}_{25} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S} 453.1848$, found 453.1848 .

7dj'
Pyrroline 7dj' (92\% yield, 93% ee $)$; m.p. $90-95^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}-183.1$ ($\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 23.8{ }^{\circ} \mathrm{C}$); IR (film) $v_{\max } 2962,2927$, $1718,1164 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.89-6.83(\mathrm{~m}, 2 \mathrm{H})$, $6.75-6.71(\mathrm{~m}, 2 \mathrm{H}), 5.93(\mathrm{~s}, 2 \mathrm{H}), 5.63(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{dt}, J=2.5,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.10-3.99(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{~s}$, $3 \mathrm{H}), 2.13(\mathrm{sex}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.11(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.1,147.3,147.2,143.5,138.5,135.0,134.3,133.8,129.5,127.6,122.0,108.6,107.7,100.9$, 73.2, 69.0, 60.7, 32.9, 21.4, 20.1, 18.0, 13.8; HRMS (ESI-TOF) calcd for $\mathrm{HC}_{24} \mathrm{H}_{27} \mathrm{NO}_{6} \mathrm{~S} 458.1637$, found 458.1642 .

Pyrroline 7dl' (95\% yield, 95% ee); m.p. $118-121^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}-202.5$ (c $=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 23.7^{\circ} \mathrm{C}$); IR (film) $v_{\max } 2961$, $2935,1720,1164,1125 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.73$ $(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 2 \mathrm{H}), 5.71(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.53$ (quint, $J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-3.99(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H})$, $3.78(\mathrm{~s}, 6 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{sex}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.10(\mathrm{q}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 0.91(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.2,152.7,143.5,138.2,137.5,135.5,135.2,134.4,129.3,127.4,105.4,73.1,69.3,60.7,55.9$, 32.7, 21.4, 20.0, 17.9, 13.9; HRMS (ESI-TOF) calcd for $\mathrm{HC}_{26} \mathrm{H}_{33} \mathrm{NO}_{7} \mathrm{~S} 504.2056$, found 504.2056.

7dm'
Pyrroline 7dm' (97\% yield, 93% ee); m.p. $109-110{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}-102.5$ (c $=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25.5{ }^{\circ} \mathrm{C}$); IR (film) $v_{\max } 2963$, 2930, 1720, 1260, $1165 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.18(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{td}, J=1.9,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{dt}, J$ $=2.3,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-3.96(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{sex}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.11-1.05(\mathrm{~m}, 6 \mathrm{H}), 0.91(\mathrm{~d}, J=6.8$
$\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.9,143.7,142.4,142.3,139.1,134.8,134.0,129.5,129.5,127.6,124.0$, $115.2,115.1,114.9,114.7,73.3,68.6,60.8,32.8,21.4,20.1,17.9,13.8$; HRMS (ESI-TOF) calcd for $\mathrm{HC}_{23} \mathrm{H}_{26} \mathrm{FNO}_{4} \mathrm{~S}$ 432.1645 , found 432.1646 .

7ci'
Pyrroline 7ci' (95\% yield, 90% ee, $98: 2$ d.r.); $[\alpha]_{\mathrm{D}}-136.3$ ($\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 23.5^{\circ} \mathrm{C}$); IR (film) $v_{\max } 2974,2924,1720$, $1162 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.16(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{~s}, 1 \mathrm{H}), 4.63-4.57(\mathrm{~m}, 1 \mathrm{H}), 4.15-4.03(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H})$, $2.17(\mathrm{~s}, 3 \mathrm{H}), 1.96-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.16(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.9,151.7,150.1,143.3,140.4,135.9,131.9,129.4,127.3,109.3,106.4,68.1,62.4,60.7,28.9$, 21.4, 13.9, 13.4, 9.7; HRMS (ESI-TOF) calcd for $\mathrm{HC}_{21} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{~S} 404.1532$, found 404.1528 .

$7 \mathrm{cn}^{\prime}$
Pyrroline 7cn' (93\% yield, 97% ee, $>99: 1$ d.r.); m.p. $105-108{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}-41.3\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 23.3{ }^{\circ} \mathrm{C}\right.$); IR (film) $v_{\max } 3063,2925,1719,1597,1568,1156 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.34(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.29(\mathrm{~m}, 4 \mathrm{H}), 6.89(\mathrm{t}, J$ $=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 4.87-4.80(\mathrm{~m}, 1 \mathrm{H}), 3.89-3.76(\mathrm{~m}, 2 \mathrm{H}), 2.37-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.01-1.89(\mathrm{~m}$, $1 \mathrm{H}), 1.15(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.75(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.1,143.0,138.4,136.4$, $135.5,135.2,133.3,131.4,128.8,128.2,128.2,127.4,126.1,125.8,125.3,124.9,123.3,68.5,63.8,60.5,29.8,21.2$, 13.4, 10.5; HRMS (ESI-TOF) calcd for $\mathrm{HC}_{26} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{~S} 450.1739$, found 450.1732.

7co'
Pyrroline 7co' (99\% yield, 92% ee, $>99: 1$ d.r.); m.p. $88-92{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}-96.1\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 23.0{ }^{\circ} \mathrm{C}\right.$); IR (film) $v_{\max }$ 2977, 2931, 1719, 1260, $1159 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.23$ $(\mathrm{m}, 3 \mathrm{H}), 6.88-6.83(\mathrm{~m}, 2 \mathrm{H}), 6.78(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.62-4.56(\mathrm{~m}, 1 \mathrm{H}), 4.09-3.94(\mathrm{~m}, 2 \mathrm{H})$, $3.83(\mathrm{~s}, 3 \mathrm{H}), 2.12-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.08(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.8,162.1,140.0,139.3,134.2,130.2,129.5,128.1,127.9,127.8,114.0,69.3,68.6,60.7,55.4$, 29.7, 13.8, 10.3; HRMS (ESI-TOF) calcd for $\mathrm{HC}_{22} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{~S} 416.1532$, found 416.1533.

7bh'
Pyrroline 7bh' (95\% yield, 90% ee, $96: 4$ d.r.); m.p. $87-93{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}-191.8\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 22.9{ }^{\circ} \mathrm{C}\right)$; IR (film) $v_{\max }$

2979, 2931, 1720, $1165 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67(\mathrm{~d}, J=8.2,2 \mathrm{H}), 7.26-7.19(\mathrm{~m}, 4 \mathrm{H}), 7.07(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.97(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~s}, 1 \mathrm{H}), 4.82-4.72(\mathrm{~m}, 1 \mathrm{H}), 4.07-3.91(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~d}, J=6.7$ $\mathrm{Hz}, 3 \mathrm{H}), 1.05(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.7,159.5,143.6,141.0,134.5,132.8,129.6$, $129.4,129.4,129.4,128.9,127.6,127.5,126.6,124.0,124.0,115.3,115.1,62.9,62.5,62.5,60.7,22.3,21.4,13.6$; HRMS (ESI-TOF) calcd for $\mathrm{HC}_{21} \mathrm{H}_{22} \mathrm{FNO}_{4} \mathrm{~S} 404.1332$, found 404.1333.

7bm'
Pyrroline 7bm' (95\% yield, 91% ee, $96: 4$ d.r.); $[\alpha]_{\mathrm{D}}-137.8$ ($\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 23.4{ }^{\circ} \mathrm{C}$); IR (film) $\nu_{\max } 2979,2926$, $1719,1263,1165 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.10(\mathrm{~m}, 4 \mathrm{H}), 7.02-6.91(\mathrm{~m}$, $2 \mathrm{H}), 6.65(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 4.82-4.74(\mathrm{~m}, 1 \mathrm{H}), 4.08-3.97(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $3 \mathrm{H}), 1.10(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.5,161.8,161.6,143.6,142.6,142.5,141.0,135.2$, $133.3,129.6,129.5,127.4,123.7,123.6,114.9,114.8,114.7,114.6,69.0,62.8,60.8,22.3,21.4,13.8$; HRMS (ESITOF) calcd for $\mathrm{HC}_{21} \mathrm{H}_{22} \mathrm{FNO}_{4} \mathrm{~S} 404.1332$, found 404.1329.

7fa'
Pyrroline 7fa' (95\% yield, 98% ee); m.p. $144-146{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}-31.5\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25.5{ }^{\circ} \mathrm{C}\right.$); IR (film) $v_{\max } 2903$, 2849, 1718, $1165 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.25$ $(\mathrm{m}, 5 \mathrm{H}), 6.76(\mathrm{q}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{~s}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.84$ (br s, 3 H), $1.57(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.47(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.32(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.6,143.7,140.7,139.5,134.1,134.0,129.5,128.0,127.9,127.9,127.5,78.4,68.2$, 60.7, 39.9, 37.7, 36.4, 28.2, 21.4, 13.9; HRMS (ESI-TOF) calcd for $\mathrm{HC}_{30} \mathrm{H}_{35} \mathrm{NO}_{4} \mathrm{~S} 506.2365$, found 503.2369.

$7 \mathrm{fc}^{\prime}$
Pyrroline 7 fc' $^{\prime}$ (88% yield, 92% ee); m.p. $210-212{ }^{\circ} \mathrm{C}$ (decomp); $[\alpha]_{\mathrm{D}}-20.4\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 23.8{ }^{\circ} \mathrm{C}\right.$); IR (film) $v_{\max }$ 2904, 2849, 1955, 1718, $1531 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.30(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.95(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.42(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 3 \mathrm{H}), 6.79(\mathrm{q}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~s}, 1 \mathrm{H}), 4.28,(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{q}$, $J=3.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.86(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.73-1.65(\mathrm{~m}, 3 \mathrm{H}), 1.46(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 6 \mathrm{H}), 1.35(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.2,150.0,143.4,139.8,138.6,134.0,128.9,128.1,128.1,124.0,78.8$, 68.7, 61.0, 42.5, 39.9, 37.9, 36.4, 36.3, 28.5, 28.1, 13.9; HRMS (ESI-TOF) calcd for $\mathrm{HC}_{29} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S} 537.2059$, found 537.2063.

7ga'

Pyrroline 7ga' (91\% yield, 94% ee); m.p. $114-116{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}-52.8\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 23.1^{\circ} \mathrm{C}\right)$; IR (film) $v_{\max } 2928$, 2852, 1720, $1165 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.54(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{dd}, J=1.7,8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-$ $7.26(\mathrm{~m}, 3 \mathrm{H}), 7.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{dt}, J=2.6,5.1 \mathrm{~Hz}, 1 \mathrm{H})$, 4.08-3.93 (m, 2H), $2.38(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-1.63(\mathrm{~m}, 5 \mathrm{H}), 1.23-1.08(\mathrm{~m}, 4 \mathrm{H}), 1.05(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 0.99-0.88(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.2,143.4,139.7,139.2,135.2,133.9,129.4,128.3,128.0$, $127.8,127.5,72.6,69.0,60.6,42.4,30.6,28.7,26.2,25.8,21.4,13.8$; HRMS (ESI-TOF) calcd for $\mathrm{HC}_{26} \mathrm{H}_{31} \mathrm{NO}_{4} \mathrm{~S}$ 454.2052 , found 452.2054 .

7al'
Pyrroline 7al' (91\% yield, 87% ee $)$; $[\alpha]_{\mathrm{D}}-105.3$ (c = 1.00, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 23.5^{\circ} \mathrm{C}$); IR (film) $v_{\text {max }} 2928,2853,1721,1163$, $1126 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.32(\mathrm{~s}, 2 \mathrm{H}), 5.70(\mathrm{dt}, J=1.8,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{dt}, J=2.3,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{ddd}, J=1.9,5.9,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-$ $4.01(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 6 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.7$, $152.8,143.1,137.6,136.0,135.8,135.2,134.4,129.1,126.9,104.8,69.0,60.8,60.7,55.8,54.7,21.3,13.9$; HRMS (ESI-TOF) calcd for $\mathrm{HC}_{23} \mathrm{H}_{27} \mathrm{NO}_{7} \mathrm{~S} 462.1587$, found 462.1591.

Pyrroline 7ap' (90% yield, 92% ee); [$\alpha]_{\mathrm{D}}-29.300\left(\mathrm{c}=1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 24.1{ }^{\circ} \mathrm{C}\right.$); IR (film) $v_{\max } 2923,2853,1719,1162$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.73$ $(\mathrm{d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.68(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{dt}, J=2.2,16.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{ddd}, J=$ $1.8,5.7,16.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.07-3.99(\mathrm{~m}, 2 \mathrm{H}), 2.92(\mathrm{~s}, 6 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 161.9,150.2,142.7,136.1,135.8,134.6,129.2,128.4,127.0,112.1,68.6,60.6,54.5,40.5,21.4,13.8$; HRMS (ESI-TOF) calcd for $\mathrm{HC}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S} 415.1692$, found 415.1692.

4. Separation of Enantiomers

4.1. HPLC Conditions

Table S2. Separation of Enantiomers

Compound	Column	Solvents	Flow Rate
7 aa	Regis (R, R)-DACH DNB	$\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Hexanes (60:40)	$2.0 \mathrm{~mL} / \mathrm{min}$
7 ba	Regis (R, R)-DACH DNB	$\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Hexanes (60:40)	$2.0 \mathrm{~mL} / \mathrm{min}$
7 ca	Regis (R, R)-DACH DNB	$\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Hexanes (60:40)	$2.0 \mathrm{~mL} / \mathrm{min}$
7da	Regis (R, R)-DACH DNB	$\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Hexanes (60:40)	$2.0 \mathrm{~mL} / \mathrm{min}$
7 ea	Regis (R, R)-DACH DNB	$\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Hexanes (60:40)	$2.0 \mathrm{~mL} / \mathrm{min}$
7 eb	Regis (R, R)-DACH DNB	$\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Hexanes (60:40)	$2.0 \mathrm{~mL} / \mathrm{min}$
7 ec	Regis (R, R)-DACH DNB	$\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Hexanes (60:40)	$2.0 \mathrm{~mL} / \mathrm{min}$
7 ed	Regis (R, R)-DACH DNB	$\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Hexanes (60:40)	$2.0 \mathrm{~mL} / \mathrm{min}$
7 ee	Regis (R, R)-DACH DNB	$\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Hexanes ($60: 40$)	$2.0 \mathrm{~mL} / \mathrm{min}$
7ef	Regis (R, R)-DACH DNB	$\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Hexanes (60:40)	$2.0 \mathrm{~mL} / \mathrm{min}$
7 eg	Regis (R, R)-DACH DNB	$\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Hexanes (60:40)	$2.0 \mathrm{~mL} / \mathrm{min}$
7ch	Regis (R, R)-DACH DNB	$\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Hexanes ($60: 40$)	$2.0 \mathrm{~mL} / \mathrm{min}$
7da	Regis (R, R)-DACH DNB	$\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Hexanes (60:40)	$2.0 \mathrm{~mL} / \mathrm{min}$
7 ei	Regis (R, R)-DACH DNB	$\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Hexanes (60:40)	$2.0 \mathrm{~mL} / \mathrm{min}$
7 ej	Regis (R, R)-DACH DNB	$\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Hexanes (60:40)	$2.0 \mathrm{~mL} / \mathrm{min}$
7 ek	Regis (R, R)-DACH DNB	$\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Hexanes (60:40)	$2.0 \mathrm{~mL} / \mathrm{min}$
7 dl	Regis (R, R)-DACH DNB	$\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Hexanes (60:40)	$2.0 \mathrm{~mL} / \mathrm{min}$
7dm	Regis (R, R)-DACH DNB	$\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Hexanes (60:40)	$2.0 \mathrm{~mL} / \mathrm{min}$
7dj	Regis (R, R)-DACH DNB	$\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Hexanes (60:40)	$2.0 \mathrm{~mL} / \mathrm{min}$
7ch	Regis (R, R)-DACH DNB	$\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Hexanes (60:40)	$2.0 \mathrm{~mL} / \mathrm{min}$
7 cn	Regis (R, R)-DACH DNB	$\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Hexanes (60:40)	$2.0 \mathrm{~mL} / \mathrm{min}$
7 ci	Regis (R, R)-DACH DNB	$\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Hexanes (60:40)	$2.0 \mathrm{~mL} / \mathrm{min}$
7co	Regis (R, R)-DACH DNB	$\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Hexanes (60:40)	$2.0 \mathrm{~mL} / \mathrm{min}$
7bh	Regis (R, R)-DACH DNB	$\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Hexanes (60:40)	$2.0 \mathrm{~mL} / \mathrm{min}$
7bm	Regis (R, R)-DACH DNB	$\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Hexanes (60:40)	$2.0 \mathrm{~mL} / \mathrm{min}$
7bp	Regis (R, R)-DACH DNB	$\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Hexanes (60:40)	$2.0 \mathrm{~mL} / \mathrm{min}$
7fa	Regis (R, R)-DACH DNB	$\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Hexanes (40:60)	$2.0 \mathrm{~mL} / \mathrm{min}$
7 fc	Regis (R, R)-DACH DNB	$\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Hexanes (60:40)	$2.0 \mathrm{~mL} / \mathrm{min}$
7 ga	Regis (R, R)-DACH DNB	$\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Hexanes ($60: 40$)	$2.0 \mathrm{~mL} / \mathrm{min}$
7ap	Regis (R, R)-DACH DNB	$\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Hexanes ($60: 40$)	$2.0 \mathrm{~mL} / \mathrm{min}$
7al	Regis (R, R)-DACH DNB	$\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Hexanes (40:60)	$2.0 \mathrm{~mL} / \mathrm{min}$

4.2. Copies of HPLC Traces

SPD-20A
Ch1-254nm
Results

Retention Time	Area	Area \%	Height	Height \%		
6.507	3069630	42.57	112957	54.76		
8.670	4140658	57.43	93314	45.24		
Totak	7210288	100.00	206271	100.00		

SPD-20A
Ch1-254nm
Results

Retention Time	Area	Area\%	Height	Height \%
6.497	2618856	50.00	104665	59.26
8.720	2618481	50.00	71946	40.74
Totals		5237337	100.00	176611

SPD-20A
Ch1-254nm
Results

| Retention Time | Area | Area \% | Height | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 6.593 | 408918 | 24.91 | 18887 | 44.60 |
| 13.047 | 1232546 | 75.09 | 23456 | 55.40 |
| Totals | 1641464 | 100.00 | 42343 | 100.00 |

SPD-20A
Ch1-254nm
Results

Retention Time	Area	Area \%	Height	Height \%
6.383	4603965	47.74	140516	70.07
12.740	5040441	52.26	60014	29.93
Totals	9644406	100.00	200530	100.00

SPD-20A
Ch1-254nm
Results

Retention Time	Area	Area $\%$	Height	Height $\%$
6.220	4388368	16.54	258996	34.49
10.270	22140925	83.46	491916	65.51
Totals	26529293	100.00	750912	100.00

SPD-20A
Ch1-254nm
Results

Results Retention Time	Area	Area \%	Height	Height \%
6.230	8282768	49.86	212639	66.04
10.593	8328054	50.14	109370	33.96

Totals	16610822	100.00	322009	100.00

from the reaction catalyzed by

SPD-20A
Ch1-254nm
Results

Retention Time	Area	Area \%	Height	Height \%
9.867	703582	31.04	30165	42.20
15.097	1563015	68.96	41323	57.80
Totals				
	2266597	100.00	71488	100.00

SPD-20A
Ch1-254nm
Results

Retention Time	Area	Area $\%$	Height	Height $\%$						
9.667	12996234	49.87	387103	61.62						
14.753	13063679	50.13	241091	38.38						
Totals							26059913	100.00	628194	100.00

SPD-20A
 Ch1-254nm
 Results

Retention Time	Area	Area \%	Height	Height \%
4.917	15082326	90.76	929794	90.78
6.673	1535470	9.24	94395	9.22
Totals	16617796	100.00	1024189	100.00

SPD-20A
Ch1-254nm
Results

Retention Time	Area	Area $\%$	Height	Height $\%$
4.360	72210140	96.66	2566107	94.62
6.267	2491808	3.34	146041	5.38
Totals	74701948	100.00	2712148	

SPD-20A
Ch1-254nm
Results

Retention Time	Area	Area \%	Height	Height \%						
4.903	13854871	88.60	871622	88.87						
6.617	1782417	11.40	109194	11.13						
Totals							15637288	100.00	980816	100.00

SPD-20A
Ch1-254nm
Results

Retention Time	Area	Area $\%$	Height	Height $\%$
4.717	13668933	49.13	881958	57.72
6.043	14151739	50.87	646067	42.28
Totals	27820672	100.00	1528025	100.00

SPD-20A
Ch1-254nm
Results

Retention Time	Area	Area \%	Height	Height \%
6.847	1258725	95.93	82201	96.67
9.197	53352	4.07	2833	3.33
Totals				
	1312077	100.00	85034	100.00

SPD-20A
Ch1-254nm
Results

Retention Time	Area	Area $\%$	Height	Height $\%$
6.153	8302511	50.21	440485	59.13
7.947	8232872	49.79	304454	40.87
Totals	16535383	100.00	744939	100.00

SPD-20A
Ch1-254nm
Results

Retention Time	Area	Area \%	Height	Height $\%$
4.477	31819255	97.89	2686659	97.29
5.010	684526	2.11	74762	2.71

Totals	32503781	100.00	2761421	100.00

SPD-20A
Chl-254nm
Results

Retention Time	Area	Area \%	Height	Height \%
4.377	14131165	50.35	1682716	55.27
4.713	13935292	49.65	1361600	44.73

Totals				100.00

SPD-20A
Ch1-254nm
Results

Retention Time	Area	Area $\%$	Height	Height $\%$
11.683	231650	0.88	13562	2.24
12.533	26169097	99.12	591990	97.76
Totals				
	26400747	100.00	605552	100.00

SPD-20A
Chl-254mm
Results

Retention Time	Area	Area \%	Height	Height $\%$	
11.230	4401168	50.50	169184	55.99	
12.513	4313846	49.50	132991	44.01	
Totals					

SPD-20A
 Ch1-254mm
 Results

Retention Time	Area	Area $\%$	Height	Height $\%$
5.923	12029945	97.20	609447	96.86
8.027	345949	2.80	19756	3.14
Totals	12375894	100.00	629203	100.00

SPD-20A
Chl-254mm
Results

Retention Time	Area	Area \%	Height	Height $\%$
6.193	8197320	49.93	440782	58.69
7.997	8219674	50.07	310244	41.31

SPD-20A
Ch1-254nm
Results

Results Rention Time	Area	Area \%	Height	Height \%
10.923	28610663	95.93	862511	95.34
12.687	1212393	4.07	42111	4.66
Totals				
	29823056	100.00	904622	100.00

SPD-20A
Chl-254nm

Results Retention Time	Area	Area \%	Height	Height \%
11.230	4401168	50.50	169184	55.99
12.513	4313846	49.50	132991	44.01
Totals				

SPD-20A
Ch1-254mm

Results Retention Time	Area	Area $\%$	Height	Height \%
7.437	3539450	4.01	220894	7.78
8.463	84712090	95.99	2619906	92.22

Totals	88251540	100.00	2840800	100.00

SPD-20A
Ch1-254mm
Results

Retention Time	Area	Area \%	Height	Height \%
7.423	9976100	50.06	530690	55.04
8.900	9951664	49.94	433445	44.96
Totals				
	19927764	100.00	964135	100.00

SPD-20A
Ch1-254nm
Results

Retention Time	Area	Area $\%$	Height	Height $\%$
5.397	842451	8.46	70128	19.75
9.443	9113483	91.54	284974	80.25
Totals				
	9955934	100.00	355102	100.00

SPD-20A
Ch1-254mm
Results

| Retention Time | Area | Area \% | Height | Height $\%$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 4.950 | 40093741 | 49.68 | 1729410 | 66.43 |
| 8.750 | 40615019 | 50.32 | 873905 | 33.57 |
| | | | | |
| Totals | 80708760 | 100.00 | 2603315 | 100.00 |

from the reaction catalyzed by

SPD-20A Ch1-254nm Results				
Retention Time	Area	Area \%	Height	Height\%
9.913	4621420	30.34	168202	45.21
14.867	10608999	69.66	203832	54.79
Totals	15230419	100.00	372034	100.00

SPD-20A Ch1-254nm Results				
Retention Time	Area	Area \%	Height	Height \%
9.667	12996234	49.87	387103	61.62
14.753	13063679	50.13	241091	38.38
Totals				
	26059913	100.00	628194	100.00

SPD-20A Ch1-254nm				
Results				
Retention Time	Area	Area \%	Height	Height \%
6.930	8507418	32.59	413956	45.51
9.337	17598834	67.41	495606	54.49
Totals				
	26106252	100.00	909562	100.00

SPD-20A
Ch1-254nm
Results

Retention Time	Area	Area\%	Height	Height $\%$	
6.497	2618856	50.00	104665	59.26	
8.720	2618481	50.00	71946	40.74	
Totals					

from the reaction catalyzed by

4e

SPD-20A Ch1-254nm Results				
Retention Time	Area	Area \%	Height	Height\%
3.500	109508	1.48	7515	2.38
4.173	7268655	98.52	307881	97.62
Totals				
	7378163	100.00	315396	100.00

SPD-20A Ch1-254nm				
Results				
Retention Time	Area	Area \%	Height	Height\%
3.427	3014446	50.09	187998	54.04
4.170	3003197	49.91	159891	45.96
Totals				
	6017643	100.00	347889	100.00

Ch1-254nm				
Result				
Retention Time	Area	Area \%	Height	Height\%
5.750	3923692	49.88	151166	61.78
8.313	3942748	50.12	93536	38.22
Totals				
	7866440	100.00	244702	100.00

SPD-20A
Ch1-254nm
Results

| Results
 Retention Time | Area | Area\% | Height | Height $\%$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 3.410 | 2683633 | 99.20 | 147296 | 99.14 |
| 4.190 | 21684 | 0.80 | 1272 | 0.86 |
| Totals | 2705317 | 100.00 | 148568 | 100.00 |

SPD-20A Ch1-254nm Results Retention Time
5.750 8.313
Totals

SPD-20A
Ch1-254nm
Results

Retention Time	Area	Area $\%$	Height	Height $\%$
3.653	1293151	99.42	72141	99.39
7.367	7486	0.58	446	0.61
Totals		1300637	100.00	72587

SPD-20A
Ch1-254nm
Results

Retention Time	Area	Area \%	Height	Height \%
3.643	1654361	51.15	93573	59.68
7.237	1580197	48.85	63219	40.32
Totals	3234558	100.00	156792	100.00

SPD-20A
Ch1-254nm
Results

Retention Time	Area	Area \%	Height	Height \%	
3.450	327082	1.23	19989	1.61	
4.123	26269502	98.77	1224846	98.39	
Totals					

SPD-20A
Ch1-254nm
Results

Retention Time	Area	Area \%	Height	Height \%		
3.460	4154710	50.10	221338	50.85		
4.197	4137637	49.90	213901	49.15		
Totals	8292347	100.00	435239	100.00		

SPD-20A Ch1-254nm Results				
Retention Time	Area	Area \%	Height	Height \%
4.713	33065	1.11	2234	2.05
5.770	2938637	98.89	106849	97.95
Totals				
	2971702	100.00	109083	100.00

SPD-20A
Ch1-254nm
Results

Retention Time	Area	Area \%	Height	Height \%					
4.837	1505679	49.99	71535	56.43					
6.013	1506561	50.01	55243	43.57					
Totals						3012240	100.00	126778	100.00

SPD-20A Ch1-254nm Results				
Retention Time	Area	Area \%	Height	Height \%
5.203	13698617	96.29	599826	96.19
7.463	528220	3.71	23753	3.81
Totals				
	14226837	100.00	623579	100.00

SPD-20A				
Ch1-254nm				
Results				
Retention Time	Area	Area \%	Height	Height \%
5.273	8205105	50.11	376109	56.31
7.440	8170433	49.89	291776	43.69
Totals				
	16375538	100.00	667885	100.00

SPD-20A
Ch1-254nm
Results

Retention Time	Area	Area \%	Height	Height \%						
6.260	111244	2.58	6795	5.18						
6.877	4208417	97.42	124288	94.82						
Totals							4319661	100.00	131083	100.00

SPD-20A
Ch1-254nm
Results

Retention Time	Area	Area \%	Height	Height \%
6.017	3787159	47.21	155848	56.53
6.820	4233973	52.79	119858	43.47
Totals	8021132	100.00	275706	100.00

SPD-20A
Ch1-254nm
Results

Retention Time	Area	Area \%	Height	Height \%
5.440	3290787	96.31	156474	96.57
7.733	125924	3.69	5554	3.43
Totals	3416711	100.00	162028	100.00

SPD-20A
Ch1-254nm
Results

Retention Time	Area	Area \%	Height	Height \%	
5.540	2970920	49.79	140039	57.70	
7.817	2996141	50.21	102683	42.30	
Totals		5967061	100.00	242722	100.00

SPD-20A
Ch1-254nm
Results

Results Retention Time	Area	Area \%	Height	Height \%
5.497	730756	95.04	37086	96.08
10.437	38125	4.96	1515	3.92
Totals	768881	100.00	38601	100.00

SPD-20A
Ch1-254nm
Results

Retention Time	Area	Area \%	Height	Height \%
5.543	6943028	50.54	294663	67.93
10.397	6795940	49.46	139140	32.07
Totals	13738968	100.00	433803	100.00

SPD-20A
Ch1-254nm
Results

Retention Time	Area	Area \%	Height	Height \%
5.920	6516266	98.47	322970	99.16
14.833	101442	1.53	2723	0.84
Totals	6617708	100.00	325693	100.00

SPD-20A
Ch1-254nm
Results

| Retention Time | Area | Area \% | Height | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 5.953 | 983983 | 50.74 | 45761 | 66.82 |
| 14.683 | 955173 | 49.26 | 22728 | 33.18 |
| Totals | 1939156 | 100.00 | 68489 | 100.00 |

SPD-20A
Ch1-254nm
Results

Retention Time	Area	Area \%	Height	Height \%	
8.057	881487	96.02	35060	96.80	
14.443	36492	3.98	1158	3.20	
Totals					

SPD-20A
Ch1-254nm
Results

Retention Time	Area	Area \%	Height	Height \%
8.380	5801634	50.61	200224	64.73
14.940	5661510	49.39	109082	35.27
Totals	11463144	100.00	309306	100.00

SPD-20A
Ch1-254nm
Results

Retention Time	Area	Area \%	Height	Height \%
6.087	2011991	94.91	90648	95.47
10.700	107838	5.09	4297	4.53
Totals	2119829	100.00	94945	100.00

SPD-20A
 Ch1-254nm
 Results

Retention Time	Area	Area \%	Height	Height \%
6.120	1473238	49.96	70461	61.22
10.577	1475491	50.04	44638	38.78
Totals				
	2948729	100.00	115099	100.00

SPD-20A
Ch1-254nm
Results

| Retention Time | Area | Area \% | Height | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 5.970 | 2888601 | 95.29 | 131580 | 96.14 |
| 11.643 | 142883 | 4.71 | 5287 | 3.86 |
| Totals | 3031484 | 100.00 | 136867 | 100.00 |

SPD-20A
Ch1-254nm
Results

| Retention Time | Area | Area\% | Height | Height $\%$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 6.203 | 791048 | 50.22 | 37145 | 63.02 |
| 12.080 | 783962 | 49.78 | 21796 | 36.98 |
| Totals | 1575010 | 100.00 | 58941 | 100.00 |

SPD-20A
Ch1-254nm
Results

Retention Time	Area	Area \%	Height	Height \%
8.907	4170662	96.82	96008	97.51
19.660	137008	3.18	2451	2.49
Totals	4307670	100.00	98459	100.00

SPD-20A
Ch1-254nm
Results

Retention Time	Area	Area \%	Height	Height \%						
8.887	2683893	50.94	64126	64.40						
19.097	2584768	49.06	35441	35.60						
Totals							5268661	100.00	99567	100.00

SPD-20A
Ch1-254nm
Results

Retention Time	Area	Area \%	Height	Height \%
9.900	83728	0.91	3267	2.18
11.877	9071094	99.09	146340	97.82
Totals	9154822	100.00	149607	100.00

SPD-20A
Ch1-254nm
Results

| Retention Time | Area | Area \% | Height | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 10.547 | 323233 | 49.42 | 9831 | 55.09 |
| 12.980 | 330792 | 50.58 | 8015 | 44.91 |
| Totals | 654025 | 100.00 | 17846 | 100.00 |

SPD-20A Ch1-254nm Results				
Retention Time	Area	Area \%	Height	Height \%
3.800	5921427	95.97	326938	95.88
4.570	248457	4.03	14034	4.12
Totals				
	6169884	100.00	340972	100.00

SPD-20A
Ch1-254nm
Results

Retention Time	Area	Area \%	Height	Height \%
3.760	4718386	49.99	246267	52.18
4.487	4719521	50.01	225714	47.82
Totals		9437907	100.00	471981

SPD-20A
Ch1-254nm
Results

| Retention Time | Area | Area \% | Height | Height\% | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 5.957 | 3657089 | 97.19 | 151877 | 97.31 | |
| 9.373 | 105851 | 2.81 | 4191 | 2.69 | |
| Totals | | 3762940 | 100.00 | 156068 | 100.00 |

SPD-20A
Ch1-254nm
Results

Retention Time	Area	Area \%	Height	Height \%
6.397	401445	50.55	19222	58.99
10.033	392659	49.45	13361	41.01
Totals	794104	100.00	32583	100.00

SPD-20A
Ch1-254nm
Results

Retention Time	Area	Area \%	Height	Height \%
6.513	9244532	91.74	345295	91.34
8.963	832089	8.26	32727	8.66
Totals				
	10076621	100.00	378022	100.00

SPD-20A				
Ch1-254nm				
Results				
Retention Time	Area	Area \%	Height	Height \%
6.497	2618856	50.00	104665	59.26
8.720	2618481	50.00	71946	40.74
Totals				
	5237337	100.00	176611	100.00

SPD-20A
Ch1-254nm
Results

Retention Time	Area	Area \%	Height	Height \%
9.770	2624074	93.46	78767	93.16
11.603	183629	6.54	5779	6.84
Totals				
	2807703	100.00	84546	100.00

SPD-20A
Ch1-254nm
Results

Retention Time	Area	Area \%	Height	Height \%
9.710	5430661	50.35	160058	55.88
11.310	5354979	49.65	126356	44.12
Totals	10785640	100.00	286414	100.00

SPD-20A
Ch1-254nm

Results Retention Time	Area	Area \%	Height	Height \%
9.197	8573443	95.85	195763	95.64
14.053	371576	4.15	8923	4.36
Totals	8945019	100.00	204686	100.00

SPD-20A
Ch1-254nm
Results

Retention Time	Area	Area \%	Height	Height \%		
9.367	5188678	50.25	128350	57.14		
14.007	5136133	49.75	96290	42.86		
Totals	10324811	100.00	224640	100.00		

5. References

(1) Yang, H.; Gao, Y.; Qiao, X.; Xie, L.; Xu, X. Concise Total Synthesis of (-)-8-Epigrosheimin. Org. Lett. 2011, 13, 3670-3673.
(2) (a) Xu, Z.; Lu, X. A Novel [3+2] Cycloaddition Approach to Nitrogen Heterocycles via Phosphine-Catalyzed Reactions of 2,3-Butadienoates or 2-Butynoates and Dimethyl Acetylenedicarboxylate with Imines: A Convenient Synthesis of Pentabromopseudilin. J. Org. Chem. 1998, 63, 5031-5041. (b) Zhu, X.; Henry, C. E.; Kwon, O. A Highly Diastereoselective Synthesis of 3-Carbethoxy-2,5-disubstituted-3-pyrrolines by Phosphine Catalysis. Tetrahedron 2005, 61, 6276-6282. (c) Zhao, G.; Shi, M. Aza-Baylis-Hillman Reactions of N-Tosylated Aldimines with Activated Allenes and Alkynes in the Presence of Various Lewis Base Promoters. J. Org. Chem. 2005, 70, 9975-9984. (d) Tang, X.; Zhang, B.; He, Z.; Gao, R.; He, Z. 1,3,5-Triaza-7-phosphaadamantane (PTA): A Practical and Versatile Nucleophilic Phosphine Organocatalyst. Adv. Synth. Catal. 2007, 349, 2007-2017. (e) Zheng, S.; Lu, X. A Phosphine-Catalyzed [3+2] Annulation Reaction of Modified Allylic Compounds and N-Tosylimines. Org. Lett. 2008, 10, 4481-4484. (f) Watanabe, M.; Fiji, H. D.; Guo, L.; Chang, L.; Kinderman, S. S.; Slamon, D. J.;
Kwon, O. Tamanoi, F. Inhibitors of Protein Geranylgeranyltransferase I and Rab Geranylgeranyltransferase Identified from a Library of Allenoate-derived Compounds. J. Biol. Chem. 2008, 283, 9571-9579. (g) Fang, Y.; Jacobsen, E. N. Cooperative, Highly Enantioselective Phosphinothiourea Catalysis of Imine-Allene [3+2] Cycloadditions. J. Am. Chem. Soc. 2008, 130, 5660-5661. (h) Henry, C. E.; Xu, Q.; Fan, Y. C.; Martin, T. J.; Belding, L.; Dudding, T.; Kwon, O. Hydroxyproline-Derived Pseudoenantiomeric [2.2.1] Bicyclic Phosphines: Asymmetric Synthesis of (+)- and (-)-Pyrrolines. J. Am. Chem. Soc. 2014, 136, 11890-11893.
6. Copies of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{31} \mathrm{P}$ NMR Spectra

MsO

Coser

＊－	ササ	$\cdots \cdots \cdots \infty$
－	${ }_{\sim}^{\infty} \times$	为
－．	${ }^{\circ}$.	ㄱ․․
Ñ	$\stackrel{\sim}{\mathrm{N}}$	－゙ぶき
$\xrightarrow[+1]{0}$	\cdots	

$$
\begin{aligned}
& \dot{\sim} \dot{\sim} \dot{\sim} \dot{\infty} \dot{\infty} \dot{\infty}
\end{aligned}
$$

$\underbrace{}_{s=0}$

のお்○～～。

V）

D.

Comes

$7 \mathbf{c n}^{\prime}$

m	∞ - $0 \times \mathrm{Nrarma}$							
$\stackrel{\square}{6}$		$\stackrel{-}{8}$	$\stackrel{\infty}{\sim}$	8	엉앙	Wू	$\stackrel{\sim}{\sim}$	\vec{N}
.	\pm	N	\cdots	कw	\cdots	\checkmark	O
\bigcirc		∞	$\dot{\infty}$	$\dot{\circ}$	कirs	\cdots	$\stackrel{-}{4}$	m
$\stackrel{-}{-}$		\sim	φ	6	mmm	N	N	$\stackrel{\text { m }}{-}$

7. ORTEP Representations of the Phosphine Oxides 3b and 3c

3c derived from (R)-carvone

