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1. Experimental Methods 

Parallelization of emitter and receiver. Parallelization of the emitter and receiver devices is a two-

stage process. In the first stage, which we call “coarse parallelization,” we use an optical 

microscope objective (Zeiss LD EC Epiplan-Neofluar 50×/0.55 HD) with a shallow depth of field 

(2 μm) to image a region of the receiver chip. By bringing a particular region of the chip into focus, 

we can determine its relative z-position to within ~2 μm. Using our nanopositioner to tip and tilt 

the receiver until all areas of the chip are simultaneously in focus, we can achieve planarity to 

within 2 μm across the ~1 cm length of the receiver chip. This parallelism translates to a maximum 

angular deviation of ~200 μrad, or a ~10 nm deviation across the 50 μm active area length. We use 

our microscope objective and nanopositioner to repeat the same process with the emitter chip, 

which is ~8 mm in extent (~250 μrad deviation, or 13 nm across the 50 μm mesa length). Thus, it 

is in principle possible to achieve effective gap sizes as small as ~23 nm (estimated using 10 nm 

receiver deviation ± 13 nm emitter deviation) using coarse parallelization alone; in practice, 

however, the emitter mesa is not perfectly parallel to the rest of the emitter chip, probably due to 

residual stresses in the beams after fabrication. In order to truly reach gap sizes of ~25 nm, 

additional alignment is required. 

The second stage of the alignment process, which we call “fine parallelization,” is 

predicated on the idea that, for a given gap size, the radiative heat flux between perfectly planar 

surfaces is maximized when those planes are perfectly parallel, and is reduced for imperfect 

alignment. Based on this idea, we displaced the receiver towards the emitter and noted the radiative 

heat flux immediately prior to contact. We then used our nanopositioner to tip or tilt the emitter in 

steps of ~120 μrad before initiating another contact, again recording the radiative heat flux 

immediately prior to contact. By iterating on this approach until an optimum in heat flux was 
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obtained, we estimate a maximum deviation from parallelism of ~120 μrad per rotation axis, or 

~12 nm across the 50 μm active area (2 axes × 150 μrad × 50 μm). 

Optical detection of mechanical contact between emitter and receiver. To detect mechanical 

contact between the emitter and receiver, we use a laser deflection scheme similar to that employed 

in atomic force microscopes. As schematically illustrated in Fig. 2b, we focused a laser onto the 

backside of the suspended emitter device and subsequently focused the reflected beam onto a two-

piece segmented photodiode. When the receiver chip makes mechanical contact with the emitter 

device, the relatively compliant emitter device is displaced upwards, causing a sudden change in 

the difference in output of the two detector segments (which we call the “dc contact signal”), as 

seen in the bottom panel of Fig. 2c. To further confirm that the receiver and emitter are in fact in 

contact, we also modulated the position of the receiver by ~5 nm at 4 kHz and used a lock-in 

amplifier to monitor the 4 kHz component of the detector difference signal (which we call the “ac 

contact signal”). As can be seen in the third panel of Fig. 2c, the ac contact signal reads zero when 

there is a finite vacuum gap separating the emitter and receiver, but when they are in contact the 

receiver drives the emitter position at 4 kHz such that the locked-in ac signal suddenly jumps. 

 

2. Determination of emitter beam conductance 

As can be seen in Eqn. 1 in the main text, calculating the heat flux across the vacuum gap requires 

knowledge of the thermal conductance Gbeam of the emitter suspension beams. Because we use a 

sinusoidal current to determine Gbeam, we also require the thermal time constant of the emitter 

device, as explained below. 

Emitter microdevice thermal frequency response. We use a modulation based approach1 to 

measure the temperature rise of our emitter island due to a sinusoidal heat input. We drive an 
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alternating current with amplitude I1f and frequency f through the Pt heater/thermometer on the 

emitter island. The sinusoidal current drives a sinusoidal temperature rise with amplitude ΔT2f and 

frequency 2f. A voltage component at frequency 3f develops across the Pt heater/thermometer 

according to 0 2 0
3 2

f f
f

I T R
V

 
 , where R0 = 3123 Ω is the electrical resistance and α0 = 2.03 × 10-

3 K-1 is the temperature coefficient of electrical resistance of the Pt heater/thermometer, each at the 

reference temperature (300 K). We measured the voltage V3f with a custom-built circuit and lock-

in amplifier over a range of frequencies f, as seen in Fig. S1a. It can be seen in Fig. S1a that for 2f 

> 5 Hz, the V3f signal rolls off because of the thermal time constant of the emitter device. We thus 

chose 2f = 2 Hz to measure the thermal conductance of the beams, so that the attenuation was not 

more than 3%. 

Emitter microdevice beam thermal conductance. In the absence of near-field radiative heat 

transfer to the receiver device, heat flow from the emitter island to the environment is dominated 

by heat conduction through the suspension beams. Thus when we pass current I1f through the Pt 

heater/thermometer as described above, we use the known power input Q2f and measured 

sinusoidal temperature oscillations ΔT2f to calculate the beam thermal conductance according to 

in beam 2 fQ G T   . To reduce error, we repeated the measurement for a range of Qin and fit a line 

to the resulting data (Fig. S1b) to determine Gbeam = 109.8 µW/K. A 95% confidence interval 

calculated on the best fit curve indicates an error bound of ±0.8 µW/K, or less than 1% of the 

measured signal. 
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Figure S1. (a) Measured thermal frequency response of our emitter microdevice. The data has 
been normalized to the low-frequency limit. (b) Power input vs. measured temperature rise for our 
emitter device in vacuum. The best fit line indicates a beam thermal conductance of 109.8 µW K-1 
and the 95% confidence interval indicates a high degree of certainty. 

3. Theoretical modeling of near-field radiation 

The thermal radiation model used in this study to predict the near-field radiative heat flux is based 

on Rytov’s fluctuational electrodynamics2, 3. For a 1-dimensional, 2-body system composed of 5 

layers (2 emitter layers, 1 vacuum gap layer, 2 receiver layers, as in Fig. 2b in the main text), we 

calculate the radiative heat flux q0134 from layers 0 and 1 to layers 3 and 4 according to 

  s p
01 34 H L2

0 0

( , ) ( , ) ( , ) ( , )
4π

d
q T T dk k k k
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 

           (S1) 

where ω is the angular frequency, 
B

( , )
e 1k T

T 
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




, TH(L) is the emitter (receiver) temperature, 

k is component of the wavevector parallel to the layers, and τs(p) is the transmission term associated 

with photons with s-(p-)polarization. The transmission terms can be calculated according to 
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where 2 22
20 241 e zik tD     is a Fabry-Perot-like denominator, 

2
2

, 2z m mk k
c

   is the 

perpendicular component of the wavevector in layer m, tm is the thickness of layer m, c is the light 

speed in vacuum, and ρml is the total Fresnel reflection coefficient for non-adjacent layers m and l. 

The latter can be calculated according to 
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The Fresnel reflection coefficients for adjacent layers, ρmn, in Eqn. S3 above can be calculated as 
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where εm is the dielectric function for material comprising layer m. For our model, we set t1 = t3 = 

2 µm and varied the gap size t2. Layers 0 and 4 are semi-infinite. Once the geometry of all layers 

is specified (i.e., all thicknesses tm are fixed), the only parameter in Eqn. S1 is the dielectric 

function. For the Si layers (0 and 4), we modeled the dielectric function using a modified Drude 

model4. The dielectric function for the SiO2 layers (1 and 3) was interpolated from tabulated data5. 

4. Comparison of measured heat flux enhancement to d-2 trendline  

Near-field radiative heat transfer between parallel planar surfaces that is dominated by surface 

phonon polariton modes should in principle be proportional to d-2 (where d is the vacuum gap 
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size). For other geometries besides parallel planes, such as between curved surfaces or tilted plates, 

the proportionality is given by d-α, where α < 2 generally. Therefore we expect that plotting our 

measured heat flux against d-2 can yield information about how well our system can be 

approximated by perfectly flat and parallel planes. In Fig. S2, we plot the same data from Fig. 3a 

alongside a d-2 curve, on logarithmic axes. We find that the d-2 line follows our data fairly well for 

d < 100 nm, where surface phonon polaritons begin to dominate. This indicates that our device 

curvature and deviations from parallelism are quite small. 

 

Figure S2. Heat flux vs. gap size. Measured data (red squares), error bars (gray lines), and 
theoretical expectation (black line) are the same as in Fig. 3a. In addition, a line proportional to 
d-2 has been added for comparison (blue line). 
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