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Figure S1. The Cys-322 is required for H2O2-induced tau oligomer formation.
(A) Schematic illustration of the structures of human tau employed in this
study. The cysteine number of tau is based on the longest tau isoform
(isoform 2, amino acids 1-441). (B) H2O2 induces the formation of tau
oligomer in vitro. (C) Substitution of Cys-322 with Ala inhibits H2O2-induced
tau oligomer formation. The SDS-PAGE gel was stained using coomassie.
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Figure S2. Effects of chemicals on tau aggregation and cell apoptosis. (A)
N-ethylmaleimide (NEM), S-methylmethanelthiosulfonate (MMTS) and
isoproterenol (ISO) were chose to perform these assays. (B) Effects of
chemicals on H2O2-induced tau oligomer formation. The SDS-PAGE gel
was stained using coomassie. (C) CLSM images of NEM-treated HEK293T
cells with Annexin V-EGFP apoptosis detection. Green fluorescence
indicates cell apoptosis. Cells treated with apoptosis inducer were used as
a positive control.
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Figure S3. Effects of NEM on stability of tau proteins extracted from 3xTg
mouse brain. The Flag-tau was detected using anti-tau (tau 5) antibody.
Actin was used as a loading control.
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Figure S4. SelWU13C interacts with tau. (A) GST pull-down assays performed with His-tau and
GST-SelWU13C. GST was used as a negative control. (B) The effects of DTT and H2O2 on
interaction between GST-SelWU13C and His-tau. DTT or H2O2 with indicated concentration was
added into the pull-down buffer to perform these assays. His-tau was detected using anti-His
antibody, and GSTE and GST-SelWU13C proteins were detected by ponceau staining.
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Figure S5. The Cys-37 is required for H2O2-induced SelWU13C oligomer formation.
(A) Schematic illustration of the structures of human SelW employed in this study.
SelWU13C harbors the substitution of selenocysteine (U) with cysteine (C). (B) H2O2
induces the formation of SelWU13C oligomers in vitro. (C) Substitution of SelWU13C

Cys-37 with Ser inhibits H2O2-induced His-SelWU13C oligomerization. The SDS-
PAGE gel was stained using coomassie.
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Figure S6. Identification of the cysteines involved in disulfide linkage. (A) Substitution of Cys-322 with
Ala inhibits H2O2-induced tau-SelWU13C dimer formation. (B) Substitution of SelWU13C Cys-37 with Ser
inhibits H2O2-induced tau-SelWU13C dimer formation. The SDS-PAGE gel was stained using coomassie.
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Figure S7. Application of NEM reduces tau but not SelWU13C level. Effects of NEM on H2O2-
induced tau (A) and SelWU13C (B) oligomer formation. The SDS-PAGE gel was stained using
coomassie. Effects of NEM on stability of Flag-tau (C) and SelWU13C-Myc proteins (D).
Protein crude extracts from HEK293T cells expressing Flag-tau or SelWU13C-Myc were used
in these assays. The Flag-tau and SelWU13C-Myc were detected using anti-tau (tau 5) and
anti-Myc antibodies, respectively. The protein level in the absence of chemical was set as
100%. Actin was used as a loading control. Error bars represent SD. Three biological repeats
were performed and analyzed.
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Figure S8. Effects of NEM and MMTS on transcription of tau gene. The data show
mean ± SD. Three biological repeats were performed and analyzed. The mRNA
levels of tau were normalized to actin. NS no statistically significant difference.



Table S1. Primers used for plasmid construction. 

Primer Sequence (5’-3’) 

tau-PF TAGAATTCATGGCTGAGCCCCGCCAGGAGTTC 

tau-PR GACTCGAGTCACAAACCCTGCTTGGCCAGGG 

C322A-F GACCTCCAAGGCTGGCTCATTAGG 

C322A-R CCTAATGAGCCAGCCTTGGAGGTC 

SelW-PF GTGGATCCCCGGAATTCATGGCTCTCGCCGTCCGAGTC 

SelW-PR CGATGCGGCCGCTCGAGTTAGCCCTGAGCCAAGGCGGC 

SelW-3.1R CGCTCGAGGCCCTGAGCCAAGGCGGCTTTG 

U13C-F CGGAATTC 

ATGGCTCTCGCCGTCCGAGTCGTTTATTGTGGCGCTTGCGGCTACAAG 

 

C10S-F CGGAATTCATGGCTCTCGCCGTCCGAGTCGTTTATTCTGGCGC 

C13S-F CGGAATTC 

ATGGCTCTCGCCGTCCGAGTCGTTTATTGTGGCGCTTCAGGCTACAAG 

 

C1013F CGGAATTC 

ATGGCTCTCGCCGTCCGAGTCGTTTATTCTGGCGCTTCAGGCTACAAG 

 

C37S-F CTGGACATCTCCGGCGAGGGA 

C37S-R TCCCTCGCCGGAGATGTCCAG 

 

Table S2. Primers used for RT-PCR. 

Primer Sequence (5’-3’) 

TAU-F GAGCAAGGTGACCTCCAAGTG 

TAU-R GGAGACATTGCTGAGATGCCG 

ACTIN-F CAGAGCAAGAGAGGCATCCTC 

ACTIN-R GAGTCCATCACGATGCCAGTG 
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