# Enantioselective Total Synthesis of Natural Isoflavans: <br> Asymmetric Transfer Hydrogenation/Deoxygenation of Isoflavanones with Dynamic Kinetic Resolution 

Anton Keßberg, Tilo Lübken, and Peter Metz*

Fakultät Chemie und Lebensmittelchemie, Organische Chemie I, Technische Universität Dresden, Bergstrasse 66, 01069 Dresden, Germany

Supporting Information

## Table of Contents

1. General information ..... S4
2. Synthesis of (S)-equol (1) ..... S4
Chromone 7a ..... S4
Chromone 8 ..... S5
Isoflavone 9 ..... S6
Isoflavanone rac-6a ..... S6
Isoflavan rac-5a ..... S7
ATH of isoflavanone rac-6a ..... S7
Treatment with $\mathrm{Tf}_{2} \mathrm{O}$ - isoflavan 10a ..... S8
Deoxygenation - isoflavan 10 ..... S9
(S)-Equol (1) ..... S9
3. Synthesis of manuifolin $K$ (2) ..... S10
Boronic acid 12 ..... S10
Isoflavone 12a ..... S11
Isoflavanone rac-6b ..... S11
Isoflavan rac-5b ..... S12
ATH of isoflavanone $\mathbf{r a c}-\mathbf{6 b}$ ..... S13
Isoflavan 13a ..... S14
Isoflavan 14 ..... S15
Prenylation - isoflavan 15 ..... S15
Preparation of manuifolin K (2) ..... S16
4. Synthesis of isoflavan 3 ..... S17
Tsuji-Trost allylation of phenol 14 ..... S17
Claisen rearrangement - isoflavans 14b and 14c ..... S18
Synthesis of isoflavan 17 ..... S19
Oxidative cyclization with DDQ - isoflavan 18 ..... S20
Synthesis of compound 3 ..... S20
5. Synthesis of eryzerin D (4) ..... S21
Chromone 19 ..... S21
Propargylation ..... S22
Prenylation ..... S22
Chromone 21 ..... S23
Chromone 22 ..... S24
Isoflavone 22a ..... S24
Isoflavanone rac-6c ..... S26
Synthesis of rac-5c ..... S26
ATH of isoflavanone rac-6c ..... S27
Isoflavan 23a ..... S28
Isoflavan 23 ..... S29
Eryzerin D (4) ..... S30
6. Spectra and HPCL traces ..... S31

## 1. General information

THF and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were dried and purified by passage through a MB-SPS-800 device using molecular sieves. $\mathrm{Et}_{3} \mathrm{~N}$ was freshly distilled over $\mathrm{CaH}_{2}$. All other commercially available reagents were used as received. Reactions were performed under argon atmosphere. Thin layer chromatography (TLC) was performed on Merck silica gel $60 \mathrm{~F}_{254} 0.2 \mathrm{~mm}$ precoated plates. Product spots were visualized by UV light at 254 nm and subsequently developed using anisaldehyde solution as appropriate. Flash column chromatography was carried out using silica gel (Merck, particle size 40-63 microns). Melting points were measured on a Wagner \& Munz PolyTherm A and are uncorrected. Infrared spectra were recorded on a THERMONICOLET Avatar 360 instrument using ATR. NMR spectra were recorded on a Bruker AC 300 P ( $300 \mathrm{MHz}{ }^{1} \mathrm{H}, 75 \mathrm{MHz}{ }^{13} \mathrm{C}, 282 \mathrm{MHz}{ }^{19} \mathrm{~F}$ ), on a Bruker DRX $500 \mathrm{P}\left(500 \mathrm{MHz}{ }^{1} \mathrm{H}\right.$, $125 \mathrm{MHz}{ }^{13} \mathrm{C}$ ) or on a Bruker AC $600-\mathrm{P}\left(600 \mathrm{MHz}{ }^{1} \mathrm{H}, 151 \mathrm{MHz}{ }^{13} \mathrm{C}\right)$ spectrometer. Chemical shifts $(\delta)$ are quoted in parts per million ( ppm ) downfield of tetramethylsilane, using residual protoncontaining solvent as internal standard $\left(\mathrm{CDCl}_{3}\right.$ at 7.27 ppm or $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$ at 2.05 ppm$)$. Abbreviations used in the description of resonances are: s (singlet), d (doublet), t (triplet), q (quartet), br (broad). Coupling constants $(J)$ are quoted to the nearest 0.1 Hz . Mass spectra were recorded with an Agilent 5973 N detector coupled with an Agilent 6890 N GC (GC-MS, 70 eV ) or else with a Bruker EsquireLC (direct injection as a methanolic $\mathrm{NH}_{4} \mathrm{OAc}$ solution, ESI). HRMS spectra were recorded on a Bruker Daltonic "Impact II" (ESI-TOF). Optical rotations were measured on a Perkin Elmer 341 LC polarimeter. Elemental analysis was performed on a Hekatech EA 3000. Microwave synthesis was carried out in a microwave synthesizer (CEM Discover, 300 W). Enantiomeric excesses were determined by chiral HPLC on a Hewlett Packard LC 1090 with photodiode array detector (DAD) using chiral column Chiralpak IA (DAICEL, 250 mm , inner diameter 4.6 mm , particle size 5 microns and 3 microns respectively), Chiralpak AD (DAICEL, 250 mm , inner diameter 4.6 mm , particle size 10 micron) or Lux Amylose 1 (Phenomenex, 250 mm , inner diameter 4.6 mm , particle size 5 microns). All measurements were carried out at ambient temperature and with a flow rate of 0.5 to 1.0 $\mathrm{mL} / \mathrm{min}$. CD spectra were measured on a JASCO J-810 spectropolarimeter. Unless stated otherwise, racemic samples were prepared according to the procedures described for the enantiomerically pure series.

## 2. Synthesis of (S)-equol (1)

## Chromone 7a



Chromone 7 ( $549.4 \mathrm{mg}, 1.40 \mathrm{mmol}$ ) was dissolved in a mixture of THF ( 26.5 mL ) and MeOH $(26.5 \mathrm{~mL})$ and $1 \mathrm{~N} \mathrm{HCl}(2.65 \mathrm{~mL})$ was added. The mixture was stirred for 19 h at rt and was then
quenched with saturated aqueous NaCl solution and extracted three times with EtOAc. The combined organic layers were dried over $\mathrm{MgSO}_{4}$. The solvents were removed under reduced pressure, and the residue was submitted to flash chromatography (isohexane/ethyl acetate $3: 2$ ) to afford chromone $\mathbf{7 a}$ $(464.6 \mathrm{mg}, 1.33 \mathrm{mmol}, 95 \%)$ as a white solid.
M.p. 124-127 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=12.17(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~s}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.55(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~s}, 2 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 177.55 (C), 163.35 (C), 161.65 (C), $158.13(\mathrm{CH}), 157.59$ (C), $105.20(\mathrm{C}), 100.60(\mathrm{CH}), 94.45(\mathrm{CH})$, $94.26\left(\mathrm{CH}_{2}\right), 83.68(\mathrm{C}), 56.50\left(\mathrm{CH}_{3}\right) \mathrm{ppm} . \mathrm{IR}(\mathrm{ATR}): v=3111,3053,2995,2965,2937,2833,2057$, $2030,1877,1734,1717,1699,1641,1594,1563,1510,1478,1448,1433,1399,1355,1302,1264$, 1218, 1203, 1138, 1068, 1047, 1015, 921, 840, 797, 765, 692, $664 \mathrm{~cm}^{-1}$. ESI-MS: m/z $=349.1$ $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$. Anal. calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{IO}_{5}$ : C, 37.95; H, 2.61; found: C, 38.04; H, 2.29.

## Chromone 8



Chromone 7a ( $310.0 \mathrm{mg}, 890.6 \mu \mathrm{~mol}$ ) was dissolved in THF ( 10.0 mL ) and $\mathrm{Et}_{3} \mathrm{~N}(0.22 \mathrm{~mL})$ was added. At $0{ }^{\circ} \mathrm{C}$ ClCOOMe $(0.13 \mathrm{~mL}, 1.7 \mathrm{mmol})$ was added dropwise, and the solution was stirred for 45 min at rt . The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted three times with EtOAc. The combined organic layers were dried over $\mathrm{MgSO}_{4}$. The solvents were removed under reduced pressure, and the residue was submitted to flash chromatography (isohexane/ethyl acetate $3: 2$ ) to afford chromone $\mathbf{8}(339.9 \mathrm{mg}, 836.9 \mu \mathrm{~mol}, 94 \%)$ as a white solid.
M.p. $142-145^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.17(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J$ $=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 2 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=171.05$ (C), 161.21 (C), 158.44 (C), 156.53 (CH), 153.46 (C), 150.47 (C), 110.36 (C), 109.96 (CH), 101.73 $(\mathrm{CH}), 94.57\left(\mathrm{CH}_{2}\right), 88.03(\mathrm{C}), 56.63\left(\mathrm{CH}_{3}\right), 55.92\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. IR (ATR): $v=3114,3074,3005,2958$, $2823,2192,1914,1843,1752,1699,1684,1630,1596,1555,1486,1472,1457,1437,1372,1358$, $1258,1204,1184,1158,1140,1092,1063,1000,987,937,921,878,846,831,790,764,729,679$ $\mathrm{cm}^{-1}$. ESI-MS: $\mathrm{m} / \mathrm{z}=407.2[\mathrm{M}+\mathrm{H}]^{+}$. Anal. calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{IO}_{7}$ : C, 38.45; H, 2.73; found: C, 38.71 ; H , 2.59.

## Isoflavone 9



Chromone 8 ( $300.6 \mathrm{mg}, 740.2 \mu \mathrm{~mol}$ ), boronic acid $\mathbf{8 a}\left(223.0 \mathrm{mg}\right.$, 1.2 mmol ), and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ( 266.6 mg , $1.9 \mathrm{mmol})$ were suspended in dioxane $(3.7 \mathrm{~mL})$ and water $(1.6 \mathrm{~mL})$, and the mixture was heated to $50{ }^{\circ} \mathrm{C}$ until the solution became clear. The mixture was degassed at ambient temperature for 10 min , and $\mathrm{PCy}_{3}(10.50 \mathrm{mg}, 37.4 \mu \mathrm{~mol})$ and $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(17.17 \mathrm{mg}, 18.8 \mu \mathrm{~mol})$ were added. The solution was stirred for 60 min at $50^{\circ} \mathrm{C}$. The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted three times with EtOAc. The combined organic layers were dried over $\mathrm{MgSO}_{4}$. The solvents were removed under reduced pressure, and the residue was submitted to flash chromatography (isohexane/ethyl acetate $2: 1$ ) to afford isoflavone $9(247.9 \mathrm{mg}, 595.4 \mu \mathrm{~mol}, 80 \%)$ as a white solid.
M.p. 115-119 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=7.84(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{~m}, 2 \mathrm{H}), 7.02$ $(\mathrm{d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~s}, 2 \mathrm{H}), 5.21(\mathrm{~s}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H})$, 3.49 (s, 3 H ) ppm. ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=174.70$ (C), 160.77 (C), 158.58 (C), 157.26 (C), $153.55(\mathrm{C}), 151.28(\mathrm{CH}), 150.94(\mathrm{C}), 130.33(\mathrm{CH}), 125.70(\mathrm{C}), 124.90(\mathrm{C}), 116.20(\mathrm{CH}), 112.73(\mathrm{C})$, $109.36(\mathrm{CH}), 101.86(\mathrm{CH}), 94.50\left(\mathrm{CH}_{2}\right), 94.32\left(\mathrm{CH}_{2}\right), 56.53\left(\mathrm{CH}_{3}\right), 55.96\left(\mathrm{CH}_{3}\right), 55.77\left(\mathrm{CH}_{3}\right) \mathrm{ppm} . \mathrm{IR}$ (ATR): $v=3078,2995,2955,2929,2896,2826,2138,2056,2030,2009,1942,1919,1890,1868$, $1843,1828,1763,1734,1717,1699,1684,1627,1606,1561,1511,1473,1457,1435,1281,1241$, $1195,1143,1099,1075,1053,996,925,871,834,801,760,729,693,667,363 \mathrm{~cm}^{-1}$. ESI-MS: m/z $=$ $417.3\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$. Anal. calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{9}: \mathrm{C}, 60.58 ; \mathrm{H}, 4.84$; found: C, $60.64 ; \mathrm{H}, 5.18$.

## Isoflavanone rac-6a



Isoflavone $9(551.2 \mathrm{mg}, 1.32 \mathrm{mmol})$ was dissolved in THF $(10.0 \mathrm{~mL})$ and cooled to $-78^{\circ} \mathrm{C}$. Lselectride solution ( $1.56 \mathrm{~mL}, 1.0 \mathrm{M}$ in THF, 1.56 mmol ) was added, and the mixture was stirred for 60 min. The reaction was quenched with a small portion of MeOH and poured into $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The mixture was extracted three times with EtOAc. The combined organic layers were dried over $\mathrm{MgSO}_{4}$. The solvents were removed in vacuo, and the residue was purified by flash chromatography (isohexane/ethyl acetate $2: 1$ ) to afford racemic isoflavanone rac- $\mathbf{6 a}$ ( $500.3 \mathrm{mg}, 1.20 \mathrm{mmol}, 90 \%$ ) as a colorless oil.
${ }^{1} \mathrm{H}$ NMR (300 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=7.17(\mathrm{~m}, 2 \mathrm{H}), 7.01(\mathrm{~m}, 2 \mathrm{H}), 6.58(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=$ $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 2 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}), 4.61(\mathrm{~m}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{dd}, J=7.9 \mathrm{~Hz}, 6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.49(\mathrm{~s}, 3 \mathrm{H}), 3.47$ (s, 3 H ) ppm. ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=189.68$ (C), 163.87 (C), 162.86 (C), 156.75 (C), 153.39 (C), 152.13 (C), $129.67(\mathrm{CH}), 128.06(\mathrm{C}), 116.59(\mathrm{CH}), 108.91(\mathrm{C}), 105.63(\mathrm{CH})$, $101.96(\mathrm{CH}), 94.32\left(\mathrm{CH}_{2}\right), 94.24\left(\mathrm{CH}_{2}\right), 71.37\left(\mathrm{CH}_{2}\right), 56.54\left(\mathrm{CH}_{3}\right), 55.96\left(\mathrm{CH}_{3}\right), 55.63\left(\mathrm{CH}_{3}\right), 51.60$ (CH) ppm. IR (ATR): $v=2956,2902,2850,2826,2057,2030,1844,1765,1735,1717,1681,1652$, $1612,1562,1540,1511,1437,1385,1342,1246,1197,1143,1110,1076,1052,995,919,835,793$, $764,648 \mathrm{~cm}^{-1}$. ESI-MS: $\mathrm{m} / \mathrm{z}=419.3[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI): m/z calcd for $[\mathrm{M}+\mathrm{H}]^{+}: 419.1347$; found: 419.1343.

## Isoflavan rac-5a



Isoflavanone $6 \mathbf{a}(59.6 \mathrm{mg}, 142.5 \mu \mathrm{~mol})$ was dissolved in THF $(0.86 \mathrm{~mL})$. Separately, mortared $\mathrm{NaBH}_{4}$ ( $33.1 \mathrm{mg}, 87.5 \mu \mathrm{~mol}$ ) was dissolved in $\mathrm{H}_{2} \mathrm{O}(0.35 \mathrm{~mL})$ and both solutions were combined and stirred at rt for 20 min . The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and the mixture was extracted three times with EtOAc. The combined organic layers were dried over $\mathrm{MgSO}_{4}$. The solvents were removed in vacuo, and the residue was purified by flash chromatography (isohexane/ethyl acetate $3: 2$ ) to afford isoflavan $\mathrm{rac}-\mathbf{5 a}(39.9 \mathrm{mg}, 115.2 \mu \mathrm{~mol}, 81 \%)$ as a yellow solid.
M.p. $70-74{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=7.19(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{~m}, 2 \mathrm{H}), 6.23(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1$ H), $6.16(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~s}, 2 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 4.87(\mathrm{~s}, 1 \mathrm{H}), 4.30(\mathrm{ddd}, J=10.5 \mathrm{~Hz}, 3.4 \mathrm{~Hz}$, $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=10.5 \mathrm{~Hz}, 10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.16(\mathrm{~m}, 1 \mathrm{H}), 2.97$ (ddd, $J=16.0 \mathrm{~Hz}, 5.5 \mathrm{~Hz}, 1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{dd}, J=15.8 \mathrm{~Hz}, 10.9 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ( 151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=156.69(\mathrm{C}), 156.24(\mathrm{C}), 155.92(\mathrm{C}), 154.48(\mathrm{C}), 134.69(\mathrm{C}), 128.38(\mathrm{CH}), 116.55$ $(\mathrm{CH}), 103.35(\mathrm{C}), 97.02(\mathrm{CH}), 96.17(\mathrm{CH}), 94.47\left(2 * \mathrm{CH}_{2}\right), 70.78\left(\mathrm{CH}_{2}\right), 55.98\left(\mathrm{CH}_{3}\right), 55.97\left(\mathrm{CH}_{3}\right)$, $37.41(\mathrm{CH}), 26.34\left(\mathrm{CH}_{2}\right) \mathrm{ppm}$. IR (ATR): $v=3385,2932,2901,2846,2823,1735,1698,1622,1593$, 1557, 1540, 1511, 1435, 1231, 1135, 1095, 1072, 994, 919, 822, $712 \mathrm{~cm}^{-1}$. ESI-MS: $\mathrm{m} / \mathrm{z}=347.3$ $[\mathrm{M}+\mathrm{H}]^{+}$. Anal. calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{6}: \mathrm{C}, 65.88 ; \mathrm{H}, 6.40$; found: C, $65.54 ; \mathrm{H}, 6.75$.

## ATH of isoflavanone rac-6a



Preparation of the catalyst solution:
$\left[\operatorname{Ru}(p \text {-cymene }) \mathrm{Cl}_{2}\right]_{2}(21.61 \mathrm{mg}, 35.3 \mu \mathrm{~mol})$ and $(S, S)$-TsDPEN $(25.98 \mathrm{mg}, 70.9 \mu \mathrm{~mol})$ were dissolved in EtOAc ( 2.35 mL ) and stirred for 20 min . Separately, $\mathrm{Et}_{3} \mathrm{~N}(1.8 \mathrm{~mL})$ and $\mathrm{HCOOH}(0.5 \mathrm{~mL})$ were mixed at $0{ }^{\circ} \mathrm{C}$. The lower layer of this biphasic $\mathrm{Et}_{3} \mathrm{~N} / \mathrm{HCOOH}$ mixture (approximately $2.8: 1\{\mathrm{v} / \mathrm{v}\}$, 0.96 mL ) was added to the catalyst solution, and the mixture stirred for further 10 min . The freshly prepared solution was used for ATH.

ATH:
Isoflavanone rac-6a ( $104.9 \mathrm{mg}, 250.7 \mu \mathrm{~mol}$ ) was dissolved in EtOAc ( 0.3 mL ), and freshly prepared catalyst solution $(0.22 \mathrm{~mL}, 2.37 \mu \mathrm{~mol})$ was added. After adding a mixture of $\mathrm{Et}_{3} \mathrm{~N}$ and $\mathrm{HCOOH}(0.06$ $\mathrm{mL}, 2.8: 1\{\mathrm{v} / \mathrm{v}\})$, the reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 5 h . EtOAc ( 1.0 mL ) was added, and the solution was further stirred at $40^{\circ} \mathrm{C}$ for 2 h . The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and the mixture was extracted three times with EtOAc. The combined organic layers were dried over $\mathrm{MgSO}_{4}$. The solvents were removed in vacuo, and the residue was purified by flash chromatography (isohexane/ethyl acetate 3:1) to afford isoflavane $\mathbf{5 a}(77.9 \mathrm{mg}, 224.9 \mu \mathrm{~mol}, 90 \%$, $99 \% e e$ ) as a yellow solid.
$[\alpha]_{\mathrm{D}}{ }^{25}=-12.1\left(c 0.63, \mathrm{CHCl}_{3}\right)$. Further analytical data were in agreement with the data listed above for isoflavan rac-5a.

## Treatment with $\mathrm{Tf}_{2} \underline{\mathrm{O}}$ - isoflavan 10a



Isoflavan 5a ( $88.1 \mathrm{mg}, 254.3 \mu \mathrm{~mol}$ ) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.8 \mathrm{~mL})$ and cooled to $-40^{\circ} \mathrm{C}$. $\mathrm{Et}_{3} \mathrm{~N}$ $(165.0 \mu \mathrm{~L})$ and $\mathrm{Tf}_{2} \mathrm{O}(50.0 \mu \mathrm{~L}, 297.2 \mu \mathrm{~mol})$ were added, and the reaction mixture was stirred for 40 min. The reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and the aqueous phase was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{MgSO}_{4}$, the solvents were removed in vacuo, and the residue was purified by flash chromatography (isohexane/ethyl acetate 3:1) to afford isoflavan 10a ( $116.8 \mathrm{mg}, 244.1 \mu \mathrm{~mol}, 96 \%, 99 \% e e$ ) as a yellow oil.
$[\alpha]_{\mathrm{D}}{ }^{25}=-12.5\left(c 0.53, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.17(\mathrm{~m}, 2 \mathrm{H}), 7.05(\mathrm{~m}, 2 \mathrm{H}), 6.63(\mathrm{~d}$, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~s}, 2 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H}), 4.34(\mathrm{ddd}, J=10.8 \mathrm{~Hz}, 3.4 \mathrm{~Hz}$, $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{t}-\mathrm{like}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.16(\mathrm{~m}, 1 \mathrm{H}), 3.07(\mathrm{ddd}, J=$ $16.2 \mathrm{~Hz}, 5.1 \mathrm{~Hz}, 1.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), $2.85(\mathrm{dd}, J=16.1 \mathrm{~Hz}, 10.9 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=156.60$ (C), 156.48 (C), 156.20 (C), 148.20 (C), 133.47 (C), 128.34 (CH), 118.56 (C, q, $J=320.2$ $\mathrm{Hz})$, $116.69(\mathrm{CH}), 109.51(\mathrm{C}), 104.13(\mathrm{CH}), 102.58(\mathrm{CH}), 94.63\left(\mathrm{CH}_{2}\right), 94.43\left(\mathrm{CH}_{2}\right), 70.94\left(\mathrm{CH}_{2}\right)$,
$56.17\left(\mathrm{CH}_{3}\right), 56.00\left(\mathrm{CH}_{3}\right), 36.81(\mathrm{CH}), 26.80\left(\mathrm{CH}_{2}\right) \mathrm{ppm} .{ }^{19} \mathrm{~F}$ NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-73.56$ ppm. IR (ATR): $v=2955,2903,2846,2823,2056,2030,2007,1629,1578,1559,1540,1512,1495$, 1419, 1314, 1281, 1208, 1134, 1079, 1041, 1000, 972, 920, 816, 762, $662 \mathrm{~cm}^{-1}$. ESI-MS: m/z = $4996.3[\mathrm{M}+\mathrm{H}]^{+}$. Anal. calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{O}_{8} \mathrm{~S}: \mathrm{C}, 50.21 ; \mathrm{H}, 4.42, \mathrm{~S}, 6.7 ; 0$ found: C, $49.83 ; \mathrm{H}, 4.60, \mathrm{~S}$, 6.71 .

## Deoxygenation - isoflavan 10



Isoflavan 10a ( $103.5 \mathrm{mg}, 216.3 \mu \mathrm{~mol}), \mathrm{Pd}(\mathrm{OAc})_{2}(2.5 \mathrm{mg}, 11.1 \mu \mathrm{~mol})$, and dppf ( $6.29 \mathrm{mg}, 11.4 \mu \mathrm{~mol}$ ) were dissolved in THF ( 1.35 mL ). $\mathrm{Et}_{3} \mathrm{~N}(235.0 \mu \mathrm{~L})$ and $\mathrm{HCOOH}(70.0 \mu \mathrm{~L})$ were added, and the mixture was stirred for 60 min at $60^{\circ} \mathrm{C}$ in a closed round bottom flask. The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and the mixture was extracted three times with EtOAc. The combined organic layers were dried over $\mathrm{MgSO}_{4}$. The solvents were removed in vacuo, and the residue was purified by flash chromatography (isohexane/ethyl acetate 3:1) to afford isoflavan 10 ( $68.2 \mathrm{mg}, 206.4 \mu \mathrm{~mol}, 96 \%, 99 \% e e$ ) as a yellow oil.
$[\alpha]_{\mathrm{D}}{ }^{25}=-12.7\left(c 0.78, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.18(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~m}, 2 \mathrm{H}, 6-\mathrm{H}), 5.18(\mathrm{~s}, 2 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H}), 4.32(\mathrm{ddd}, J=10.6 \mathrm{~Hz}, 3.5 \mathrm{~Hz}, 1.6$ $\mathrm{Hz}, 1 \mathrm{H}$ ), 3.98 (dd, $J=10.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.49 (s, 3 H ), $3.49(\mathrm{~s}, 3 \mathrm{H}$ ), 3.19 (ddt-like, $J=10.0 \mathrm{~Hz}, 10.0 \mathrm{~Hz}$, $6.7 \mathrm{~Hz}, 3.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), $2.96(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=156.59(\mathrm{C}), 156.21(\mathrm{C})$, 154.89 (C), $134.63(\mathrm{C}), 130.15(\mathrm{CH}), 128.33(\mathrm{CH}), 116.53(\mathrm{CH}), 115.51(\mathrm{C}), 108.97(\mathrm{CH}), 104.29$ $(\mathrm{CH}), 94.51\left(\mathrm{CH}_{2}\right), 94.44\left(\mathrm{CH}_{2}\right), 71.02\left(\mathrm{CH}_{2}\right), 55.98\left(\mathrm{CH}_{3}\right), 55.94\left(\mathrm{CH}_{3}\right), 37.85(\mathrm{CH}), 31.86\left(\mathrm{CH}_{2}\right)$ ppm. IR (ATR): $v=2952,2929,2898,2846,2823,2783,1619,1584,1558,1541,1507,1472,1441$, 1317, 1257, 1236, 1201, 1148, 1114, 1073, 993, 920, 830, 796, 727, $651,617 \mathrm{~cm}^{-1}$. ESI-MS: $\mathrm{m} / \mathrm{z}=$ $331.2[\mathrm{M}+\mathrm{H}]^{+}$. Anal. calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{5}$ : C, 69.07; H, 6.71; found: C, 69.29; H, 6.73 .
(S)-Equol (1)


Isoflavan $10(58.7 \mathrm{mg}, 177.7 \mu \mathrm{~mol})$ was dissolved in THF ( 2.4 mL ) and $\mathrm{MeOH}(2.4 \mathrm{~mL})$ and a $1: 1$ mixture of water and $37 \% \mathrm{HCl}(0.91 \mathrm{~mL})$ were added. The mixture was stirred for 20 min at $60^{\circ} \mathrm{C}$ and poured into NaCl solution. The mixture was extracted three times with EtOAc. The combined organic layers were dried over $\mathrm{MgSO}_{4}$. The solvents were removed in vacuo, and the residue was purified by
flash chromatography (isohexane/ethyl acetate $2: 1$ ) to afford isoflavan $1(39.5 \mathrm{mg}, 163.0 \mu \mathrm{~mol}, 92 \%$, $99 \% e e$ ) as an off-white solid.
$[\alpha]_{\mathrm{D}}{ }^{25}=-20.4(c 0.55, \mathrm{EtOH})$. M.p. $185-187{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6): $\delta=9.27(\mathrm{~s}, 1 \mathrm{H})$, $9.15(\mathrm{~s}, 1 \mathrm{H}), 7.10(\mathrm{~m}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~m}, 2 \mathrm{H}), 6.28(\mathrm{dd}, J=8.2 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.18(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{ddd}, J=10.6 \mathrm{~Hz}, 3.6 \mathrm{~Hz}, 1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{t}-\mathrm{like}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.00(\mathrm{~m}, 1 \mathrm{H}), 2.80(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ( 75 MHz, DMSO-d6): $\delta=156.47$ (C), 156.12 (C), 154.49 $(\mathrm{C}), 131.64(\mathrm{C}), 130.06(\mathrm{CH}), 128.31(\mathrm{CH}), 115.22(\mathrm{CH}), 112.55(\mathrm{C}), 107.94(\mathrm{CH}), 102.45(\mathrm{CH})$, $70.23\left(\mathrm{CH}_{2}\right), 37.13(\mathrm{CH}), 31.28\left(\mathrm{CH}_{2}\right) \mathrm{ppm}$. IR (ATR): $v=3330,3018,2924,2899,2846,1880,1734$, $1696,1597,1557,1541,1511,1451,1392,1365,1274,1240,1226,1149,1117,1061,1020,938,891$, $847,825,794,768,735,621 \mathrm{~cm}^{-1}$. ESI-MS: $\mathrm{m} / \mathrm{z}=240.8[\mathrm{M}-\mathrm{H}]^{-}$.

## 3. Synthesis of manuifolin $K$ (2)

## Boronic acid 12



Aryl bromide $11(720.8 \mathrm{mg} 1.86 \mathrm{mmol})$ and $\mathrm{B}(\mathrm{O} i \operatorname{Pr})_{3}(0.6 \mathrm{~mL}, 2.60 \mathrm{mmol})$ were added to THF $(9.6 \mathrm{~mL})$. The solution was cooled to $-78^{\circ} \mathrm{C}$, and $\mathrm{BuLi}(1.6 \mathrm{M}, 1.75 \mathrm{~mL}, 2.80 \mathrm{mmol})$ was added dropwise over 15 min . The mixture was stirred for 60 min at $-78^{\circ} \mathrm{C}$ and additional 3 h at rt . The reaction mixture was poured into 1 N HCl , and the mixture was extracted three times with EtOAc. The combined organic layers were dried over $\mathrm{MgSO}_{4}$ and the solvents were removed in vacuo. Boronic acid $\mathbf{1 2}$ was obtained as a yellow solid ( 712.5 mg , quantitative, crude).
M.p. $84-89{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=7.76$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.73(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{~s}, 2$ H), $6.82(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{dd}, J=8.2 \mathrm{~Hz}, 2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{~s}, 2 \mathrm{H}), 5.18(\mathrm{~s}, 2 \mathrm{H}), 3.45(\mathrm{~s}, 3$ $\mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=162.86$ (C), 152.72 (C), 145.43 (C), 137.62 $(\mathrm{CH}), 132.26(\mathrm{C}), 129.75(\mathrm{CH}), 128.56(\mathrm{CH}), 115.83(\mathrm{CH}), 108.33(\mathrm{CH}), 94.83\left(\mathrm{CH}_{2}\right), 56.50\left(\mathrm{CH}_{2}\right)$, $21.71\left(\mathrm{CH}_{3}\right)$, (C-B-Signal only observed in HMBC-experiment due to quadrupole interactions) ppm. IR (ATR): $v=3523,3356,3078,2959,2938,2826,1633,1599,1580,1486,1455,1433,1379,1360$, $1330,1236,1208,1190,1158,1136,1089,1054,1017,981,933,864,833,767,746,701,651$, $629 \mathrm{~cm}^{-1}$. Data from mass spectroscopy were not obtained.

## Isoflavone 12a



Chromone 8 ( $412.0 \mathrm{mg}, 1.01 \mathrm{mmol}$ ), boronic acid $12(690.6 \mathrm{mg}$, approximately 1.80 mmol$)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(365.6 \mathrm{mg}, 2.65 \mathrm{mmol})$ were dissolved at $50^{\circ} \mathrm{C}$ in a mixture of water ( 1.5 mL ) and dioxane $(3.5 \mathrm{~mL}) . \mathrm{Pd}_{2}(\mathrm{dba})_{3}(23.3 \mathrm{mg}, 25.44 \mu \mathrm{~mol})$ and $\mathrm{PCy}_{3}(14.4 \mathrm{mg}, 51.35 \mu \mathrm{~mol})$ were added, and the mixture was stirred for 30 min at $50^{\circ} \mathrm{C}$. The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and the mixture was extracted three times with EtOAc. The combined organic layers were dried over $\mathrm{MgSO}_{4}$. The solvents were removed in vacuo, and the residue was purified by flash chromatography (isohexane/ethyl acetate $1: 1$ ) to afford isoflavone $\mathbf{1 2 a}(501.8 \mathrm{mg}, 0.86 \mathrm{mmol}, 84 \%$ ) as a yellow solid.
M.p. 44-48 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=7.79(\mathrm{~m}, 3 \mathrm{H}, 7.35(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1$ H), $7.03(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{dd}, J=8.4 \mathrm{~Hz}$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 2 \mathrm{H}), 4.99(\mathrm{~s}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=173.88$ (C), 160.82 (C), 158.56 (C), 156.02 (C), 153.46 (C), 152.84 $(\mathrm{CH}), 150.80(\mathrm{C}), 150.33$ (C), 145.31 (C), 132.57 (C), 132.09 (CH), 129.77 (CH), 128.60 (CH), 122.45 (C), $120.30(\mathrm{C}), 115.33(\mathrm{CH}), 112.65(\mathrm{C}), 109.74(\mathrm{CH}), 109.37(\mathrm{CH}), 101.98(\mathrm{CH}), 95.03$ $\left(\mathrm{CH}_{2}\right), 94.49\left(\mathrm{CH}_{2}\right), 56.52\left(\mathrm{CH}_{3}\right), 56.15\left(\mathrm{CH}_{3}\right), 55.65\left(\mathrm{CH}_{3}\right), 21.71\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. IR (ATR): $v=3201$, 3098, 2957, 2826, 2136, 2056, 2030, 2000, 1767, 1717, 1699, 1621, 1598, 1563, 1541, 1493, 1437, $1372,1290,1251,1190,1178,1139,1114,1075,1044,992,935,856,807,778,717,692,662 \mathrm{~cm}^{-1}$. ESI-MS: $\mathrm{m} / \mathrm{z}=587.3[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd for $[\mathrm{M}+\mathrm{Na}]^{+}: 609.1037$; found: 609.1038.

## Isoflavanone rac-6b



Isoflavone 12a ( $758.2 \mathrm{mg}, 1.29 \mathrm{mmol}$ ) was dissolved in THF ( 10.0 mL ) and cooled to $-78^{\circ} \mathrm{C}$. Lselectride (1.0 M in THF, $1.57 \mathrm{~mL}, 1.57 \mathrm{mmol}$ ) was added dropwise, and the solution was stirred for 60 min at $-78^{\circ} \mathrm{C}$. The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and the mixture was extracted three times with EtOAc. The combined organic layers were dried over $\mathrm{MgSO}_{4}$. The solvents were removed in vacuo, and the residue was purified by flash chromatography (isohexane/ethyl acetate 6:5) to afford isoflavanone rac- $\mathbf{6 b}(704.2 \mathrm{mg}, 1.20 \mathrm{mmol}, 93 \%$ as a yellow solid.
M.p. $35-38{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=7.76(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1$ H), $6.81(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{dd}, J=8.4 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=$ $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~s}, 2 \mathrm{H}), 5.02(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{t}-\mathrm{like}, J=11.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.46(\mathrm{dd}, J=11.0 \mathrm{~Hz}, 5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{dd}, J=11.3 \mathrm{~Hz}, 5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.49$ $(\mathrm{s}, 3 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=189.08$ (C), 164.20 (C), 162.82 (C), 155.86 (C), 153.39 (C), 152.11 (C), 149.84 (C), 145.30 (C), 132.55 (C), 130.93 (CH), $129.76(\mathrm{CH}), 128.57(\mathrm{CH}), 122.89(\mathrm{C}), 115.55(\mathrm{CH}), 109.43(\mathrm{CH}), 109.31(\mathrm{C}), 105.68(\mathrm{CH}), 102.13$ $(\mathrm{CH}), 94.83\left(\mathrm{CH}_{2}\right), 94.27\left(\mathrm{CH}_{2}\right), 70.29\left(\mathrm{CH}_{3}\right), 56.55\left(\mathrm{CH}_{3}\right), 56.22\left(\mathrm{CH}_{3}\right), 55.57\left(\mathrm{CH}_{3}\right), 48.53(\mathrm{CH})$, $21.71\left(\mathrm{CH}_{3}\right) \mathrm{ppm} . \mathrm{IR}(\mathrm{ATR}): v=3217,2958,2826,2056,2030,1844,1766,1735,1717,1685,1652$, $1618,1569,1541,1495,1436,1373,1247,1191,1178,1143,1110,1089,1051,922,857,814,771$, $715,661 \mathrm{~cm}^{-1}$. ESI-MS: $\mathrm{m} / \mathrm{z}=589.3[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{HRMS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z}$ calcd for $[\mathrm{M}+\mathrm{Na}]^{+}: 611.1194$; found: 611.1202 .

## Isoflavan rac-5b


rac-6b

rac-5b

Isoflavanone rac-6b $(61.4 \mathrm{mg}, 104.3 \mu \mathrm{~mol})$ was dissolved in THF $(0.5 \mathrm{~mL})$. Separately, mortared $\mathrm{NaBH}_{4}(16.7 \mathrm{mg}, 441.4 \mu \mathrm{~mol})$ was dissolved in water $(0.2 \mathrm{~mL})$. Both solutions were unified, and the reaction mixture was stirred for 30 min at rt . The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and the mixture was extracted three times with EtOAc. The combined organic layers were dried over $\mathrm{MgSO}_{4}$. The solvents were removed in vacuo, and the residue was purified by flash chromatography (isohexane/ethyl acetate $6: 5$ ) to afford isoflavan rac-5b ( $27.4 \mathrm{mg}, 53.3 \mu \mathrm{~mol}, 51 \%$ as a yellow solid.
M.p. $35-39{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.75(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1$ H), $6.76(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{dd}, J=8.4 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{~d}, J=$ $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 5.08(\mathrm{~s}, 2 \mathrm{H}), 4.78(\mathrm{~s}, 1 \mathrm{H}), 4.27(\mathrm{ddd}, J=10.4 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 1.9 \mathrm{~Hz}, 1 \mathrm{H})$, 4.00 (t-like, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~m}, 1 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 2.91(\mathrm{ddd}, J=15.9 \mathrm{~Hz}, 5.6$ $\mathrm{Hz}, 1.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), $2.70\left(\mathrm{dd}, J=15.9 \mathrm{~Hz}, 10.4 \mathrm{~Hz}, 1 \mathrm{H}\right.$ ), 2.47 (s, 3 H ) ppm. ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=156.71$ (C), 155.94 (C), 155.42 (C), 154.43 (C), 148.95 (C), 145.29 (C), 132.54 (C), 129.73 (CH), $129.03(\mathrm{C}), 128.56(\mathrm{CH}), 127.71(\mathrm{CH}), 115.44(\mathrm{CH}), 108.80(\mathrm{CH}), 103.26(\mathrm{C}), 97.06(\mathrm{CH}), 96.21$ $(\mathrm{CH}), 94.50\left(\mathrm{CH}_{2}\right), 94.46\left(\mathrm{CH}_{2}\right), 69.39\left(\mathrm{CH}_{2}\right), 56.18\left(\mathrm{CH}_{3}\right), 55.97\left(\mathrm{CH}_{3}\right), 31.42(\mathrm{CH}), 24.82\left(\mathrm{CH}_{2}\right)$, $21.71\left(\mathrm{CH}_{3}\right) \mathrm{ppm} . \mathrm{IR}(\mathrm{ATR}): v=3461,2952,2924,2846,1622,1594,1561,1494,1457,1435,1399$,
$1369,1245,1210,1191,1176,1136,1091,1073,1022,989,938,859,812,715,663 \mathrm{~cm}^{-1}$. ESI-MS: $\mathrm{m} / \mathrm{z}=517.4[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI): m/z calcd for $[2 \mathrm{M}+\mathrm{Na}]^{+}: 1055.2800$; found: 1055.2799 .

## ATH of isoflavanone rac-6b



Preparation of the catalyst solution:
$\left[\mathrm{Ru}(p \text {-cymene }) \mathrm{Cl}_{2}\right]_{2}(21.61 \mathrm{mg}, 35.3 \mu \mathrm{~mol})$ and $(R, R)$-TsDPEN $(25.98 \mathrm{mg}, 70.9 \mu \mathrm{~mol})$ were dissolved in EtOAc ( 2.35 mL ) and stirred for 20 min . Separately, $\mathrm{Et}_{3} \mathrm{~N}(1.8 \mathrm{~mL})$ and $\mathrm{HCOOH}(0.5 \mathrm{~mL})$ were mixed at $0{ }^{\circ} \mathrm{C}$. The lower layer of this biphasic $\mathrm{Et}_{3} \mathrm{~N} / \mathrm{HCOOH}$ mixture (approximately 2.8:1 (v/v), 0.96 mL ) was added to the catalyst solution, and the mixture stirred for further 10 min . The freshly prepared solution was used for ATH.

ATH:
Racemic isoflavanone $6 \mathbf{b}(414.4 \mathrm{mg}, 704.4 \mu \mathrm{~mol})$ was dissolved in EtOAc $(0.88 \mathrm{~mL})$, and freshly prepared catalyst solution $(1.65 \mathrm{~mL}, 35.3 \mu \mathrm{~mol})$ was added. The reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 15 h . The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and the mixture was extracted three times with EtOAc. The combined organic layers were dried over $\mathrm{MgSO}_{4}$. The solvents were removed in vacuo, and the residue was purified by flash chromatography (isohexane/ethyl acetate 6:5).

Treatment with $\mathrm{Tf}_{2} \mathrm{O}$ :
The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7.7 \mathrm{~mL})$ and cooled to $-40{ }^{\circ} \mathrm{C}^{2} \mathrm{Et}_{3} \mathrm{~N}(0.46 \mathrm{~mL})$ and $\mathrm{Tf}_{2} \mathrm{O}$ $(0.24 \mathrm{~mL}, 832.1 \mu \mathrm{~mol})$ were added, and the mixture was stirred for 40 min . The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and the mixture was extracted three times with EtOAc. The combined organic layers were dried over $\mathrm{MgSO}_{4}$. The solvents were removed in vacuo, and the residue was purified by flash chromatography (isohexane/ethyl acetate 5:2) to afford isoflavan 13 ( $383.6 \mathrm{mg}, 591.4 \mu \mathrm{~mol}, 84 \%$ over two steps, $99 \% e e$ ) as a white solid.
$[\alpha]_{\mathrm{D}}{ }^{25}=+9.7\left(c 0.75, \mathrm{CDCl}_{3}\right)$. M.p. $76-80^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.76(\mathrm{~m}, 2 \mathrm{H}), 7.35$ $(\mathrm{m}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{dd}, J=8.4 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.62$ $(\mathrm{d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 4.33(\mathrm{ddd}, J=10.6 \mathrm{~Hz}, 3.4$ $\mathrm{Hz}, 1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{t}-\mathrm{like}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 3.03$ (ddd, $J=16.3 \mathrm{~Hz}, 5.3 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{dd}, J=16.2 \mathrm{~Hz}, 10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=156.63(\mathrm{C}), 156.20(\mathrm{C}), 155.43(\mathrm{C}), 149.23(\mathrm{C}), 148.22(\mathrm{C}), 145.34(\mathrm{C}), 132.50$
$(\mathrm{C}), 129.75(\mathrm{CH}), 128.56(\mathrm{CH}), 127.82(\mathrm{C}), 127.61(\mathrm{CH}), 118.54(\mathrm{q}, J=320.2 \mathrm{~Hz}, \mathrm{C}), 115.53(\mathrm{CH})$, $109.44(\mathrm{C}), 108.90(\mathrm{CH}), 104.20(\mathrm{CH}), 102.64(\mathrm{CH}), 94.62\left(\mathrm{CH}_{2}\right), 94.48\left(\mathrm{CH}_{2}\right), 69.49\left(\mathrm{CH}_{2}\right), 56.21$ $\left(\mathrm{CH}_{3}\right), 56.17\left(\mathrm{CH}_{3}\right), 31.12(\mathrm{CH}), 25.24\left(\mathrm{CH}_{2}\right), 21.70\left(\mathrm{CH}_{3}\right)$ ppm. ${ }^{19} \mathrm{~F}$ NMR (282 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=$ -74.20 ppm . IR (ATR): $v=3088,2969,2938,2899,2866,2819,2053,2030,2007,1970,1632,1576$, $1543,1495,1472,1457,1419,1372,1328,1278,1245,1217,1135,1080,1043,997,970,944,895$, 866, 829, 813, 789, 167, 721, 664, $644 \mathrm{~cm}^{-1}$. ESI-MS: m/z $=666.4\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$. Anal. calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{O}_{11} \mathrm{~S}$ : C, 50.00; H, 4.20, S, 9.89; found: C, 50.38; H, 4.10, S, 9.59.

## Isoflavan 13a



Isoflavan $13(677.4 \mathrm{mg}, 1.04 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(11.84 \mathrm{mg}, 52.74 \mu \mathrm{~mol})$, and dppf $(29.06 \mathrm{mg}$, $52.42 \mu \mathrm{~mol})$ were dissolved in THF $(6.50 \mathrm{~mL}) . \mathrm{Et}_{3} \mathrm{~N}(1.15 \mathrm{~mL})$ and $\mathrm{HCOOH}(0.35 \mathrm{~mL})$ were added, and the mixture was stirred for 60 min at $60^{\circ} \mathrm{C}$ in a closed round bottom flask. The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and the mixture was extracted three times with EtOAc. The combined organic layers were dried over $\mathrm{MgSO}_{4}$. The solvents were removed in vacuo, and the residue was purified by flash chromatography (isohexane/ethyl acetate $5: 2$ ) to afford isoflavan 13a ( $513.2 \mathrm{mg}, 1.03 \mathrm{mmol}, 98 \%, 99 \% \mathrm{ee}$ ) as a white solid.
$[\alpha]_{\mathrm{D}}{ }^{25}=-4.3\left(c 0.97, \mathrm{CDCl}_{3}\right)$. M.p. $92-95{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.76(\mathrm{~m}, 2 \mathrm{H}), 7.34$ $(\mathrm{m}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{dd}, J=$ $8.4 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~m}, 2 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H}), 5.08(\mathrm{~s}, 2 \mathrm{H}), 4.30(\mathrm{ddd}, J=10.4 \mathrm{~Hz}, 3.3 \mathrm{~Hz}, 1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.01(\mathrm{t}$-like, $J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 2.94(\mathrm{~m}, 2 \mathrm{H}), 2.47(\mathrm{~s}$, $3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=156.61$ (C), 155.40 (C), 154.90 (C), 148.90 (C), 145.28 (C), $132.55(\mathrm{C}), 130.13(\mathrm{CH}), 129.72(\mathrm{CH}), 128.96(\mathrm{C}), 128.54(\mathrm{CH}), 127.60(\mathrm{CH}), 115.43(\mathrm{CH})$, $115.40(\mathrm{C}), 109.03(\mathrm{CH}), 108.76(\mathrm{CH}), 104.33(\mathrm{CH}), 94.50\left(\mathrm{CH}_{2}\right), 94.46\left(\mathrm{CH}_{2}\right), 69.63\left(\mathrm{CH}_{2}\right), 56.16$ $\left(\mathrm{CH}_{3}\right), 55.93\left(\mathrm{CH}_{3}\right), 31.81(\mathrm{CH}), 30.28\left(\mathrm{CH}_{2}\right), 21.71\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. IR (ATR): $v=2955,2927,2850$, $2823,1734,1698,1624,1589,1492,1454,1398,1370,1310,1261,1244,1206,1188,1177,1150$, $1128,1105,1072,1019,980,936,876,858,813,802,786,731,706,660,618 \mathrm{~cm}^{-1}$. ESI-MS: m/z $=$ $518.5\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$. Anal. calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{O}_{8} \mathrm{~S}: \mathrm{C}, 62.39$; H, $5.64 ; \mathrm{S}, 6.41$; found: C, $62.52 ; \mathrm{H}, 5.96 ; \mathrm{S}$, 6.11 .

## Isoflavan 14



Isoflavan 13a ( $333.4 \mathrm{mg}, 666.1 \mu \mathrm{~mol}$ ) was dissolved in $i \operatorname{PrOH}(20 \mathrm{~mL})$ and water ( 2 mL ). KOH $(182.0 \mathrm{mg}, 3.2 \mathrm{mmol})$ was added, and the mixture was stirred for 4 h at $80^{\circ} \mathrm{C}$. The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and the mixture was extracted three times with EtOAc. The combined organic layers were dried over $\mathrm{MgSO}_{4}$. The solvents were removed in vacuo, and the residue was purified by flash chromatography (isohexane/ethyl acetate $2: 1$ ) to afford isoflavan $14(192.9 \mathrm{mg}, 556.9 \mu \mathrm{~mol}, 86 \%, 99 \% e e)$ as a colorless residue.
$[\alpha]_{\mathrm{D}}{ }^{25}=-4.2\left(c 0.95, \mathrm{CDCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.00(\mathrm{~m}, 2 \mathrm{H}), 6.69(\mathrm{~d}, J=2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.60(\mathrm{~m}, 2 \mathrm{H}), 6.47(\mathrm{dd}, J=8.3 \mathrm{~Hz}, 2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 2 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H}), 4.70(\mathrm{~s}, 1 \mathrm{H}), 4.32$ (ddd, $J=10.4 \mathrm{~Hz}, 3.4 \mathrm{~Hz}, 2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{t}-\mathrm{like}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~m}, 1 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H})$, $3.48(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{dd}, J=15.9 \mathrm{~Hz}, 10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{ddd}, J=15.7 \mathrm{~Hz}, 5.5 \mathrm{~Hz}, 1.9 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=156.55$ (C), 155.98 (C), 155.36 (C), 155.02 (C), 130.17 (CH), 127.85 $(\mathrm{CH}), 122.16(\mathrm{C}), 115.97(\mathrm{C}), 108.89(\mathrm{CH}), 108.42(\mathrm{CH}), 104.35(\mathrm{CH}), 102.19(\mathrm{CH}), 94.55\left(\mathrm{CH}_{2}\right)$, $94.43\left(\mathrm{CH}_{2}\right), 70.17\left(\mathrm{CH}_{2}\right), 56.15\left(\mathrm{CH}_{3}\right), 55.93\left(\mathrm{CH}_{3}\right), 31.62(\mathrm{CH}), 30.56\left(\mathrm{CH}_{2}\right) \mathrm{ppm}$. IR (ATR): $v=3380,2932,2900,2846,2823,1697,1616,1586,1557,1542,1319,1276,1259,1210,1148$, 1112, 1071, 996, 950, 920, 840, 800, 728, $628 \mathrm{~cm}^{-1}$. ESI-MS: m/z $=347.2[\mathrm{M}+\mathrm{H}]^{+}$. Anal. calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{6}$ : C, 65.88; H, 6.40; found: C, 65.55; H, 6.42.

## Prenylation - isoflavan 15



Phenol $14(124.1 \mathrm{mg}, 358.3 \mu \mathrm{~mol}), \mathrm{PPh}_{3}(121.2 \mathrm{mg}, 462.1 \mu \mathrm{~mol})$ and 3-methyl-2-buten-1-ol $(0.06 \mathrm{~mL}$, $590.7 \mu \mathrm{~mol})$ were dissolved in THF $(4.7 \mathrm{~mL})$. DIAD $(0.12 \mathrm{~mL}, 611.2 \mu \mathrm{~mol})$ was added at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 90 min at rt . The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and the mixture was extracted three times with EtOAc. The combined organic layers were dried over $\mathrm{MgSO}_{4}$. The solvents were removed in vacuo, and the residue was purified by flash chromatography (isohexane/ethyl acetate 9:2) to afford isoflavan 15 ( $131.4 \mathrm{mg}, 317.0 \mu \mathrm{~mol}, 88 \%$, $99 \% e e$ ) as a white solid.
$[\alpha]_{\mathrm{D}}{ }^{25}=-3.9\left(c 0.54, \mathrm{CDCl}_{3}\right)$. M.p. $29-32{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.01(\mathrm{~m}, 2 \mathrm{H}), 6.77$ $(\mathrm{d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~m}, 2 \mathrm{H}), 6.55(\mathrm{dd}, J=8.5 \mathrm{~Hz}, 2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{~m}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 2 \mathrm{H})$, $5.15(\mathrm{~s}, 2 \mathrm{H}), 4.50(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.33(\mathrm{ddd}, J=10.2 \mathrm{~Hz}, 3.4 \mathrm{~Hz}, 1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{t}-\mathrm{like}, J=$ $10.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~m}, 1 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.01(\mathrm{dd}, J=15.7 \mathrm{~Hz}, 11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.89$ (ddd, $J=15.7 \mathrm{~Hz}, 5.3 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta=158.78$ (C), 156.53 (C), 155.88 (C), 155.04 (C), 138.29 (C), $130.16(\mathrm{CH}), 127.51(\mathrm{CH}), 122.06$ $(\mathrm{C}), 119.56(\mathrm{CH}), 116.02(\mathrm{C}), 108.85(\mathrm{CH}), 106.99(\mathrm{CH}), 104.33(\mathrm{CH}), 102.09(\mathrm{CH}), 94.55\left(\mathrm{CH}_{2}\right)$, $94.46\left(\mathrm{CH}_{2}\right), 70.21\left(\mathrm{CH}_{2}\right), 64.80\left(\mathrm{CH}_{2}\right), 56.14\left(\mathrm{CH}_{3}\right), 55.91\left(\mathrm{CH}_{3}\right), 31.64(\mathrm{CH}), 30.57\left(\mathrm{CH}_{2}\right), 25.82$ $\left(\mathrm{CH}_{3}\right), 18.17\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. IR (ATR): $v=2985,2962,2936,2894,2850,1612,1584,1556,1542,1503$, $1444,1407,1380,1304,1288,1276,1255,1212,1149,1127,1114,1068,1008,914,852,804,783$, $745,722,645,629,606 \mathrm{~cm}^{-1}$. ESI-MS: $\mathrm{m} / \mathrm{z}=432.3\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$. Anal. calcd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{6}: \mathrm{C}, 69.54 ; \mathrm{H}$, 7.30; found: C, 69.90; H, 7.37.

## Preparation of manuifolin K (2)



Isoflavan $15(97.8 \mathrm{mg}, 235.6 \mu \mathrm{~mol}), \mathrm{NaOAc}(19.7 \mathrm{mg}, 240.1 \mu \mathrm{~mol})$ and $\mathrm{Ac}_{2} \mathrm{O}(2.9 \mathrm{~mL})$ were put in a microwave tube. The mixture was irradiated at $180^{\circ} \mathrm{C}$ for 120 min at 300 W . The mixture was poured in saturated $\mathrm{NaHCO}_{3}$ solution using a small amount of EtOAc and stirred for 30 min. Saturated NaCl solution was added, and the mixture was extracted three times with EtOAc. The combined organic layers were dried over $\mathrm{MgSO}_{4}$ and the solvents were removed in vacuo.
The crude residue was dissolved in $\mathrm{MeOH}(2.9 \mathrm{~mL})$ and water ( 2.3 mL ) . NaOH ( 485.6 mg , 12.14 mmol ) was added, and the mixture was stirred for 60 min under water bath cooling at rt . The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. $2 \mathrm{~N} \mathrm{HCl}(6 \mathrm{~mL})$ was added, and the mixture was extracted three times with EtOAc. The combined organic layers were dried over $\mathrm{MgSO}_{4}$, and the solvents were removed in vacuo.
The crude residue was dissolved in $\mathrm{MeOH}(1.45 \mathrm{~mL})$ and THF $(1.45 \mathrm{~mL})$. A $1: 1$ mixture $(0.29 \mathrm{~mL})$ of water and $37 \% \mathrm{HCl}$ was added, and the solution was stirred for 30 min at $60{ }^{\circ} \mathrm{C}$. The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and the mixture was extracted three times with EtOAc. The combined organic layers were dried over $\mathrm{MgSO}_{4}$. The solvents were removed in vacuo, and the residue was purified by flash chromatography (isohexane/ethyl acetate $3: 2$ ) to afford isoflavan 2 ( $54.9 \mathrm{mg}, 168.2 \mu \mathrm{~mol}, 71 \%$ over three steps, $99 \% e e$ ) as a yellow solid.
$[\alpha]_{\mathrm{D}}{ }^{25}=-22.7(c 0.16, \mathrm{MeOH})$. M.p. $175-177{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.96(\mathrm{~m}, 2 \mathrm{H})$, $6.39(\mathrm{~m}, 2 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 6.17(\mathrm{dd}, J=17.8 \mathrm{~Hz}, 10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{~s}, 1 \mathrm{H}), 5.36(\mathrm{dd}, J=17.8 \mathrm{~Hz}$,
$0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{dd}, J=10.6 \mathrm{~Hz}, 0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~s}, 1 \mathrm{H}), 4.64(\mathrm{~s}, 1 \mathrm{H}), 4.35$ (ddd, $J=10.4 \mathrm{~Hz}$, $3.4 \mathrm{~Hz}, 1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{t}-\mathrm{like}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~m}, 1 \mathrm{H}), 3.04(\mathrm{dd}, J=15.7 \mathrm{~Hz}, 10.4 \mathrm{~Hz}, 1$ H), 2.91 (ddd, $J=15.7 \mathrm{~Hz}, 5.3 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), $1.38(\mathrm{~s}, 3 \mathrm{H}), 1.37$ ( $\mathrm{s}, 3 \mathrm{H}$ ) ppm. ${ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, acetone-d6): $\delta=8.17(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.45$ $(\mathrm{s}, 1 \mathrm{H}), 6.36(\mathrm{dd}, J=8.1 \mathrm{~Hz}, 2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{dd}, J=17.6 \mathrm{~Hz}, 10.8 \mathrm{~Hz}, 1$ H), $4.98(\mathrm{dd}, J=17.4 \mathrm{~Hz}, 1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{dd}, J=10.4 \mathrm{~Hz}, 1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{ddd}, J=10.2 \mathrm{~Hz}$, $3.4 \mathrm{~Hz}, 2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{t}-\mathrm{like}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~m}, 1 \mathrm{H}), 2.98(\mathrm{dd}, J=15.5 \mathrm{~Hz}, 11.1 \mathrm{~Hz}, 1$ H), 2.77 (ddd, $J=15.7 \mathrm{~Hz}, 5.3 \mathrm{~Hz}, 1.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.42 (s, 6 H ) ppm. ${ }^{13} \mathrm{C}$ NMR ( 75 MHz , acetone-d6): $\delta$ $=157.45(\mathrm{C}), 156.12(\mathrm{C}), 155.52(\mathrm{C}), 154.77(\mathrm{C}), 149.22(\mathrm{CH}), 130.95(\mathrm{CH}), 126.79(\mathrm{CH}), 125.93$ $(\mathrm{C}), 118.75(\mathrm{C}), 114.42(\mathrm{C}), 110.22\left(\mathrm{CH}_{2}\right), 108.65(\mathrm{CH}), 104.77(\mathrm{CH}), 103.60(\mathrm{CH}), 70.59\left(\mathrm{CH}_{2}\right)$, $40.70(\mathrm{C}), 33.00(\mathrm{CH}), 31.13\left(\mathrm{CH}_{2}\right), 27.50\left(\mathrm{CH}_{3}\right), 27.42\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. IR (ATR): $v=3382(\mathrm{~m}), 3028$ (w), 2960 (w), 2906 (w), 2869 (w), 2192 (w), 1729 (w), 1621 (m), 1597 (m), 1557 (m), 1540 (m), 1502 (m), 1458 (m), 1426 (m), 1356 (m), 1274 (m), 1223 (s), 1147 (s), 1113 ( s), 1050 (m), 1016 (s), $934(\mathrm{~m}), 903(\mathrm{~m}), 868(\mathrm{~m}), 825(\mathrm{~s}), 786(\mathrm{~m}), 734(\mathrm{~m}), 715(\mathrm{~m}), 696(\mathrm{~m}), 618(\mathrm{~m}) \mathrm{cm}^{-1}$. ESI-MS: m/z = $327.2\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$.

## 4. Synthesis of isoflavan 3

## Tsuji-Trost allylation of phenol 14



Isoflavan $14(121.6 \mathrm{mg}, 351.3 \mu \mathrm{~mol})$, carbonate $16(203.8 \mathrm{mg}, 1.1 \mathrm{mmol})$, and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(20.9 \mathrm{mg}$, $18.1 \mu \mathrm{~mol})$ were dissolved in THF $(3.5 \mathrm{~mL})$, and the mixture was stirred for 20 min at rt . The solution was rinsed over a pad of silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvent was removed in vacuo, and the residue was purified by flash chromatography (isohexane/ethyl acetate $2: 1$ ) to afford isoflavan $\mathbf{1 4 a}(138.5 \mathrm{mg}$, $334.1 \mu \mathrm{~mol}, 95 \%, 99 \% e e$ ) as a colorless oil.
$[\alpha]_{\mathrm{D}}{ }^{25}=-1.1\left(c 0.70, \mathrm{CDCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.98(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1$ H), $6.61(\mathrm{~m}, 3 \mathrm{H}), 6.14(\mathrm{dd}, J=17.6 \mathrm{~Hz}, 10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~m}, 6 \mathrm{H}), 4.34(\mathrm{ddd}, J=10.2 \mathrm{~Hz}, 3.4 \mathrm{~Hz}$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{t}-\mathrm{like}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{dd}, J=$ $15.5 \mathrm{~Hz}, 10.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.88 (ddd, $15.9 \mathrm{~Hz}, 5.3 \mathrm{~Hz}, 1.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.47 (s, 6 H ) ppm. ${ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=156.54(\mathrm{C}), 155.94(\mathrm{C}), 155.27(\mathrm{C}), 155.04(\mathrm{C}), 144.44(\mathrm{CH}), 130.17(\mathrm{CH}), 126.76$ $(\mathrm{CH}), 123.25(\mathrm{C}), 116.06(\mathrm{C}), 114.00(\mathrm{CH}), 113.39\left(\mathrm{CH}_{2}\right), 108.84(\mathrm{CH}), 107.86(\mathrm{CH}), 104.34(\mathrm{CH})$, $94.56\left(\mathrm{CH}_{2}\right), 94.51\left(\mathrm{CH}_{2}\right), 79.54(\mathrm{C}), 70.20\left(\mathrm{CH}_{2}\right), 56.08\left(\mathrm{CH}_{3}\right), 55.91\left(\mathrm{CH}_{3}\right), 31.72(\mathrm{CH}), 30.57$
$\left(\mathrm{CH}_{2}\right), 27.01\left(\mathrm{CH}_{3}\right)$ ppm. IR (ATR): $v=3082(\mathrm{w}), 2976$ (w), 2931 (w), 2895 (w), 2845 (w), 2823 (w), 2780 (w), 1625 (w), 1609 (w), 1580 (w), 1558 (w), 1541 (w), 1500 (m), 1466 (w), 1454 (w), 1422 (w), 1316 (w), 1258 (m), 1211 (m), 1149 (s), 1112 (s), 1072 (s), 1000 (s), 967 (s), $920(\mathrm{~s}), 845(\mathrm{~m}), 780(\mathrm{~m}), 724(\mathrm{~m}), 691(\mathrm{~m}), 644(\mathrm{~m}) \mathrm{cm}^{-1}$. ESI-MS: m/z $=431.9\left[\mathrm{M}^{2} \mathrm{NH}_{4}\right]^{+}$. Anal. calcd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{6}$ : C, 69.54; H, 7.30; found: C, 69.42; H, 7.43.

## Claisen rearrangement - isoflavans 14b and 14c



Isoflavan 14a $(136.6 \mathrm{mg}, 329.6 \mu \mathrm{~mol})$ and $\mathrm{Eu}(\mathrm{fod})_{3}(35.0 \mathrm{mg}, 33.7 \mu \mathrm{~mol})$ was dissolved in $\mathrm{CHCl}_{3}$ $(2.3 \mathrm{~mL})$ in a microwave tube. The mixture was irradiated at $110^{\circ} \mathrm{C}$ for 15 min at 300 W . The solvent was removed in vacuo, and the residue was purified by flash chromatography (isohexane/ethyl acetate 3:1) to afford isoflavan $\mathbf{1 4 c}(36.8 \mathrm{mg}, 88.8 \mu \mathrm{~mol}, 27 \%, 99 \% \mathrm{ee})$ as a white solid and isoflavan $\mathbf{1 4 b}$ ( $94.4 \mathrm{mg}, 227.7 \mu \mathrm{~mol}, 69 \%, 99 \% \mathrm{ee}$ ) as a colorless oil. Both substances $\mathbf{1 4 b}$ and $\mathbf{1 4 c}$ were separated once by means of column chromatography for analytical purposes. Elsewise, the mixture of both $\mathbf{1 4 b}$ and $\mathbf{1 4 c}$ was used for further synthesis.

## Isoflavan 14c:

$[\alpha]_{\mathrm{D}}{ }^{25}=+13.8\left(c 0.41, \mathrm{CDCl}_{3}\right)$. M.p. $67-71{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.00(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.90(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~m}, 2 \mathrm{H}), 5.34(\mathrm{~s}, 1 \mathrm{H}), 5.24(\mathrm{~m}, 1 \mathrm{H})$, $5.16(\mathrm{~s}, 2 \mathrm{H}), 4.95(\mathrm{~s}, 2 \mathrm{H}), 4.30(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{t}-\mathrm{like}, j=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~m}, 1 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H})$, $3.49(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.91(\mathrm{~m}, 2 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=156.53$ (C), 155.00 (C), 154.77 (C), 154.57 (C), 135.35 (C), 130.14 $(\mathrm{CH}), 126.84(\mathrm{C}), 125.32(\mathrm{CH}), 121.62(\mathrm{CH}), 120.77(\mathrm{C}), 116.01(\mathrm{C}), 112.66(\mathrm{CH}), 108.86(\mathrm{CH})$, $104.36(\mathrm{CH}), 100.60\left(\mathrm{CH}_{2}\right), 94.55\left(\mathrm{CH}_{2}\right), 70.64\left(\mathrm{CH}_{2}\right), 57.62\left(\mathrm{CH}_{3}\right), 55.94\left(\mathrm{CH}_{3}\right), 31.83\left(\mathrm{CH}_{2}\right), 31.40$ $(\mathrm{CH}), 25.76\left(\mathrm{CH}_{3}\right), 24.13\left(\mathrm{CH}_{2}\right), 17.97\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. IR (ATR): $v=3471(\mathrm{w}), 2913(\mathrm{w}), 2846(\mathrm{w}), 1619$ (w), 1585 (w), 1542 (w), 1501 (m), 1436 (m), 1375(w), 1323 (w), 1281 (m), 1258 (m), 1210 (w), 1150 (s), 1111 (m), 1075 (m), 1006 (s), 985 (s), 958 (s), 920 (s), 875 (m), 845 (m), 806 (m), 780 (w), 726 (w), $705(\mathrm{w}), 624(\mathrm{w}) \mathrm{cm}^{-1}$. ESI-MS: $\mathrm{m} / \mathrm{z}=415.3[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI): m/z calcd for $[\mathrm{M}+\mathrm{Na}]^{+}$: 437.1935; found: 437.1938.

## Isoflavan 14b:

$[\alpha]_{\mathrm{D}}{ }^{25}=-7.7\left(c 0.78, \mathrm{CDCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.00(\mathrm{~m}, 1 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 6.67(\mathrm{~s}$, $1 \mathrm{H}), 6.60(\mathrm{~m}, 2 \mathrm{H}), 5.29(\mathrm{~m}, 1 \mathrm{H}), 5.17(\mathrm{br} . \mathrm{s} ., 1 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}), 4.32(\mathrm{~m}, J=10.4 \mathrm{~Hz}$, $3.6 \mathrm{~Hz}, 2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{t}-\mathrm{like}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~m}, 1 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 3.29$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.01(\mathrm{dd}, J=15.6 \mathrm{~Hz}, 11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{ddd}, J=15.7 \mathrm{~Hz}, 5.1 \mathrm{~Hz}, 1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $1.77(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~s}, 11 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=156.52$ (C), 155.03 (C), 154.30 (C), 153.79 (C), 134.76 (C), $130.15(\mathrm{CH}), 128.28(\mathrm{CH}), 121.91(\mathrm{CH}), 121.80(\mathrm{C}), 119.78(\mathrm{C}), 116.08(\mathrm{C})$, $108.84(\mathrm{CH}), 104.33(\mathrm{CH}), 102.72(\mathrm{CH}), 94.55\left(\mathrm{CH}_{2}\right), 70.24\left(\mathrm{CH}_{2}\right), 56.06\left(\mathrm{CH}_{3}\right), 55.90\left(\mathrm{CH}_{3}\right), 31.71$ $(\mathrm{CH}), 30.64\left(\mathrm{CH}_{2}\right), 29.33\left(\mathrm{CH}_{2}\right), 25.75\left(\mathrm{CH}_{3}\right), 17.83\left(\mathrm{CH}_{3}\right)$ ppm. IR (ATR): v=3402(w), $2949(\mathrm{w})$, 2911 (w), 2846 (w), 2820 (w), 1620 (m), 1585 (m), 1557 (w), 1542 (w), 1501 (m), 1425 (w), 1290 (w), 1258 (w), 1211 (m), 1148 (s), 1109 (m), 1054 (m), 994 (s), 922 (m), 846 (m), 798 $(\mathrm{m}), 727(\mathrm{~m}) \mathrm{cm}^{-1}$. ESI-MS: $\mathrm{m} / \mathrm{z}=431.8\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$. HRMS (ESI): m/z calcd for $\left[\mathrm{M}+\mathrm{Na}^{+}\right.$: 437.1935; found: 437.1932.

## Synthesis of isoflavan 17



Carbonate $16(171.7 \mathrm{mg}, 921.9 \mu \mathrm{~mol})$, a mixture of phenols $\mathbf{1 4 b}$ and $\mathbf{1 4 c}(128.2 \mathrm{mg}, 309.5 \mu \mathrm{~mol})$ and $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(17.8 \mathrm{mg}, 15.4 \mu \mathrm{~mol})$ were dissolved in THF $(2.9 \mathrm{~mL})$, and the mixture was stirred for 20 min at rt . The solution was rinsed over a pad of silica with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solvents were removed in vacuo, and the residue was purified by flash chromatography (isohexane/ethyl acetate $4: 1$ ).

The residue and $\mathrm{Eu}(\mathrm{fod})_{3}(31.7 \mathrm{mg}, 30.6 \mu \mathrm{~mol})$ were dissolved in $\mathrm{CHCl}_{3}(2.1 \mathrm{~mL})$ in a microwave tube. The mixture was irradiated at $110^{\circ} \mathrm{C}$ for 40 min at 300 W . The solvents were removed in vacuo, and the residue was purified by flash chromatography (isohexane/ethyl acetate $5: 1$ ) to afford isoflavan $17(118.9 \mathrm{mg}, 246.4 \mu \mathrm{~mol}, 80 \%$ over two steps, $99 \% e e)$ as a colorless oil.
$[\alpha]_{\mathrm{D}}{ }^{25}=+0.4\left(c 0.48, \mathrm{CDCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.00(\mathrm{~m}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 6.60(\mathrm{~m}$, $2 \mathrm{H}), 5.48(\mathrm{~s}, 1 \mathrm{H}), 5.29(\mathrm{~m}, 1 \mathrm{H}), 5.24(\mathrm{~m}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}), 4.93(\mathrm{~s}, 2 \mathrm{H}), 4.30(\mathrm{ddd}, J=10.4 \mathrm{~Hz}$, $3.5 \mathrm{~Hz},=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{t}-\mathrm{like}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.44$ $(\mathrm{d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.29(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.90(\mathrm{~m}, 2 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~s}, 6 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=156.50$ (C), 155.03 (C), 152.72 (C), 152.67 (C), 134.74 (C), 134.19 (C), $130.12(\mathrm{CH}), 126.20(\mathrm{C}), 125.43(\mathrm{CH}), 124.10(\mathrm{C}), 121.99(\mathrm{CH}), 121.89(\mathrm{CH}), 120.72$ $(\mathrm{C}), 116.13(\mathrm{C}), 108.81(\mathrm{CH}), 104.35(\mathrm{CH}), 100.59\left(\mathrm{CH}_{2}\right), 94.56\left(\mathrm{CH}_{2}\right), 70.71\left(\mathrm{CH}_{2}\right), 57.55\left(\mathrm{CH}_{3}\right)$, $55.93\left(\mathrm{CH}_{3}\right), 31.89\left(\mathrm{CH}_{2}\right), 31.30(\mathrm{CH}), 29.26\left(\mathrm{CH}_{2}\right), 25.76\left(\mathrm{CH}_{3}\right), 24.26\left(\mathrm{CH}_{2}\right), 17.98\left(\mathrm{CH}_{3}\right), 17.84$
$\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. IR (ATR): v=3456(w), 2959 (w), 2913 (w), 1622 (w), 1585 (w), 1542 (w), 1502 (m), 1472 (m), 1439(w), 1398 (m), 1376 (w), 1319 (w), 1258 (m), 1210 (s), 1150 (s), 1125 (m), 1072 (s), 1030 (s), 1007 (s), 970 (s), 923 (s), 846 (m), 796 (m), 731 (m), 648 (m) cm ${ }^{-1}$. ESI-MS: m/z = 500.5 $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$. HRMS (ESI): m/z calcd for $[\mathrm{M}+\mathrm{Na}]^{+}: 505.2561$; found: 505.2564.

## Oxidative cyclization with DDQ - isoflavan 18



Isoflavan $17(109.5 \mathrm{mg}, 226.9 \mu \mathrm{~mol})$ and DDQ $(100.1 \mathrm{mg}, 445.4 \mu \mathrm{~mol})$ were dissolved in benzene $(6.0 \mathrm{~mL})$, and the mixture was stirred for 60 min at rt . Afterwards, the solution was directly submitted to flash chromatography (isohexane/ethyl acetate $3: 1$ ) to afford isoflavan $18(40.9 \mathrm{mg}, 85.1 \mu \mathrm{~mol}$, $38 \%, 99 \% e e)$ as a colorless oil.
$[\alpha]_{\mathrm{D}}{ }^{25}=-17.6\left(c 0.67, \mathrm{CDCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.99(\mathrm{~m}, 1 \mathrm{H}), 6.58(\mathrm{~m}, 3 \mathrm{H}), 6.25(\mathrm{~d}$, $J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~m}, 1 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H}), 4.95(\mathrm{~s}, 2 \mathrm{H}), 4.32(\mathrm{~m}, 1 \mathrm{H})$, $3.90(\mathrm{t}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.90(\mathrm{~m}$, $2 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~m}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 156.49 (C), 155.03 (C), 154.64 (C), 150.72 (C), 131.08 (C), $130.14(\mathrm{CH}), 129.69(\mathrm{CH}), 126.50(\mathrm{C})$, $122.95(\mathrm{CH}), 122.93(\mathrm{C}), 122.02(\mathrm{CH}), 117.99(\mathrm{C}), 116.14(\mathrm{C}), 108.78(\mathrm{C}), 104.34(\mathrm{CH}), 100.48$ $\left(\mathrm{CH}_{2}\right), 94.56\left(\mathrm{CH}_{2}\right), 76.14(\mathrm{C}), 70.73\left(\mathrm{CH}_{2}\right), 57.53\left(\mathrm{CH}_{3}\right), 55.95\left(\mathrm{CH}_{3}\right), 31.87\left(\mathrm{CH}_{2}\right), 31.19(\mathrm{CH})$, $28.06\left(\mathrm{CH}_{3}\right), 28.02\left(\mathrm{CH}_{3}\right), 25.74\left(\mathrm{CH}_{3}\right), 23.65\left(\mathrm{CH}_{2}\right), 18.02\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. IR (ATR): $v=2965(\mathrm{w}), 2926$ (w), 1732 (w), 1621 (m), 1584 (m), 1584 (m), 1542 (m), 1501 (m), 1458 (m), 1440 (m), 1374 (w), 1320 (w), 1261 (m), 1209 (m), 1151 (s), 1123 (s), 1064 (s), 1030 (s), 1006 (s), 961 (s), 923 (s), 880 (m), 848 (m), 796 (w), 754 (w), 698 (w), 647 (w) cm ${ }^{-1}$. ESI-MS: m/z $=498.4\left[M+\mathrm{NH}_{4}\right]^{+}$. HRMS (ESI): m/z calcd for $[\mathrm{M}+\mathrm{Na}]^{+}: 503.2404$; found: 503.2401.

## Synthesis of compound 3



Isoflavan $18(35.7 \mathrm{mg}, 74.3 \mu \mathrm{~mol})$ was dissolved in a $1: 1$ mixture $(2.0 \mathrm{~mL})$ of MeOH and THF. Water $(0.35 \mathrm{~mL})$ and $37 \% \mathrm{HCl}(0.35 \mathrm{~mL})$ were added, and the solution was stirred at $60^{\circ} \mathrm{C}$ for 30 min in a closed round bottom flask. The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and the
mixture was extracted three times with EtOAc. The combined organic layers were dried over $\mathrm{MgSO}_{4}$. The solvents were removed in vacuo, and the residue was purified by flash chromatography (isohexane/ethyl acetate 3:1) to afford isoflavan 3 ( $18.8 \mathrm{mg}, 47.9 \mu \mathrm{~mol}, 64 \%, 99 \% \mathrm{ee}$ ) as an off-white amorphous solid. Compound $\mathbf{3}$ is not stable.
$[\alpha]_{\mathrm{D}}{ }^{25}=+7.7\left(c 0.61, \mathrm{CDCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.94(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~s}$, $1 \mathrm{H}), 6.37(\mathrm{~m}, 2 \mathrm{H}), 6.24(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{~s}, 1 \mathrm{H}), 5.48(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~m}, 1 \mathrm{H})$, 4.33 (ddd, $J=10.4 \mathrm{~Hz}, 3.4 \mathrm{~Hz}, 1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.99$ (t-like, $J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~m}, 1 \mathrm{H}), 3.44$ (d, $J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.97(\mathrm{~m}, 1 \mathrm{H}), 2.87(\mathrm{ddd}, J=15.9 \mathrm{~Hz}, 5.7 \mathrm{~Hz}, 1.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}), 1.78(\mathrm{~d}, J=1.1$ $\mathrm{Hz}, 3 \mathrm{H}$ ), 1.41 ( $\mathrm{s}, 6 \mathrm{H}$ ) ppm. ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=155.23$ (C), 154.76 (C), 153.64 (C), 149.73 (C), $135.66(\mathrm{C}), 130.38(\mathrm{CH}), 127.79(\mathrm{CH}), 122.61(\mathrm{CH}), 122.45(\mathrm{CH}), 121.57(\mathrm{CH}), 119.71$ (C), 114.89 (C), $114.38(\mathrm{C}), 114.22(\mathrm{C}), 107.75(\mathrm{CH}), 103.19(\mathrm{CH}), 76.25(\mathrm{C}), 70.11\left(\mathrm{CH}_{2}\right), 31.71$ $(\mathrm{CH}), 30.41\left(\mathrm{CH}_{2}\right), 27.98\left(\mathrm{CH}_{3}\right), 27.96\left(\mathrm{CH}_{3}\right), 25.82\left(\mathrm{CH}_{3}\right), 22.36\left(\mathrm{CH}_{2}\right), 17.89\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. IR (ATR): $v=3378$ (w), 3035 (w), 2971 (w), 2923 (w), 2850 (w), 1698 (w), 1613 (m), 1596 (m), 1570 (w), 1540 (w), 1508 (m), 1469 (m), 1374 (w), 1322 (w), 1211 (m), 1151 (s), 1114 (s), 1028 (s), 972 (m), 942 (m), $909(\mathrm{~m}), 880(\mathrm{~m}), 843(\mathrm{~m}), 796(\mathrm{~m}), 737(\mathrm{~m}), 674(\mathrm{~m}) \mathrm{cm}^{-1}$. ESI-MS: m/z $=392.2\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$.

## 5. Synthesis of eryzerin $D$ (4)

## Chromone 19



Chromone $7(1.427 \mathrm{~g}, 4.31 \mathrm{mmol})$ was dissolved in a $1: 1$ mixture of THF and MeOH ( 72 mL ). Water $(13.6 \mathrm{~mL})$ and $37 \% \mathrm{HCl}(13.6 \mathrm{~mL})$ were added, and the solution was stirred for 30 min at $60^{\circ} \mathrm{C}$ in a closed vessel. The reaction mixture was cooled to rt and poured into saturated NaCl solution. The aqueous layer was extracted three times with EtOAc. The combined organic layers were dried over $\mathrm{MgSO}_{4}$. The solvents were removed in vacuo, and the residue was purified by flash chromatography (isohexane/ethyl acetate $2: 1$ ) to afford chromone $19(1.089 \mathrm{~g}, 3.58 \mathrm{mmol}, 83 \%)$ as a yellow solid.
M.p. $227-234{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( 300 MHz , acetone- $\mathrm{d}_{6}$ ): $\delta=12.35$ (s, 1 H ), 9.85 (br. s., 1 H ), 8.52 (s, 1 H), $6.44(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.34(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}\right.$, acetone- $\left.\mathrm{d}_{6}\right): \delta=$ 178.40 (C), 165.31 (C), 162.86 (C), 160.10 (CH), 158.93 (C), 104.48 (C), 100.27 (CH), 94.74 (CH), 83.38 (C) ppm. IR (ATR): $v=3346$ (m), 3117 (w), 3058 (w), 3043 (w), 1882 (w), 1736 (w), 1700 (w), 1659 (m), 1642 (m), 1602 (m), 1563 (w), 1492 (m), 1458 (m), 1414 (w), 1369 (m), 1310 (m), 1263 (m), 1190 (m), 1166 (m), 1079 (m), 1043 (m), 945 (w), 849 (m), 822 (s), 792 (m), 776 (m), 686 (m),
$641(\mathrm{~m}), 627(\mathrm{~m}) \mathrm{cm}^{-1}$. ESI-MS: $\mathrm{m} / \mathrm{z}=305.0[\mathrm{M}+\mathrm{H}]^{+}$. Anal. calcd for $\mathrm{C}_{9} \mathrm{H}_{5} \mathrm{IO}_{4}: \mathrm{C}, 35.55 ; \mathrm{H}, 1.66$; found: C, 35.42; H, 1.57.

## Propargylation



Phenol $19(1.677 \mathrm{~g}, 5.52 \mathrm{mmol})$, $\mathrm{CuI}(97.5 \mathrm{mg}, 0.51 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(2.231 \mathrm{~g}, 16.14 \mathrm{mmol})$ and KI $(2.73 \mathrm{~g}, 16.45 \mathrm{mmol})$ were suspended in acetone $(17.8 \mathrm{~mL})$. 3-Chloro-3-methylbutyne ( 1.20 g , 11.70 mmol ) was added, and the mixture was stirred for 60 min at $60^{\circ} \mathrm{C}$. The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and $2 \mathrm{~N} \mathrm{HCl}(8 \mathrm{~mL})$. The mixture was extracted three times with EtOAc. The combined organic layers were dried over $\mathrm{MgSO}_{4}$. The solvents were removed in vacuo, and the residue was purified by flash chromatography (isohexane/ethyl acetate 9:1) to afford chromone $19 \mathrm{a}(1.673 \mathrm{~g}, 4.52 \mathrm{mmol}, 82 \%)$ as a yellow solid.
M.p. 143-148 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=12.12(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~s}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.76(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~s}, 1 \mathrm{H}), 1.74(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 177.57 (C), 162.35 (C), 161.15 (C), $158.10(\mathrm{CH}), 157.13$ (C), 105.07 (C), $103.10(\mathrm{CH}), 97.23(\mathrm{CH})$, $84.45(\mathrm{C}), 83.61(\mathrm{C}), 75.48(\mathrm{CH}), 72.96(\mathrm{C}), 29.52\left(\mathrm{CH}_{3}\right) \mathrm{ppm} . \mathrm{IR}(\mathrm{ATR}): v=3227(\mathrm{~m}), 3098(\mathrm{w})$, 2993 (w), 2932 (w), 2107 (w), 2056 (w), 2030 (w), 2009 (w), 1975 (w), 1771 (w), 1735 (w), 1717 (w), 1699 (w), 1643 (m), 1595 (m), 1555 (w), 1543 (w), 1489 (m), 1451 (w), 1430 (w), 1398 (w), 1387 (w), 1346 (w), 1296 (m), 1228 (w), 1211 (w), 1177 (m), 1130 (s), 1077 (s), 1045 (m), 992 (m), 950 (m), 901 (m), 881 (m), 839 (s), 790, 743 ( s ), 678 (m), 617 (m) $\mathrm{cm}^{-1}$. ESI-MS: m/z $=371.1[\mathrm{M}+\mathrm{H}]^{+}$. Anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{IO}_{4}$ : C, 45.43; H, 3.00; found: C, 45.39; H, 2.86.

## Prenylation



Chromone 19a (1.898 g, 5.13 mmol$), \mathrm{PPh}_{3}(1.936 \mathrm{~g}, 7.38 \mathrm{mmol})$ and 3-methyl-2-buten-1-ol $(0.76 \mathrm{~mL}$, $7.48 \mathrm{mmol})$ were dissolved in THF ( 73 mL ). DIAD ( $1.38 \mathrm{~mL}, 6.63 \mathrm{mmol}$ ) was added at $0^{\circ} \mathrm{C}$ over 15 min . The reaction mixture was stirred for 16 h at rt . The solvents were removed in vacuo, and the residue was purified by flash chromatography (isohexane/ethyl acetate 5:1) to afford chromone 20 $(1.789 \mathrm{~g}, 4.08 \mathrm{mmol}, 80 \%)$ as a yellow solid.
M.p. $85-92{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.05(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~m}$, $1 \mathrm{H}), 5.58(\mathrm{~m}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{~s}, 1 \mathrm{H}), 1.77(\mathrm{~m}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (75 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=171.20(\mathrm{C}), 160.40(\mathrm{C}), 159.82(\mathrm{C}), 158.94(\mathrm{C}), 155.35(\mathrm{CH}), 137.81(\mathrm{C})$, $119.20(\mathrm{CH}), 108.20(\mathrm{C}), 101.01(\mathrm{CH}), 98.20(\mathrm{CH}), 89.63$ (C), 84.68 (C), 75.29 (CH), 72.74 (C), $66.45\left(\mathrm{CH}_{2}\right), 29.49\left(\mathrm{CH}_{3}\right), 25.76\left(\mathrm{CH}_{3}\right), 18.38\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. IR (ATR): $v=3230(\mathrm{w}), 2985(\mathrm{w}), 2976$ (w), 2933 (w), 2899 (w), 2856 (w), 2106 (w), 2056 (w), 2030 (w), 2009 (w), 1916 (w), 1843 (w), 1733 (w), 1716 (w), 1699 (w), 1684 (w), 1641 (m), 1619 (m), 1560 (m), 1555 (m), 1509 (m), 1476 (m), 1454 (m), 1421 (m), 1351 (m), 1271 (s), 1231 (m), 1214 (m), 1188 (m), 1158 (m), 1129 (s), 1065 (s), $1014(\mathrm{~m}), 946(\mathrm{~m}), 881(\mathrm{~m}), 849(\mathrm{~m}), 824(\mathrm{~m}), 809(\mathrm{~m}), 780(\mathrm{~m}), 740(\mathrm{~m}), 689(\mathrm{~m}), 662(\mathrm{~m}), 641(\mathrm{~m})$, $606(\mathrm{~m}) \mathrm{cm}^{-1}$. ESI-MS: $\mathrm{m} / \mathrm{z}=439.2[\mathrm{M}+\mathrm{H}]^{+} . \mathrm{HRMS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z}$ calcd for $[\mathrm{M}+\mathrm{Na}]^{+}: 461.0220$; found: 461.0222.

## Chromone 21



Chromone $20(1.338 \mathrm{~g}, 3.05 \mathrm{mmol})$ and $\mathrm{Eu}(\mathrm{fod})_{3}(163.7 \mathrm{mg}, 157.8 \mu \mathrm{~mol})$ were dissolved in chlorobenzene $(7.0 \mathrm{~mL})$. The solution was allocated to five microwave tubes. $\mathrm{Cs}_{2} \mathrm{CO}_{3}(21.9 \mathrm{mg}$, $67.2 \mu \mathrm{~mol})$ was added to each tube, and the mixtures were irradiated at $140{ }^{\circ} \mathrm{C}$ for 10 min . The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and the mixture was extracted two times with EtOAc. The combined organic layers were dried over $\mathrm{MgSO}_{4}$. The solvents were removed in vacuo, and the residue was purified by flash chromatography (isohexane/ethyl acetate $25: 1$ ) to afford chromone 21 ( $640.7 \mathrm{mg}, 1.46 \mathrm{mmol}, 48 \%$ ) as a yellow solid.
M.p. $86-92{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=12.44(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=10.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.64(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~m}, 1 \mathrm{H}), 3.36(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~d}, J=$ $0.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=177.84(\mathrm{C}), 157.76(\mathrm{CH}), 157.24$ (C154.43 (C), 153.87 (C), 131.92 (C), $128.36(\mathrm{CH}), 121.56(\mathrm{CH}), 115.67(\mathrm{CH}), 107.71(\mathrm{C}), 105.85$ $(\mathrm{C}), 104.36(\mathrm{C}), 83.40(\mathrm{C}), 78.09(\mathrm{C}), 28.26\left(\mathrm{CH}_{3}\right), 25.72\left(\mathrm{CH}_{3}\right), 21.33\left(\mathrm{CH}_{2}\right), 17.85\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. IR (ATR): $v=3111$ (w), 3060 (w), 2970 (w), 2915 (w), 2846 (w), 2031 (w), 2007 (w), 1975 (w), 1874 (w), 1739 (w), 1643 (m), 1598 (m), 1580 (m), 1547 (m), 1529 (m), 1453 (m), 1424 (s), 1403 (m), 1356 (m), 1304 (m), 1284 (m), 1248 (m), 1204 (m), 1170 (m), 1141 (m), 1117 (m), 1094 (s), 1075 (s), 1021
(m), 977 (m), 959 (m), 942 (m), 886 (m), 809 (s), 763 (m), 716 (m), 664 (m), $633(\mathrm{~m}) \mathrm{cm}^{-1}$. ESI-MS: $\mathrm{m} / \mathrm{z}=439.3[\mathrm{M}+\mathrm{H}]^{+}$. Anal. calcd for $\mathrm{C1}_{9} \mathrm{H}_{19} \mathrm{IO}_{4}: \mathrm{C}, 52.07 ; \mathrm{H}, 4.37$; found: C, 52.35; H, 4.33.

## Chromone 22



Chromone 21 ( $639.9 \mathrm{mg}, 1.46 \mathrm{mmol}$ ) was dissolved in THF ( 18.5 mL ). $\mathrm{Et}_{3} \mathrm{~N}(0.57 \mathrm{~mL})$ and $\mathrm{ClCOOMe}(0.32 \mathrm{~mL}, 4.14 \mathrm{mmol})$ was added at $0^{\circ} \mathrm{C}$. Afterwards, the mixture was stirred for 60 min at rt. The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and the mixture was extracted three times with EtOAc. The combined organic layers were dried over $\mathrm{MgSO}_{4}$. The solvents were removed in vacuo, and the residue was purified by flash chromatography (isohexane/ethyl acetate 4:1) to afford chromone 22 ( $621.6 \mathrm{mg}, 1.25 \mathrm{mmol}, 86 \%$ ) as a white solid.
M.p. $138-145^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.18(\mathrm{~s}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~d}$, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~m}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H})$, $1.48(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(126} \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=171.59(\mathrm{C}), 156.15(\mathrm{CH}), 155.46(\mathrm{C}), 155.18(\mathrm{C})$, 153.42 (C), 142.29 (C), 132.61 (C), $132.37(\mathrm{CH}), 120.67(\mathrm{CH}), 115.37(\mathrm{C}), 115.09(\mathrm{CH}), 113.00(\mathrm{C})$, $109.49(\mathrm{C}), 87.85(\mathrm{C}), 78.17(\mathrm{C}), 55.91\left(\mathrm{CH}_{3}\right), 28.36\left(\mathrm{CH}_{3}\right), 25.71\left(\mathrm{CH}_{3}\right), 21.91\left(\mathrm{CH}_{2}\right), 17.92\left(\mathrm{CH}_{3}\right)$ ppm. IR (ATR): v=3088 (w), 2970 (w), 2915 (w), 2846 (w), 2138 (w), 2079 (w), 2056 (m), 2030 (m), 2010 (w), 1867 (w), 1843 (w), 1757 (m), 1698 (w), 1641 (m), 1606 (m), 1576 (w), 1489 (w), 1454 (m), 1424 (m), 1359 (w), 1300 (w), 1248 (s), 1215 (s), 1169 (m), 1141 (m), 1102 (m), 1076 (m), 1040 (m), 1016 (m), 965 (m), 942 (m), 892 (m), 870 (m), 842 (m), 805 (m), 764 ( s$), 725(\mathrm{~m}), 663(\mathrm{~m})$ $\mathrm{cm}^{-1}$. ESI-MS: $\mathrm{m} / \mathrm{z}=497.2[\mathrm{M}+\mathrm{H}]^{+}$. Anal. calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{IO}_{6}$ : C, 50.82; H, 4.26; found: C, 52.65; H, 4.32 .

Isoflavone 22a


Preparation of 2,4-bis(methoxymethoxy)phenylboronic acid:

1-Bromo-2,4-bis(methoxymethoxy)benzene ( $630.9 \mathrm{mg}, 2.28 \mathrm{mmol}$ ) and $\mathrm{B}(\mathrm{OiPr})_{3}(0.74 \mathrm{~mL}$, $3.21 \mathrm{mmol})$ were suspended in THF ( 11.5 mL ) . BuLi ( $2.2 \mathrm{~mL}, 1.6 \mathrm{M}$ in THF, 3.52 mmol ) was added at $-78{ }^{\circ} \mathrm{C}$ over 15 min . The reaction was stirred for 70 min at $-78^{\circ} \mathrm{C}$ and an additional 100 min at rt . The reaction was quenched with 1 N HCl , and the mixture was extracted three times with EtOAc. The combined organic layers were washed with saturated $\mathrm{NaHCO}_{3}$ solution and saturated NaCl solution respectively. The combined organic layers were dried over $\mathrm{MgSO}_{4}$, and the solvents were removed in vacuo. The crude product ( $621.6 \mathrm{mg}, 1.25 \mathrm{mmol}$ ) was directly used for further transformation.

## Suzuki coupling:

Above-mentioned boronic acid ( $621.6 \mathrm{mg}, 1.25 \mathrm{mmol}$ ) and chromone $22(621.6 \mathrm{mg}, 1.25 \mathrm{mmol})$ were dissolved in dioxane $(4.6 \mathrm{~mL})$ at $50{ }^{\circ} \mathrm{C}$. Water ( 2.0 mL ), mortared $\mathrm{K}_{2} \mathrm{CO}_{3}(452.2 \mathrm{mg}, 3.27 \mathrm{mmol})$, $\mathrm{PCy}_{3}(18.0 \mathrm{mg}, 64.2 \mu \mathrm{~mol})$, and $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(28.6 \mathrm{mg}, 31.2 \mu \mathrm{~mol})$ were added to the solution, and the mixture was stirred for 40 min at $50^{\circ} \mathrm{C}$ in a closed vessel. The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and the mixture was extracted three times with EtOAc. The combined organic layers were dried over $\mathrm{MgSO}_{4}$. The solvents were removed in vacuo, and the residue was purified by flash chromatography (isohexane/ethyl acetate $11: 5$ ) to afford isoflavone 22a ( 539.2 mg , $951.7 \mu \mathrm{~mol}, 76 \%$ ) as a white solid.
M.p. $42-45{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=7.81(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=8.4 \mathrm{~Hz}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{~d}, J=10.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.22(\mathrm{~m}, 1 \mathrm{H}), 5.18(\mathrm{~s}, 2 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~m}, 5 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 1.83(\mathrm{~d}, J=$ $0.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.71(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=174.96$ (C), 158.52 (C), 156.41 (C), $155.67(\mathrm{C}), 154.60(\mathrm{C}), 153.42(\mathrm{C}), 152.12(\mathrm{CH}), 142.74(\mathrm{C}), 132.25(\mathrm{C})$, $132.10(\mathrm{CH}), 131.91(\mathrm{CH}), 122.77(\mathrm{C}), 121.14(\mathrm{CH}), 115.37(\mathrm{CH}), 115.36(\mathrm{C}), 112.39(\mathrm{C}), 111.69$ $(\mathrm{C}), 108.97(\mathrm{CH}), 104.24(\mathrm{CH}), 95.07\left(\mathrm{CH}_{2}\right), 94.44\left(\mathrm{CH}_{2}\right), 77.75(\mathrm{C}), 56.19\left(\mathrm{CH}_{3}\right), 56.18\left(\mathrm{CH}_{3}\right), 55.60$ $\left(\mathrm{CH}_{3}\right), 28.27\left(\mathrm{CH}_{3}\right), 25.74\left(\mathrm{CH}_{3}\right), 21.89\left(\mathrm{CH}_{2}\right), 17.94\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. IR (ATR): v=2963(w), $2922(\mathrm{w})$, 2850 (w), 2823 (w), 2137 (w), 2056 (w), 2030 (w), 2009 (w), 1844 (w), 1766 (m), 1735 (w), 1698 (w), 1643 (m), 1605 (s), 1578 (m), 1541 (w), 1504 (m), 1459 (m), 1434 (m), 1373 (m), 1304 (m), 1238 (s), 1209 (s), 1150 (s), 1121 (s), 1079 (s), 1121 (s), 1079 (s), 998 (s), 922 (m), 889 (m), 842 (m), 783 (m), $756(\mathrm{~m}), 697(\mathrm{~m}), 652(\mathrm{~m}) \mathrm{cm}^{-1} . \mathrm{ESI}-\mathrm{MS}: \mathrm{m} / \mathrm{z}=567.3[\mathrm{M}+\mathrm{H}]^{+}$. Anal. calcd for $\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{O}_{10}: \mathrm{C}, 65.71$; H, 6.05; found: C, 65.55; H, 6.27.

## Isoflavanone rac-6c



Isoflavone 22a ( $536.9 \mathrm{mg}, 947.6 \mu \mathrm{~mol}$ ) was dissolved in THF ( 8.6 mL ) and cooled to $-78{ }^{\circ} \mathrm{C}$. Lselectride solution ( $1.36 \mathrm{~mL}, 1.0 \mathrm{M}, 1.36 \mathrm{mmol}$ ) was added, and the mixture was stirred for 60 min . The reaction was quenched with a small portion of MeOH at $-78^{\circ} \mathrm{C}$, and the mixture was poured into saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The mixture was extracted three times with EtOAc, and the combined organic layers were dried over $\mathrm{MgSO}_{4}$. The solvents were removed in vacuo, and the residue was purified by flash chromatography $\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ pentane $\left.1: 1\right)$ to afford isoflavanone rac- 6 c ( 466.6 mg , $820.6 \mu \mathrm{~mol}, 87 \%)$ as a yellow oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.00(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{dd}, J=$ $8.3 \mathrm{~Hz}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~m}, 1 \mathrm{H}), 5.15(\mathrm{~m}$, $3 \mathrm{H}), 5.11(\mathrm{~m}, 1 \mathrm{H}), 4.61(\mathrm{~m}, 1 \mathrm{H}), 4.50(\mathrm{dd}, J=10.7 \mathrm{~Hz}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{dd}, J=11.9 \mathrm{~Hz}, J=$ $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{~m}, 2 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~d}, J=$ $0.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=190.42(\mathrm{C}), 161.09$ (C), 157.93 (C), 156.74 (C), 156.20 (C), 153.36 (C), 144.26 (C), 131.67 (C), 131.06 (CH), 129.76 $(\mathrm{CH}), 121.71(\mathrm{CH}), 117.69(\mathrm{C}), 115.29(\mathrm{C}), 115.25$ (C), 109.17 (C), $109.10(\mathrm{CH}), 108.24(\mathrm{C}), 103.88$ $(\mathrm{CH}), 94.75\left(\mathrm{CH}_{2}\right), 94.46\left(\mathrm{CH}_{2}\right), 77.84(\mathrm{C}), 70.48\left(\mathrm{CH}_{2}\right), 56.20\left(\mathrm{CH}_{3}\right), 56.02\left(\mathrm{CH}_{3}\right), 55.51\left(\mathrm{CH}_{3}\right)$, $48.61(\mathrm{CH}), 28.45\left(\mathrm{CH}_{3}\right), 28.38\left(\mathrm{CH}_{3}\right), 25.76\left(\mathrm{CH}_{3}\right), 21.80\left(\mathrm{CH}_{2}\right), 17.86\left(\mathrm{CH}_{3}\right) \mathrm{ppm} . \operatorname{IR}(A T R):$ $v=3213$ (w), 2972 (w), 2922 (w), 2136 (w), 2056 (w), 2030 (w), 2009 (w), 1844 (w), 1767 (m), 1735 (m), 1716 (m), 1681 (m), 1651 (w), 1574 (m), 1505 (m), 1473 (m), 1436 (m), 1397 (m), 1343 (w), 1245 ( s), 1183 (s), 1149 (s), 1120 (s), 1078 (m), 997 (s), 924 (m), 893 (m), 842 (m), 813 (m), 763 (m), $711(\mathrm{w}), 689(\mathrm{w}) \mathrm{cm}^{-1}$. ESI-MS: $\mathrm{m} / \mathrm{z}=569.4[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI): m/z calcd for $[\mathrm{M}+\mathrm{Na}]^{+}$: 591.2206; found: 591.2214.

## Synthesis of rac-5c



Isoflavanone rac-6c ( $50.1 \mathrm{mg}, 88.1 \mu \mathrm{~mol})$ was dissolved in THF ( 0.53 mL ). Separately, $\mathrm{NaBH}_{4}(20.3$ $\mathrm{mg}, 536.6 \mu \mathrm{~mol})$ was dissolved in water $(0.21 \mathrm{~mL})$. Both solutions were merged and stirred for 35 min at rt . The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and the mixture was extracted three times with EtOAc. The combined organic layers were dried over $\mathrm{MgSO}_{4}$. The solvents were removed in vacuo, and the residue was purified by flash chromatography $\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ pentane $\left.5: 6\right)$ to afford isoflavan rac-5c ( $23.1 \mathrm{mg}, 46.5 \mu \mathrm{~mol}, 53 \%$ ) as a brown resin.
${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=7.05(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{dd}, J=$ $8.5 \mathrm{~Hz}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~m}, 1 \mathrm{H}), 5.21(\mathrm{~s}$, $2 \mathrm{H}), 5.17(\mathrm{~s}, 2 \mathrm{H}), 4.61(\mathrm{~s}, 1 \mathrm{H}), 4.34(\mathrm{~m}, 1 \mathrm{H}), 4.02(\mathrm{t}-\mathrm{like}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{~s}$, $6 \mathrm{H}), 3.26(\mathrm{~m}, 2 \mathrm{H}), 2.83(\mathrm{ddd}, J=15.1 \mathrm{~Hz}, 5.6 \mathrm{~Hz}, 1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{dd}, J=15.2 \mathrm{~Hz}, 11.1 \mathrm{~Hz}, 1 \mathrm{H})$, $1.79(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=157.07$ (C), 155.83 (C), 152.96 (C), 149.89 (C), 147.14 (C), 130.26 (C), 127.77 (CH), 126.95 (CH), 123.80 (C), $123.52(\mathrm{CH}), 116.37(\mathrm{CH}), 109.94(\mathrm{C}), 108.94(\mathrm{CH}), 103.53(\mathrm{CH}), 102.68(\mathrm{C}), 101.28(\mathrm{C}), 94.53$ $\left(\mathrm{CH}_{2}\right), 75.47(\mathrm{C}), 69.51\left(\mathrm{CH}_{2}\right), 56.24\left(\mathrm{CH}_{3}\right), 56.06\left(\mathrm{CH}_{3}\right), 31.39(\mathrm{CH}), 27.62\left(\mathrm{CH}_{3}\right), 27.52\left(\mathrm{CH}_{3}\right)$, $25.85\left(\mathrm{CH}_{3}\right), 25.67\left(\mathrm{CH}_{2}\right), 21.70\left(\mathrm{CH}_{2}\right), 17.82\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. IR (ATR): v=3438(w),2965(w),2918 (w), 1612 (m), 1597 (m), 1542 (m), 1505 (m), 1456 (m), 1435 (m), 1398 (m), 1376 (m), 1325 (m), 1252 (m), 1214 (m), 1151 ( s ), 1130 ( s$), 1076$ ( s$), 992$ ( s$), 922$ (m), 845 (m), 808 (m), 729 (m), 664 (m) $\mathrm{cm}^{-1}$. ESI-MS: $\mathrm{m} / \mathrm{z}=497.5[\mathrm{M}+\mathrm{H}]^{+}$. HRMS $(\mathrm{ESI}): \mathrm{m} / \mathrm{z}$ calcd for $[\mathrm{M}+\mathrm{Na}]^{+}: 519.2359$; found: 519.2337.

## ATH of isoflavanone rac-6c



Preparation of the catalyst solution:
$\left[\mathrm{Ru}(p \text {-cymene }) \mathrm{Cl}_{2}\right]_{2}(21.61 \mathrm{mg}, 35.3 \mu \mathrm{~mol})$ and $(R, R)$-TsDPEN $(25.98 \mathrm{mg}, 70.9 \mu \mathrm{~mol})$ were dissolved in $\mathrm{EtOAc}(2.35 \mathrm{~mL})$ and stirred for 20 min . Separately, $\mathrm{Et}_{3} \mathrm{~N}(1.8 \mathrm{~mL})$ and $\mathrm{HCOOH}(0.5 \mathrm{~mL})$ were mixed at $0{ }^{\circ} \mathrm{C}$. The lower layer of this biphasic $\mathrm{Et}_{3} \mathrm{~N} / \mathrm{HCOOH}$ mixture (approximately 2.8:1 (v/v), 0.96 mL ) was added to the catalyst solution, and the mixture stirred for further 10 min . The freshly prepared solution was used for ATH.

ATH:

Isoflavanone rac-6c $(461.8 \mathrm{mg}, 812.2 \mu \mathrm{~mol})$ was dissolved in EtOAc $(1.0 \mathrm{~mL})$, and the abovementioned catalyst solution ( $1.9 \mathrm{~mL}, 40.5 \mu \mathrm{~mol}$ ) was added. The mixture was stirred at $45^{\circ} \mathrm{C}$ for 16 h . The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and the mixture was extracted three times with EtOAc. The combined organic layers were dried over $\mathrm{MgSO}_{4}$. The solvents were removed in vacuo, and the residue was purified by flash chromatography $\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ pentane $\left.1: 1\right)$ to afford isoflavan 5c ( $161.5 \mathrm{mg}, 325.2 \mu \mathrm{~mol}, 40 \%$, $98 \%$ ee) as a brown resin and isoflavanone ( $S$ )-6c (149.0 $\mathrm{mg}, 262.0 \mu \mathrm{~mol}, 32 \%, 17 \% \mathrm{ee}$ ) as a yellow oil.

Isoflavan $(R)-5 \mathbf{c}$ :
The analytical data obtained match the aforementioned data.
$[\alpha]_{\mathrm{D}}{ }^{25}=+55.4\left(c 0.37, \mathrm{CDCl}_{3}\right)$.

Isoflavanone ( $S$ )-6c:
The analytical data obtained match the aforementioned data.
$[\alpha]_{D}{ }^{25}=$ n.d. (close to zero)

## Isoflavan 23a



Isoflavan 5c $(160.5 \mathrm{mg}, 3223.2 \mu \mathrm{~mol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.8 \mathrm{~mL}) . \mathrm{Et}_{3} \mathrm{~N}(225 \mu \mathrm{l})$ and $\mathrm{Tf}_{2} \mathrm{O}$ $(70 \mu \mathrm{l}, 416.1 \mu \mathrm{~mol})$ were added at $-40^{\circ} \mathrm{C}$, and the solution was stirred for 40 min . The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and the mixture was extracted three times with EtOAc. The combined organic layers were dried over $\mathrm{MgSO}_{4}$. The solvents were removed in vacuo, and the residue was purified by flash chromatography (pentane/ $\mathrm{Et}_{2} \mathrm{O} 5: 1$ ) to afford isoflavan 23a $(175.4 \mathrm{mg}, 279.0 \mu \mathrm{~mol}, 86 \%, e e$ n.d.) as a colorless resin.
$[\alpha]_{\mathrm{D}}{ }^{25}=+25.0\left(c 0.18, \mathrm{CDCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.03(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, \mathrm{~J}=$ $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{dd}, J=8.5 \mathrm{~Hz}, 2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.21(\mathrm{~m}, 3 \mathrm{H}), 5.17(\mathrm{~s}, 2 \mathrm{H}), 4.39(\mathrm{ddd}, J=10.4 \mathrm{~Hz}, 3.21 \mathrm{~Hz}, 1.51 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{t}-\mathrm{like}, J=10.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.51(\mathrm{~m}, 7 \mathrm{H}), 3.30(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.98(\mathrm{~m}, 2 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 3 \mathrm{H})$, $1.44(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=157.24$ (C), 155.88 (C), 153.05 (C), 150.12 (C), 140.92 (C), 131.45 (C), $129.92(\mathrm{CH}), 127.73(\mathrm{CH}), 122.78(\mathrm{C}), 121.97(\mathrm{CH}), 118.54(\mathrm{q}, J$ $=320.8 \mathrm{~Hz}, \mathrm{C}), 117.53(\mathrm{C}), 116.22(\mathrm{CH}), 108.88(\mathrm{CH}), 108.64(\mathrm{C}), 108.58(\mathrm{C}), 103.48(\mathrm{CH}), 94.53$
$\left(\mathrm{CH}_{2}\right), 94.48\left(\mathrm{CH}_{2}\right), 76.09(\mathrm{C}), 69.86\left(\mathrm{CH}_{2}\right), 56.20\left(\mathrm{CH}_{3}\right), 56.08\left(\mathrm{CH}_{3}\right), 31.17(\mathrm{CH}), 27.64\left(\mathrm{CH}_{3}\right)$, $27.31\left(\mathrm{CH}_{3}\right), 26.19\left(\mathrm{CH}_{2}\right), 25.81\left(\mathrm{CH}_{3}\right), 22.14\left(\mathrm{CH}_{2}\right), 17.87\left(\mathrm{CH}_{3}\right) \mathrm{ppm} .{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta=-74.0 \mathrm{ppm}$. IR (ATR): v=2965 (w), 2920 (w), 2823 (w), 1613 (m), 1585 (m), 1505 (m), 1405 (m), 1327 (m), 1242 (m), 1208 (s), 1135 (s), 1078 (m), 1003 (s), 952 (s), 924 (m), 900 (m), 831 (s), $795(\mathrm{~m}), 763(\mathrm{~m}), 733(\mathrm{~m}), 689(\mathrm{~m}), 665(\mathrm{~m}) \mathrm{cm}^{-1}$. ESI-MS: m/z $=646.4\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$. HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd for $[\mathrm{M}+\mathrm{Na}]^{+}: 651.1852$; found: 651.1852.

Isoflavan 23


Isoflavan 23a (174.8 mg, 278.1 $\mu \mathrm{mol})$ was dissolved in a mixture of THF $(1.7 \mathrm{~mL}), \mathrm{Et}_{3} \mathrm{~N}(0.3 \mathrm{~mL})$ and $\mathrm{HCOOH}(90 \mu \mathrm{l}) . \mathrm{Pd}(\mathrm{OAc})_{2}(3.16 \mathrm{mg}, 14.1 \mu \mathrm{~mol})$ and $\mathrm{dppf}(8.06 \mathrm{mg}, 14.5 \mu \mathrm{~mol})$ were added, and the solution was stirred for 60 min at $60^{\circ} \mathrm{C}$ in a closed round bottom flask. The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and the mixture was extracted three times with EtOAc. The combined organic layers were dried over $\mathrm{MgSO}_{4}$. The solvents were removed in vacuo, and the residue was purified by flash chromatography (pentane $/ \mathrm{Et}_{2} \mathrm{O} 5: 1$ ) to afford isoflavan 23 ( 122.9 mg , $255.7 \mu \mathrm{~mol}, 92 \%, 98 \% \mathrm{ee}$ ) as a colorless resin.
$[\alpha]_{\mathrm{D}}{ }^{25}=+49.0\left(c 0.25, \mathrm{CDCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.04(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=$ $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{dd}, J=8.5 \mathrm{~Hz}, 2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 6.24(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{~d}, J=$ $9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~m}, 1 \mathrm{H}), 5.21(\mathrm{~s}, 2 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}), 4.36(\mathrm{dd}, J=10.2 \mathrm{~Hz}, 3.4 \mathrm{~Hz}, 1.9 \mathrm{~Hz}, 1 \mathrm{H})$, 4.02 (t-like, $J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~m}, 1 \mathrm{H}), 3.49(\mathrm{~s}, 6 \mathrm{H}), 3.31(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.96(\mathrm{dd}, J=$ $15.7 \mathrm{~Hz}, 11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{ddd}, J=15.7 \mathrm{~Hz}, 5.5 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.41$ (s, 6 H ) ppm. ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=156.96$ (C), 155.83 (C), 152.61 (C), 149.64 (C), 130.64 $(\mathrm{C}), 128.10(\mathrm{CH}), 127.69(\mathrm{CH}), 124.21(\mathrm{CH}), 124.01(\mathrm{C}), 122.95(\mathrm{CH}), 122.33(\mathrm{CH}), 116.85(\mathrm{C})$, $114.44(\mathrm{C}), 113.94(\mathrm{C}), 108.87(\mathrm{CH}), 103.49(\mathrm{CH}), 94.56\left(\mathrm{CH}_{2}\right), 94.52\left(\mathrm{CH}_{2}\right), 75.70(\mathrm{C}), 70.05\left(\mathrm{CH}_{2}\right)$, $56.21\left(\mathrm{CH}_{3}\right), 56.06\left(\mathrm{CH}_{3}\right), 31.70(\mathrm{CH}), 31.15\left(\mathrm{CH}_{2}\right), 27.90\left(\mathrm{CH}_{3}\right), 27.84\left(\mathrm{CH}_{3}\right), 25.84\left(\mathrm{CH}_{3}\right), 22.10$ $\left(\mathrm{CH}_{2}\right), 17.87\left(\mathrm{CH}_{3}\right)$ ppm. IR (ATR): $v=3038(\mathrm{w}), 2969(\mathrm{w}), 2921(\mathrm{w}), 2846(\mathrm{w}), 2823(\mathrm{w}), 1611(\mathrm{~m})$, 1582 (m), 1542 (m), 1505 (m), 1472 (m), 1390 (m), 1360 (m), 1322 (m), 1261 (m), 1213 (m), 1151 (s), 1126 (s), 1076 (s), 1000 (s), 922 (m), 489 (m), 801 (m), $730(\mathrm{~m}), 665(\mathrm{~m}) \mathrm{cm}^{-1}$. ESI-MS: m/z = $498.4\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$. HRMS (ESI): m/z calcd for $[\mathrm{M}+\mathrm{Na}]^{+}$: 503.2410; found: 503.2411.

## Eryzerin D (4)



Isoflavan $23(62.9 \mathrm{mg}, 130.9 \mu \mathrm{~mol})$ was dissolved in THF ( 1.75 mL ) and $\mathrm{MeOH}(1.75 \mathrm{~mL})$. Water $(0.35 \mathrm{~mL})$ and $37 \% \mathrm{HCl}(0.35 \mathrm{~mL})$ were added, and the mixture was stirred for 40 min at $60^{\circ} \mathrm{C}$ in a closed vessel. The reaction was quenched with saturated aqueous NaCl solution, and the mixture was extracted three times with EtOAc. The combined organic layers were dried over $\mathrm{MgSO}_{4}$. The solvents were removed in vacuo, and the residue was purified by flash chromatography (pentane/ $\mathrm{Et}_{2} \mathrm{O} 1: 1$ ) to afford crude isoflavan 4. The resin was further purified by means of semi-preparative HPLC to afford the pure product $4(18.6 \mathrm{mg}, 47.4 \mu \mathrm{~mol}, 36 \%, 98 \% e e)$ as a slightly brown resin. Eryzerin $\mathrm{D}(4)$ is not stable and decomposes especially during column chromatography.
$[\alpha]_{\mathrm{D}}{ }^{25}=+36.1(c 0.23, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.95(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~s}$, $1 \mathrm{H}), 6.38(\mathrm{dd}, J=8.3 \mathrm{~Hz}, 2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~d} J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{~d}, J$ $=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~m}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 1 \mathrm{H}), 4.91(\mathrm{~s}, 1 \mathrm{H}), 4.36(\mathrm{ddd}, J=10.6 \mathrm{~Hz}, 3.6 \mathrm{~Hz}, 1.9 \mathrm{~Hz}, 1 \mathrm{H})$, 4.03 (t-like, $J=10.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.47 (m, 1 H ), 3.32 (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$ ), 2.96 (dd, $J=15.9 \mathrm{~Hz}, 10.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.86(\mathrm{ddd}, J=15.7 \mathrm{~Hz}, 5.6 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=155.07$ (C), 154.39 (C), 152.63 (C), 149.67 (C), 130.81 (C), 128.45 $(\mathrm{CH}), 128.23(\mathrm{CH}), 124.27(\mathrm{CH}), 122.96(\mathrm{CH}), 122.39(\mathrm{CH}), 120.34(\mathrm{C}), 116.98(\mathrm{C}), 114.61(\mathrm{C})$, $113.94(\mathrm{C}), 107.98(\mathrm{CH}), 103.14(\mathrm{CH}), 75.82(\mathrm{C}), 69.91\left(\mathrm{CH}_{2}\right), 31.71(\mathrm{CH}), 30.92\left(\mathrm{CH}_{2}\right), 27.91\left(\mathrm{CH}_{3}\right)$, $27.86\left(\mathrm{CH}_{3}\right), 25.87\left(\mathrm{CH}_{3}\right), 22.15\left(\mathrm{CH}_{2}\right), 17.92\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$. IR (ATR): $v=3362(\mathrm{~m}), 3035(\mathrm{w}), 2922$ (m), 1612 (m), 1527 (m), 1452 (m), 1376 (m), 1301 (m), 1260 (m), 1209 (m), 1164 (m), 1126 (s), 1097 ( s$), 1033$ (m), 973 (m), 903 (m), 837 (m), 798 (m), 729 (m), $688(\mathrm{~m}), 664(\mathrm{~m}), 628(\mathrm{~m}) \mathrm{cm}^{-1}$. CD-spectra: $\Delta \varepsilon=298(0), 277(+0.77), 245(+0.02), 231(+1.74)$. ESI-MS: m/z $=391.2[\mathrm{M}-\mathrm{H}]^{-}$.

## 6. Spectra and HPCL traces


$\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$


[^0]
$\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$
(

$\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$

125.70
-124.90
-112.73
-109.36
-101.86
-94.50
-94.32

[^1]

$\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$



## $\mathrm{CDCl}_{3}, 151 \mathrm{MHz}$

(

HPLC trace of racemic 5a (bottom) and (S)-5a (top, 99\% ee).


Peak RetTime Type width Area Height Area \# [min] [min] [mAU*s] [mAU] \%

$\begin{array}{lllllll}1 & 3.384 & \mathrm{PV} & 0.1270 & 23.14852 & 2.43323 & 0.3333\end{array}$
$2 \quad 3.872$ VP $0.0951 \quad 8.82991 \quad 1.30290 \quad 0.1271$
314.011 BB 0.35446862 .03955305 .1145998 .8045
418.863 ММ Т $0.6025 \quad 51.05299 \quad 1.41214 \quad 0.7351$

Totals: 6945.07097310 .26286

$\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$


HPLC trace of racemic 10a (bottom) and (S)-10a (top, 99\% ee).




HPLC trace of racemic $\mathbf{1 0}$ (bottom) and ( $S$ )-10 (top, $99 \%$ ee).


Peak RetTime Type width Area Height Area \# [min] [min] [mAU*s] [mAU] $\%$ \%
14.919 BB $0.1405308 .78705 \quad 28.943621 .8021$

2 16.276 PV 0.2764 88.68208 $4.61164 \quad 0.5175$
3 17.121 VB 0.4082 1.67378e4 650.5627497 .6804
Totals : $\quad 1.71353 \mathrm{e} 4$ 684.11800


DMSO-d $_{6}, 300 \mathrm{MHz}$


DMSO-d $_{6}, 75 \mathrm{MHz}$


HPLC trace of racemic $\mathbf{1}$ (bottom) and ( $S$ )-1 (top, $99 \%$ ee).



[^2]

$\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$


$\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$



$\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$


HPLC trace of racemic $\mathbf{1 3}$ (bottom) and ( $R$ )-13 (top, $\mathbf{9 9 \%}$ ee).


Peak RetTime Type width Area Height Area
\# [min] [min] [mAU*s] [mAU] $\%$
111.340 PB $\quad 0.27848693 .46094 \quad 491.38745 \quad 99.4786$
212.544 BP $0.2284 \quad 45.56372 \quad 2.653050 .5214$

Tota1s : 8739.02466494 .04050


HPLC trace of racemic 13a (bottom) and ( $R$ )-13a (top, $99 \%$ ee).



HPLC trace of racemic $\mathbf{1 4}$ (bottom) and ( $R$ )-14 (top, $99 \%$ ee).


Peak RetTime Type width Area Height Area
\# [min] [min] [mAU*s] [mAU] \%

$\begin{array}{lllllll}1 & 3.860 & \text { BB } & 0.1291 & 746.13293 & 87.85747 & 7.7368\end{array}$
2 18.387 MF T 0.5468 8851. 19141 269.80188 91.7795
$\begin{array}{llllll}3 & 19.607 & \text { FM T } 0.3976 & 46.64545 & 1.95529 & 0.4837\end{array}$
Totals : 9643.96980359 .61464

$\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$


HPLC trace of racemic $\mathbf{1 5}$ (bottom) and ( $R$ )-15 (top, $99 \%$ ee).


## Peak RetTime Type width Area Height Area

\# [min] [min] [mAU*s] [mAU] \%


$\begin{array}{lllllll}1 & 5.766 & \text { PB } & 0.0854 & 6.83830 & 1.08655 & 0.3042\end{array}$

2 20.014 MF T $0.4842 \quad 2226.97534 \quad 76.6575099 .0777$

321.103 FM т $0.4482 \quad 13.89234 \quad 5.16640 \mathrm{e}-1 \quad 0.6181$

Totals : $2247.70598 \quad 78.26069$

${ }^{1} \mathrm{H}$ NMR in acetone- $\mathrm{d}_{6}, 300 \mathrm{MHz}$ good solubility




HPLC trace of racemic 2 (bottom) and ( $R$ )-2 (top, $99 \%$ ee).


Peak RetTime Type Width Area Height Area
\# [min] [min] [mAU*s] [mAU] \%

$\begin{array}{lllllll}1 & 9.401 & \text { VB } & 0.1579 & 52.17762 & 4.91345 & 0.7160\end{array}$
225.000 BB $0.3877 \quad 68.55892 \quad 2.26128 \quad 0.9408$

3 28.911 MF T 0.87397118 .45654135 .7644397 .6791
430.348 FM T $0.5536 \quad 48.40351 \quad 1.45711 \quad 0.6642$

Totals :
7287.59660144 .39627


## $\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$



HPLC trace of racemic 14a (bottom) and ( $R$ )-14a (top, $99 \%$ ee).


Peak RetTime Type width Area Height Area
\# [min] [min] [mAU*s] [mAU] \%

$\begin{array}{llllll}1 & 18.493 & \text { MM Т } 0.4408 & 39.86337 & 1.40683 & 0.6468\end{array}$
219.820 BB 0.43246123 .16992217 .5458299 .3532

Totals : $\quad 6163.03329218 .95265$


```
CDCl}3,126 MH
```

(

HPLC trace of racemic $\mathbf{1 4 c}$ (bottom) and ( $R$ )-14c (top, 99\% ee).


[^3]\mp@subsup{}{3}{},126\textrm{MHz

```


\(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\)



HPLC trace of racemic \(\mathbf{6 c}\) (bottom) and (S)-6c (top, \(17 \%\) ee).


Peak RetTime Type width Area Height Area
\# [min] [min] [mAU*s] [mAU] \%

\(\begin{array}{llllll}14.305 & \text { VB } & 0.5563 & 422.87811 & 10.58074 & 1.1619\end{array}\)
217.330 BB \(0.49532 .04213 \mathrm{e} 4 \quad 645.1586956 .1120\)
323.518 BV \(0.6814995 .08429 \quad 22.34986 \quad 2.7342\)
425.147 VB \(0.70581 .45546 \mathrm{e} 4 \quad 320.5226139 .9919\)

Totals : \(\quad 3.63939 \mathrm{e} 4\) 998.61191

\(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\)


HPLC trace of racemic 5c (bottom) and ( \(R\) )-5c (top, \(98 \%\) ee).

```

Peak RetTime Type Width Area Height Area
\# [min] [min] [mAU*s] [mAU] %
----|------------|------------------------------------------
1 6.030 PB 0.1691 548.85950 46.03070 4.6337
2 11.214 BP 0.3440 122.19493 5.48325 1.0316
3 21.475 BB 0.8337 1.11738e4 212.41016 94.3346
Totals :
1.18449e4 263.92411

```

\({ }^{19}\) F NMR
\(\mathrm{CDCl}_{3}, 282 \mathrm{MHz}\)




HPLC trace of racemic 23 (bottom) and ( \(R\) )-23 (top, \(98 \%\) ee).


Peak RetTime Type width Area Height Area


\(\mathrm{CDCl}_{3}, 151 \mathrm{MHz}\)


HPLC trace of racemic 4 (bottom) and ( \(R\) )-4 (top, \(98 \%\) ee).

```


[^0]:    

[^1]:    
    CiO

[^2]:    $\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$

[^3]:    Peak RetTime Type width Area Height Area
    
    

    HPLC trace of racemic $\mathbf{1 4 b}$ (bottom) and ( $R$ )-14b (top, $99 \%$ ee).
    

    Peak RetTime Type width Area Height Area \# [min] [min] [mAU*s] [mAU] \%
    
    $\begin{array}{lllllll}1 & 5.527 & \text { PB } & 0.1227 & 111.51190 & 14.34839 & 1.2467\end{array}$
    221.805 BV $0.3531264 .50159 \quad 9.49106 \quad 2.9571$
    322.805 VB 0.51038515 .25098259 .8599595 .2008
    426.237 MM T $0.5385 \quad 53.24990 \quad 1.64808 \quad 0.5953$

    Totals :
    8944.51437285 .34748
    
    $\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$
    

    HPLC trace of racemic $\mathbf{1 7}$ (bottom) and ( $R$ )-17 (top, $99 \%$ ee).
    

    | Peak RetTime \# [min] | Type width Area <br> [min] [mAU*s] | $\underset{[m A U]}{\stackrel{H e i g h t}{ }}$ | Area |
    | :---: | :---: | :---: | :---: |
    | 110.297 BV | 0.3022217 .84346 | 11.33493 | 1.1124 |
    | 220.453 BB | $0.45761 .92876{ }^{\text {e }}$ | 654.97406 | 98.4939 |
    | 322.005 BP | 0.391877 .08681 | 2.84768 | 0.3937 |
    | Totals | 1.95825 e 4669 | . 15667 |  |

    
    $\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$
    

    HPLC trace of racemic $\mathbf{1 8}$ (bottom) and ( $R$ )-18 (top, $99 \%$ ee).
    

    Peak RetTime Type width Area Height Area \# [min] [min] [mAU*s] [mAU] \%

    1 27.571 MF T $0.8294 \quad 81.82935 \quad 1.64428 \quad 0.6608$
    228.929 FM T 1.11971 .23011 e 4183.1058399 .3392

    Totals : $\quad 1.23829 \mathrm{e} 4184.75011$
    

    ## $\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$

    

    HPLC trace of racemic $\mathbf{3}$ (bottom) and ( $R$ )-3 (top, $99 \%$ ee).
    

    Peak RetTime Type width Area Height Area
    \# [min] [min] [mAU*s] [mAU] \%
    $\begin{array}{lllllllll}1 & 19.552 & \text { BB } & 0.4780 & 3493.01758 & 112.57558 & 99.2463\end{array}$
    221.188 ММ Т $0.6098 \quad 26.52677$ 7.24957e-1 0.7537

    Totals : 3519.54434113 .30054
    
    
    
    $\mathrm{CDCl}_{3}, 151 \mathrm{MHz}$
    
    

    ## $\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$

    
    
    

    ```
    CDCl ```

