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SECTION I: BROWNIAN DYNAMICS SIMULATIONS IN 2D AND 3D

In order to quantitatively relate the average measured escape time, tesc of a particle to the depth
of the potential well, W , we perfomed Brownian Dynamics (BD) simulations of the escape process
as described previously [1, 2]. We first determine the full three-dimensional distribution of electrical
potential in a single trap by solving the nonlinear Poisson-Boltzmann equation in the fluidic nanos-
tructure. A molecule of charge qeff, noted as q from hereafter, sampling the free energy landscape,
experiences both thermal fluctuations in 3 dimensions and a force given by −∇qψ(r) at any point
r in the landscape. Here ψ(r) is the local the electrical potential at r in the absence of the particle
[3].

Figure S1: (a) Axisymmetric representation of the trapping nanostructure. 2h is the slit height, d is the pocket depth
and R the pocket radius = 300 nm. Red dashed trace indicates a representative z-trajectory of a particle of charge q
sampling the 3D space of the trap. ψm is the electrostatic midplane potential in the slit region. (b) In the equivalent
2D simulation, the total well depth W (in black) experienced by the trapped molecule is W = qψm + f , where f is
the additional entropic contribution due to axial fluctuation of the molecule. r is a radial coordinate referenced to the
center of the nanostructure. The escape boundary, resc (black dashed line), which must be crossed for an escape event
to occur, is placed 300 nm away from the physical boundary of the nanostructure, resc = R+ 300 nm [2]. t′esc denotes
the escape time based on instantaneous particle position. (c) Comparison of escape times based on instantaneous
particle positions, t′esc for both 3D and 2D approaches. In the regime of W = 5 − 8kBT , the behaviour can be fit
with the form t′esc = trexp(W/kBT ) according to Kramers’ theory (overlapping black and dashed red lines).Here tr
is the position relaxation time of the particle which depends on the particle hydrodynamic radius, rH, and is a fit
parameter [1, 2]. The simulation results shown correspond to parameter values: rH = 4.5 nm, β = (2h+ d)/2h = 1.5
and κh = 2.5, where κ is the inverse Debye length. The is no significant difference between a full 3D simulation (red
squares) and a 2D simulation (black circles) in the regime of W > 5kBT , as the fit parameter tr is almost identical in
the two cases. Error bars are smaller than the symbols. For W < 5kBT the data is better represented by a fit of the
form t′0exp (ν′W/kBT ) (dashed grey line), where ν′ < 1 and t′0 ∼ 1.4tr, discussed later in Section II.

We simulate a particle trajectory by iteratively solving the discretized overdamped Langevin equa-
tion, which reads as follows in one dimension:
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x(t+ δt) = x(t)− µ∇qψ(x(t)) +
√

2Dδt w(t) (S1)

Here, x(t) represents the instantaneous position of the molecule at time, t in one dimension, and
D is the molecule’s diffusion coefficient which depends on its hydrodynamic radius, rH, and the
viscosity of the medium, η as D = kBT/6πηrH. w(t) represents a displacement due to the random
thermal force acting on the particle that satisfies 〈w(t)〉 = 0 and 〈w(t)w>(t′)〉 = I if | t− t′ |≤ δt,
0 otherwise. Further µ =δt/6πηrH, where the simulation time-step, δt = 10 µs is much larger than
the momentum relaxation time ∼10 ns for a typical molecule.

At t = 0, the particle is located at x = y = 0 and z = (2h + d)/2, where 2h is the slit height and
d the nanostructure depth. We use Eq.S1 to propagate the instantaneous position of the particle,
x(t), forward in time for each spatial dimension, until its radial position r =

√
x2 + y2 exceeds

an arbitrary radial escape threshold, resc [2] (Fig.S1(b)). The time needed to reach resc from the
bottom of the well corresponds to an escape event, or hop, ∆t. Once the molecule has escaped, the
simulation restarts and another escape trajectory is computed. The durations of the escape events
are exponentially distributed and we typically average over a number of hops, N ∼ 103, to obtain
the average escape time t′esc. Note that this analysis is performed without time-averaging of the
spatial position and the simulation is repeated for different values of q.

We then compare the results of t′esc vs q from a full 3D simulation, which is computationally very
demanding, with an equivalent 2D simulation (Fig.S1(c)), in which a molecule of charge q is only
permitted motion in (x, y). Here the molecule is forced to sample a two-dimensional energy manifold
whose value at any point (x, y) is given by the minimum electrostatic energy in z at every radial
coordinate. Importantly in order to simulate 3D behavior using an equivalent 2D problem we add
to the depth of the well, which would otherwise be simply qψm, the fluctuation contribution f .
Thus in the 2D simulations we use a well depth given by W = qψm + f , where f is the fluctuation
contribution calculated for each case as described in the main text (Fig.S1(b)). Identical to the 3D
case, the molecule is considered to have escaped when its samples the region outside the radially
symmetric boundary given by resc. We find excellent agreement (r.m.s. within 2%) between the
average escape times, t′esc computed using the two approaches in the regime of W ≥ 5kBT , where
most of our experiments are performed. A representative molecular trajectory in z depicted in
Fig.S1(a) clearly reveals that the axial fluctuation of the molecule in the “slit” are of much smaller
amplitude than in the “pocket” region. This difference gives rise to the configurational entropy
contribution to the total trap depth.

We point out that in order to relate experimentally measured escape times, tesc to measured well
depths, we perform the 2D BD simulation analysis using time-averaged co-ordinates < r >texp , rather
than instantaneous positions r, as previously described [2]. The duration of an exposure time, texp

is typically 5 ms in our experiments. Further, we examine the motion process in a 2D landscape
of traps, corresponding to the experimental situation. This is because neighbouring wells in the
landscape effectively act as absorbing boundaries for molecules and need to be included in order to
accurately reconstruct the escape process [2].
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SECTION II: ESTIMATING UNCERTAINTIES IN THE CHARGE MEASUREMENT ON WEAKLY
CHARGED MOLECULES

The measurement error, xe on a quantity x, which is a function of the variables f , g, h, etc., each
with uncertainties fe, ge, he, etc., can be expressed as follows:

xe =

√(
∂x

∂f

)2

f 2
e +

(
∂x

∂g

)2

g2
e +

(
∂x

∂h

)2

h2
e + ... (S2)

In the regime of W ≥ 5kBT , the relationship between measured escape time, tesc, and molecule
effective charge, noted here as q, is well described by Kramers’ theory and is given by:

qψm + f = kBT ln

(
tesc

tr

)
(S3)

However the experiments shown in Fig.4, in which we measure the effective charge of 3 dye
molecules, were performed in the regime of W < 5kBT , where the dependence of tesc on W de-
parts from that given in Eq.S3.

Figure S2: (a) The plot presents simulated t′esc in the low W regime (W ≤ 5kBT ) for molecules of rH ranging from
0.3 to 1.2 nm, analyzing the instantaneous coordinates of an object escaping from a single well. The fits shown are
of the form t′0exp (ν′W/kBT ). (b) Simulated tesc using time-averaged coordinates of molecules sampling a landscape
of traps. In general, for a given combination of W and rH, tesc is substantially larger in this case. The inset table
shows the values of the fit parameter t0 and ν for different rH. Inset plot shows ν vs rH, fit by a logarithmic form,
ν = B + Cln(rH).

In order to study this behaviour, we performed BD simulations in the range of W ∼ 3− 5kBT , as
described in Section I (Fig.S2(a)). Figure S2 compares the results of simulated escape from a single
well, obtained using instantaneous positions (as in Section I), and time-averaged approach, which
also includes the effects given by the trap landscape geometry. In the experiment, a molecule must
reside in a given trap for ∆t ≥ texp in order to accumulate enough signal on the detector and be
recognized as trapped. In the simulation, we use the same criterion on the minimum residence time
when analyzing a particle position trajectory, as previously described [2]. In general, for a given well
depth, the “time-averaged” tesc is substantially longer than the “instantaneous” t′esc (Fig.S2).
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In both cases, we find - as expected - that in the low well depth regime tesc depends less strongly
on W , by a factor ν. This fit parameter is < 1 for W ≤ 5kBT and is equal to 1 for W > 5kBT
where the Kramers’ prediction well describes the behavior (Fig.S1(c)). Fitting the simulation with
a functional form given by

tesc = t0exp

(
νW

kBT

)
= t0exp

[ν(qψm + f)

kBT

]
(S4)

we find that, when operating with instantaneous positions (Fig S2(a)), the prefactor t′0, depends
linearly on the size of the molecule (inset in Fig.S2(a)), and is also slightly larger than the relaxation
time, tr at high well depths by a factor ∼1.4 (Fig.S1(c)). Upon position averaging, however, the
escape time no longer depends in a simple linear fashion on rH. The inset Table in Fig.S2(b)
shows that in this case the prefactor t0 is a constant, larger in magnitude and close to texp, that no
longer carries information on the radius of the molecule. The fit parameter ν captures the weaker
response of the measured timescale on well depth. This different tesc vs. W behaviour is most likely
due to a finite (size-dependent) return probability of the molecule during the observation time [2].
For molecule of rH = 0.6nm, which corresponds to the size the dyes measured [4], we find that
ν = 0.6± 0.02.

We now write the fractional error qe/q according to Eq.S2 as:

qe

q
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H,e (S5)

The first term on the RHS of Eq.S5, from now on denoted as (qe/q)ψm
, represents the uncertainty

in determining the electrical potential at the midplane of the slit, ψm. This aspect has been discussed
at length in our previous work [1], and arises from the uncertainty in determining the slit height
(2h) with an accuracy better than he = 1 nm and is estimated at about 5% when averaging over 4-5
independent experiments (typical Debye length κ−1 ∼ 9nm and 2h ∼ 70nm). In a single experiment
however where the height of the slit may depart from the mean value by as much as 2 or 3he,
this (single) measurement inaccuracy can be as large as 15%. For the measurement of the dye
ATTO532-maleimide, performed using a larger Debye length (κ−1 ∼ 20 nm) and thus higher ψm,
the estimated fractional uncertainty on a single measurement is calculated to be as low as 6% (∼ 2%
upon averaging).

The second term of Eq.S5, that we denote as (qe/q)tesc , arises from statistical uncertainty in
measuring tesc in a temporally limited experiment. Given that the escape events ∆t are exponentially
distributed, the measurement error tesc,e on their average value, tesc, is function of the number of
detected hops, N , as follows:

tesc,e =
tesc√
N

(S6)

According to Eq.S4, (∂q/∂tesc) = (kBT/νtescψm). Using Eq.S6, (qe/q)tesc gives
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Note that in this analysis we assume that f in Eq.S4 is constant, since the fluctuation contribution
is largely charge-independent as discussed in the main text. We finally analyze the last term of Eq.S5,
denoted by (qe/q)rH , which represents the fractional contribution of the uncertainty on hydrodynamic
radius, rH to the total single measurement charge error.

As shown above (Fig.S2(b)), in the BD time-averaged approach at low W , the fit parameter ν in
Eq.S4 captures the dependance of tesc on the size of the molecule and scales with rH in a logarithmic
fashion, ν = B+Cln(rH), where B = 0.7±0.02 and C = 0.2±0.02. Therefore we can write (qe/q)rH
as function of ν as follows:

(
qe
q

)2

rH

=
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1

q2
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∂q

∂ν
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)]2

r2
H,e (S8)

Using Eq.S4 this can be rearranged as:
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(S9)

The fractional error (rH,e/rH) in Eq.S9 is estimated from an independent Dual-focus Fluorescence
Correlation Spectroscopy (2fFCS) measurement [2] and is typically 5%.

The following Table summarizes the fractional errors for each dye molecule, and the overall uncer-
tainty, (qe/q).
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SUPPORTING MOVIE

The video shows an ETe measurement of 60bp dsDNA molecules in a device with neighbouring
slits patterned with nanostructured circular indentations of depth, d1 = 130 nm (Panel a) and d2 =
330 nm (Panel b). The slit height 2h was 70nm in both cases (Figure 1).

Both panels present fluorescence microscopy images of the molecules superimposed on an SEM of
the nanostructured surface. The bottom panels display durations, tesc,i of individual escape events, i,
for each case. The molecules sampling the nanostructure lattice with the deeper indentations (right
panel) show a longer average escape time. The ratio of measured timescales agrees well with the
theoretical expectation.

The sampling rate in the experiment was 10Hz. The movie is slowed down by a factor 5.
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