
SUPPORTING INFORMATION

Scanning bipolar electrochemical microscopy

Vera Eßmann,^a Carla Santana Santos,^{a,b} Tsvetan Tarnev,^a Mauro Bertotti,^b
Wolfgang Schuhmann^{a,*}

Table of contents

Figure S-1	Bipolar LSVs: i _{sys} , I _{ECL} , and dE _{BE_a-Sol} /dE _{BE_c-Sol} versus V _{app}	page S-1
Figure S-2	ECL-based approach of the SBECM tip	page S-2
Figure S-3	Photograph of the cathodic pole of the BE array	page S-2
Video S-1	ECL emissions at the BE _a s during a line scan	page S-2

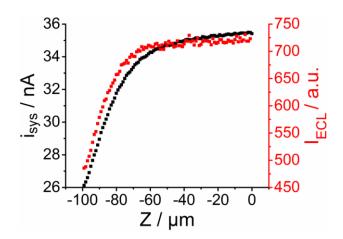
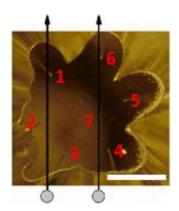


Figure S-1. Bipolar LSVs showing a) i_{sys} (black), I_{ECL} (blue), and dE_{BE_a-Sol} (green) versus V_{app} and b) i_{sys} (black) and dE_{BE_c-Sol} (green) versus V_{app} . For all measurements, a solution of 1 mM [Fc(MeOH)₂] and 1 mM [Ru(NH₃)₆]Cl₃ in 0.1 M KCl was used in the cathodic cell (BE_c: Ø 50 μ m Pt-microelectrode), while a solution of 1 mM [Ru(bpy)₃]²⁺ and 50 mM TPrA in 0.1 M PBS (pH 7.4) was used in the anodic compartment (BE_a: Ø 25 μ m Pt-microelectrode).


^a Analytical Chemistry - Center for Electrochemical Sciences (CES); Ruhr-Universität Bochum, Universitätsstr. 150; 44780 Bochum; Germany

^b Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Professor Lineu Prestes, 748 05513-970, São Paulo, Brazil

^{*} Corresponding author: wolfgang.schuhmann@rub.de

Figure S-2. Bipolar approach curve using 1 mM [Ru(NH₃)₆]Cl₃ in 0.1 M KCl solution in the cathodic compartment and a solution of 1 mM [Ru(bpy)₃]²⁺ and 50 mM TPrA in 0.1 M PBS (pH 7.4) in the anodic compartment. In the bipolar configuration, BE_c was approached to non-conducting bottom of the cathodic chamber while i_{sys} (black) and I_{ECL} (red) were recorded as indicators of the negative feedback upon approach. $V_{app} = 1.6 \text{ V}$, EM gain = 250.

Figure S-3. Photograph taken with an optical microscope showing the cathodic poles of the seven BEs. Scale bar: $500 \mu m$.

Video S-1. Video of the anodic BE poles of the array during the line scan shown in Figure 2b as recorded with the EMCCD camera (played back with 5 fps, one frame at each x, y-position). A solution of 1 mM [Fc(MeOH)₂] in 0.1 M KCl was used in the cathodic compartment, while a solution of 1 mM [Ru(bpy)₃]²⁺ and 50 mM TPrA in 0.1 M PBS (pH 7.4) was used in the anodic compartment. Increment: 50 μ m, d_{tip-membrane} = 50 μ m.