Synthesis and pharmacological evaluation of novel C-8 substituted tetrahydroquinolines as balanced-affinity mu/delta opioid ligands for the treatment of pain

Anthony F. Nastase, Nicholas W. Griggs, Jessica P. Anand, Thomas J. Fernandez, Aubrie A. Harland, Tyler J. Trask, Emily M. Jutkiewicz, John R. Traynor, Henry I. Mosberg*

*him@umich.edu

Supporting Information Table of Contents:
General Procedure (i) Acylation of Intermediates 2a-h 2
General Procedure (ii) Cyclization of Intermediates 3a-h 4
General Procedure (iii) Rearrangement of Intermediates 3a'-h'; 4c, g 6
General Procedure (iv) Bromination of Intermediates 4a-h, except $\mathbf{c}, \mathbf{g} 8$
General Procedure ($\left.\mathbf{v - v} \mathbf{v}^{\prime}{ }^{\prime}\right)$ Preparation of Intermediates 4i-k 10
General Procedure (vi) Suzuki Coupling of Intermediates 5a-l 12
General Procedure (vii) Carbonylation of Intermediates 4a', 5n 16
General Procedure (viii) Amide Coupling of Intermediates 5m, o, p 17
General Procedure (ix) Reductive Amination of Intermediates 6a-q 18
General Procedure ($\mathbf{x}-\mathbf{x}$ ' ${ }^{\prime}$) Preparation of Final Compounds 7a-q 24
General Procedure (xi) Preparation of Final Compound 7r 32

General Procedure (i) for Preparation of Acyl Bromides 2a-h

2a. N-(4-benzylphenyl)-3-bromopropanamide. 2a was synthesized following General Procedure (i): To a flamedried round-bottom flask under inert atmosphere was added 4-benzylaniline ($3.65 \mathrm{~g}, 19.92 \mathrm{mmol}, 1.00$ equiv.), followed by dichloromethane (200 mL), then $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($3.56 \mathrm{~g}, 25.78 \mathrm{mmol}, 1.30$ equiv.). After 10 minutes, 3bromopropionyl chloride ($2.11 \mathrm{~mL}, 20.91 \mathrm{mmol}, 1.05$ equiv.) was added slowly via syringe. Reaction was monitored by TLC in 40% ethyl acetate, 60% hexanes. Ninhydrin stain was used to help monitor disappearance of aniline starting material. After 3 hours, reaction was quenched with deionized water. Organics were separated and dried over MgSO_{4}, then filtered and concentrated under vacuum. Product was used without further purification. Yield: $6.37 \mathrm{~g}, 100 \%{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl} 3\right) \delta 7.43(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{dd}, J=7.9,5.8 \mathrm{~Hz}, 4 \mathrm{H}), 3.95(\mathrm{~s}, 2 \mathrm{H}), 3.71(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H})$.

2b. 3-bromo- N-(o-tolyl)propanamide. 2b was synthesized following General Procedure (i) from o-toluidine (1.00 g, $5.38 \mathrm{mmol}, 1.00$ equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}(2.23 \mathrm{~g}, 16.14 \mathrm{mmol}, 3.00$ equiv.) and 3-bromopropionyl chloride ($0.57 \mathrm{~mL}, 5.64$ mmol, 1.05 equiv.). Yield: $1.72 \mathrm{~g}, 100 \%$. ${ }^{1} \mathrm{H} \operatorname{NMR}(500 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 7.57(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.08(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.91(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl} 3) \delta 168.64,135.16,130.76,130.64,126.63,126.03,124.38,40.21,27.57,18.02$.

2c. 3-bromo-N-(4-bromo-2-ethylphenyl)propanamide. 2c was synthesized following General Procedure (i) from 4-bromo-2-ethylaniline ($1.41 \mathrm{~g}, 7.05 \mathrm{mmol}, 1.00$ equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}(1.95 \mathrm{~g}, 14.10 \mathrm{mmol}, 2.00$ equiv.) and 3bromopropionyl chloride ($0.75 \mathrm{~mL}, 7.35 \mathrm{mmol}, 1.05$ equiv.). Yield: $2.36 \mathrm{~g}, 100 \%$. ${ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}, \mathrm{CDCl} 3) \delta$ $7.67(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 3.72(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.97(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{q}$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.24(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}(500 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 168.32,137.66,133.70,131.62,129.82$, $125.79,119.24,40.80,27.41,24.33,13.93$.

2d. 3-bromo-N-(2-propylphenyl)propanamide. 2d was synthesized following General Procedure (i) from 2propylaniline ($1.00 \mathrm{~g}, 7.40 \mathrm{mmol}, 1.00$ equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}(3.07 \mathrm{~g}, 22.2 \mathrm{mmol}, 3.00$ equiv.) and 3-bromopropionyl chloride ($0.78 \mathrm{~mL}, 7.77 \mathrm{mmol}, 1.05$ equiv.). Yield: $1.73 \mathrm{~g}, 86 \% .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl} 3\right) \delta 7.70(\mathrm{q}, J=6.9,5.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{td}, J=7.0,6.5,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.96(\mathrm{dq}, J=7.1,3.8$, $3.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.56(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.62(\mathrm{~h}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl} 3\right)$ $\delta 168.28,134.56,129.63,126.67,125.91,124.54,40.55,33.47,27.46,23.12,14.06$.

2e. 3-bromo-N-(2-butylphenyl)propanamide. 2e was synthesized following General Procedure (i) from 2butylaniline ($1.00 \mathrm{~g}, 6.70 \mathrm{mmol}, 1.00$ equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}(2.78 \mathrm{~g}, 20.1 \mathrm{mmol}, 3.00$ equiv.) and 3-bromopropionyl chloride ($0.71 \mathrm{~mL}, 7.03 \mathrm{mmol}, 1.05$ equiv.). Yield: $1.725 \mathrm{~g}, 91 \%$. ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl} 3\right) \delta 7.74(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.10(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.97(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{t}, J=$ $7.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.57(\mathrm{~h}, J=9.8,8.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.39(\mathrm{~h}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.94(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (500 MHz, $\mathrm{CDCl} 3) \delta 168.13,134.53,134.36,129.57,126.67,125.86,124.31,40.67,32.10,31.18,27.42,22.61,13.96$.

2f. 3-bromo-N-(2-(tert-butyl)phenyl)propanamide. $\mathbf{2 f}$ was synthesized following General Procedure (i) from 2-(tertbutyl)aniline ($0.96 \mathrm{~g}, 6.41 \mathrm{mmol}, 1.00$ equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}(2.66 \mathrm{~g}, 19.2 \mathrm{mmol}, 3.00$ equiv.) and 3-bromopropionyl chloride ($0.68 \mathrm{~mL}, 6.73 \mathrm{mmol}, 1.05$ equiv.). Yield: $1.82 \mathrm{~g}, 100 \%$. ${ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 7.54$ (d, $J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.16(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.98(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.42(\mathrm{~s}$, 13H). ${ }^{13} \mathrm{C}$ NMR (500 MHz, CDCl3) $\delta 168.21,143.07,134.64,128.39,127.55,126.87,126.65,40.80,34.65,30.82$, 27.24.

2g. 3-bromo-N-(4-bromo-2-fluorophenyl)propanamide. $\mathbf{2 g}$ was synthesized following General Procedure (i) from 4-bromo-2-fluoroaniline ($1.0 \mathrm{~g}, 5.26 \mathrm{mmol}, 1.00$ equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}(1.49 \mathrm{~g}, 10.8 \mathrm{mmol}, 2.05$ equiv.) and 3bromopropionyl chloride ($0.54 \mathrm{~mL}, 5.37 \mathrm{mmol}, 1.05$ equiv.). Yield: $1.71 \mathrm{~g}, 100 \%$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl} 3$) δ $8.18(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 3 \mathrm{H}), 3.63(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.93(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (500 MHz, CDCl3) $\delta 167.85,152.96,127.83,127.80,125.13,122.80,118.55,118.37,116.22,40.63,26.36$.

2h. 3-bromo-N-(2-(trifluoromethyl)phenyl)propanamide. 2h was synthesized following General Procedure (i) from 2-(trifluoromethyl)aniline ($2.00 \mathrm{~g}, 12.4 \mathrm{mmol}, 1.00$ equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}(5.14 \mathrm{~g}, 37.2 \mathrm{mmol}, 3.00$ equiv.) and 3bromopropionyl chloride ($1.31 \mathrm{~mL}, 13.0 \mathrm{mmol}, 1.05$ equiv.). Yield: $3.68 \mathrm{~g}, 100 \%$. ${ }^{1} \mathrm{H} \operatorname{NMR}(500 \mathrm{MHz}, \mathrm{CDCl3}) \delta 8.17$ $(\mathrm{d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{t}, J=6.6 \mathrm{~Hz}$, 2H), $2.99(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 168.31,134.75,133.71,133.06,127.45,126.26$, 125.10, 40.86, 26.53.

General Procedure (ii) for Preparation of β-Lactams 3a-h

3a. 1-(4-benzylphenyl)azetidin-2-one. 3a was synthesized following General Procedure (ii): To a flame-dried round-bottom flask under inert atmosphere was added sodium tert-butoxide ($2.02 \mathrm{~g}, 21.02 \mathrm{mmol}, 1.05$ equiv.), then DMF (60 mL) and stirred 10 min before slowly adding a solution of $\mathbf{2 a}(6.37 \mathrm{~g}, 20.02 \mathrm{mmol}, 1.00$ equiv.) dissolved in DMF (60 mL) at ambient temperature via syringe. Monitored reaction by TLC, in 40% ethyl acetate, 60% hexanes. Desired product showed a moderate decrease in Rf relative to starting material. After stirring 1 hour, reaction mixture was concenctrated under vacuum, then resuspended in dichloromethane. Extracted reaction mixture with deionized water and aqueous sodium bicarbonate, then separated organics and dried over MgSO_{4}. Filtered and reconcentrated organics onto silica, then purified by flash chromatography. Yield: $4.25 \mathrm{~g}, 90 \%$. ${ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, $\mathrm{CDCl} 3) \delta 7.29(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 3 \mathrm{H}), 7.20(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 3.95(\mathrm{~s}, 2 \mathrm{H}), 3.60(\mathrm{t}, J=4.5$ $\mathrm{Hz}, 2 \mathrm{H}), 3.10(\mathrm{t}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H})$.

3b. 1-(o-tolyl)azetidin-2-one. 3b was synthesized following General Procedure (ii) from 2b (1.72 g, $5.36 \mathrm{mmol}, 1.00$ equiv.) and $\mathrm{NaO} t \mathrm{Bu}\left(540 \mathrm{mg}, 5.63 \mathrm{mmol}, 1.05\right.$ equiv.). Yield: $1.18 \mathrm{~g}, 92 \% .{ }^{1} \mathrm{H} \operatorname{NMR}(500 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 7.28(\mathrm{td}$, $J=8.6,6.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{td}, J=7.6,7.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{t}, J=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.97(\mathrm{t}$, $J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}(500 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 165.27,136.19,131.08,130.79,126.06,125.76$, $125.75,122.03,41.04,35.99,18.87$.

3c. 1-(4-bromo-2-ethylphenyl)azetidin-2-one. 3c was synthesized following General Procedure (ii) from $2 \mathbf{c}$ (2.56 g , 7.64 mmol, 1.00 equiv.) and $\mathrm{NaOt} \mathrm{Bu}\left(734 \mathrm{mg}, 7.64 \mathrm{mmol}, 1.00\right.$ equiv.). Yield: $1.89 \mathrm{~g}, 97 \% .{ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, $\mathrm{CDCl} 3) \delta 7.36(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 1 \mathrm{H}), 3.75-3.69(\mathrm{~m}, 2 \mathrm{H}), 3.13(\mathrm{td}, J=4.5,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.71(\mathrm{q}$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.22(\mathrm{td}, J=7.5,1.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}(500 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 165.77,139.73,135.09,132.52$, $129.62,124.88,119.92,42.03,36.81,25.12,14.34$.

3d. 1-(2-propylphenyl)azetidin-2-one. 3d was synthesized following General Procedure (ii) from 2d (1.56 g, 5.78 mmol, 1.00 equiv.) and $\mathrm{NaO} t \mathrm{Bu}\left(583 \mathrm{mg}, 6.07 \mathrm{mmol}, 1.05\right.$ equiv.). Yield: $1.10 \mathrm{~g}, 100 \% .{ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, CDCl3) $\delta 7.35(\mathrm{dd}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{td}, J=6.2,5.4,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{dd}, J=7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-$ $3.69(\mathrm{~m}, 2 \mathrm{H}), 3.14-3.09(\mathrm{~m}, 2 \mathrm{H}), 2.71-2.63(\mathrm{~m}, 2 \mathrm{H}), 1.61(\mathrm{~h}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 165.86,136.45,136.02,130.55,126.64,126.62,123.68,42.03,36.59,34.35,23.64,14.20$.

3e. 1-(2-butylphenyl)azetidin-2-one. 3e was synthesized following General Procedure (ii) from 2e (1.725 g, 6.06 mmol, 1.00 equiv.) and $\mathrm{NaOt} \mathrm{Bu}\left(613 \mathrm{mg}, 6.37 \mathrm{mmol}, 1.05\right.$ equiv.). Yield: $1.23 \mathrm{~g}, 100 \%{ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, CDCl3) $\delta 7.35(\mathrm{dd}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{td}, J=8.4,7.9,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{td}, J=4.4$, $0.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.11(\mathrm{td}, J=4.4,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.74-2.65(\mathrm{~m}, 2 \mathrm{H}), 1.56(\mathrm{p}, J=7.9,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.37(\mathrm{~h}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 0.93(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}(500 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 165.82,136.71,135.97,130.49,126.63,126.57$, $123.70,42.02,36.57,32.70,32.00,22.71,14.08$.

3f. 1-(2-(tert-butyl)phenyl)azetidin-2-one. 3f was synthesized following General Procedure (ii) from $\mathbf{2 f}$ ($1.90 \mathrm{~g}, 6.67$ mmol, 1.00 equiv.) and $\mathrm{NaO} t \mathrm{Bu}\left(673 \mathrm{mg}, 7.00 \mathrm{mmol}, 1.05\right.$ equiv.). Yield: $1.36 \mathrm{~g}, 100 \%{ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, $\mathrm{CDCl} 3) \delta 7.46(\mathrm{dd}, J=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{td}, J=7.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{dd}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.64(\mathrm{td}, J=4.3,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.10(\mathrm{td}, J=4.3,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.41(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}(500 \mathrm{MHz}, \mathrm{CDCl} 3)$ $\delta 168.19,148.84,135.79,130.22,128.65,127.52,127.15,44.52,36.68,35.20,31.35$.

3g. 1-(4-bromo-2-fluorophenyl)azetidin-2-one. 3g was synthesized following General Procedure (ii) from $\mathbf{2 g}$ (1.71 $\mathrm{g}, 5.26 \mathrm{mmol}, 1.00$ equiv.) and $\mathrm{NaOt} \mathrm{Bu}\left(530 \mathrm{mg}, 5.30 \mathrm{mmol}, 1.05\right.$ equiv.). Yield: $1.00 \mathrm{~g}, 78 \%{ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, $\mathrm{CDCl} 3) \delta 7.91(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.15(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{q}, J=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.15(\mathrm{t}, J=4.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR
(500 MHz, CDCl3) $\delta 165.40,152.52,150.53,127.71,127.68,125.66,125.58,122.06,122.03,119.69,119.51$, $115.66,115.59,42.07,42.01,38.39,38.38$.

3h. 1-(2-(trifluoromethyl)phenyl)azetidin-2-one. 3h was synthesized following General Procedure (ii) from 2h (3.38 $\mathrm{g}, 12.56 \mathrm{mmol}, 1.00$ equiv.) and $\mathrm{NaO} t \mathrm{Bu}\left(1.27 \mathrm{~g}, 13.19 \mathrm{mmol}, 1.05\right.$ equiv.). Yield: $1.62 \mathrm{~g}, 60 \%{ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl} 3) \delta 7.98(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{dd}, J=8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{td}, J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.21$ $(\mathrm{m}, 1 \mathrm{H}), 3.84(\mathrm{td}, J=4.6,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.14(\mathrm{t}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}(500 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 166.86,135.88$, $135.87,132.95,132.94,127.00,126.95,125.58,125.55,124.66,122.49,43.89,43.86,43.82,43.79,37.24$.

General Procedure (iii) for Cyclization of Intermediates 3a-h

Note: Intermediates $\mathbf{4 c}$ and $\mathbf{4 g}$ contained $\mathrm{R}_{1}=\mathrm{Br}$ from the starting aniline,
$\mathbf{3 c}$ and $\mathbf{3 g}$ go directly to $\mathbf{4 c}$ and $\mathbf{4 g}$ with no aryl bromination step (iv)
3a'. 6-benzyl-2,3-dihydroquinolin-4(1H)-one. 3a' was synthesized following General Procedure (iii): To a roundbottom flask containing intermediate $\mathbf{3 a}(3.75 \mathrm{~g}, 15.80 \mathrm{mmol}$, 1 equiv.) dissolved in dichloroethane (150 mL) under inert atmosphere was slowly added TfOH ($4.18 \mathrm{~mL}, 47.40 \mathrm{mmol}, 3$ equiv.). After 1 hour, TLC in 40% ethyl acetate, 60% hexanes showed a decrease in Rf. Reaction was quenched with deionized water, then diluted with dichloromethane. Separated organics and dried over MgSO_{4}, then filtered and concentrated organics onto silica and purified by flash chromatography. Yield: $3.34 \mathrm{~g}, 90 \% .{ }^{1} \mathrm{H} \operatorname{NMR}(500 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 7.72(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.30$ $-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.12(\mathrm{dd}, J=8.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{~s}$, $2 \mathrm{H}), 3.54(\mathrm{td}, J=7.1,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}(500 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 193.92,150.73,141.35$, $136.19,130.89,128.86,128.59,127.37,126.18,119.34,116.35,77.16,42.53,41.08,38.30$. Intermediate 3a' was then brominated following General Procedure (iv) to give $\mathbf{4 a}$.

3b'. 8-methyl-2,3-dihydroquinolin-4(1H)-one. 3b' was synthesized following General Procedure (iii) from 3b (1.18 $\mathrm{g}, 4.9 \mathrm{mmol}, 1$ equiv.) and $\mathrm{TfOH}\left(1.3 \mathrm{~mL}, 14.7 \mathrm{mmol}, 3\right.$ equiv.). Yield: $606 \mathrm{mg}, 52 \%{ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}, \mathrm{CDCl} 3)$
$\delta 7.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~s}, 1 \mathrm{H}), 3.60(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$, $2.68(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (500 MHz, CDCl3) δ 194.16, 150.47, 135.73, 125.61, 122.87, $119.10,117.26,77.16,42.18,37.92,16.95$. Intermediate $\mathbf{3 b}$ ' was then brominated following General Procedure (iv) to give $\mathbf{4 b}$.

4c. 6-bromo-8-ethyl-2,3-dihydroquinolin-4(1H)-one. $\mathbf{4 c}$ was synthesized following General Procedure (iii) from 3c ($1.89 \mathrm{~g}, 7.42 \mathrm{mmol}, 1$ equiv.) and $\mathrm{TfOH}\left(1.31 \mathrm{~mL}, 14.85 \mathrm{mmol}, 2\right.$ equiv.). Yield: $640 \mathrm{mg}, 34 \%{ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, CDCl3) $\delta 7.88(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~s}, 1 \mathrm{H}), 3.61(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.69(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}), 2.46(\mathrm{q}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (500 MHz, CDCl3) δ 192.87, 148.71, 135.93, 130.97, 127.91, 120.59, 110.25, 42.13, 37.69, 23.30, 12.53.

3d'. 8-propyl-2,3-dihydroquinolin-4(1H)-one. 3d' was synthesized following General Procedure (iii) from 3d (1.10 $\mathrm{g}, 5.8 \mathrm{mmol}, 1$ equiv.) and $\mathrm{TfOH}\left(1.54 \mathrm{~mL}, 17.4 \mathrm{mmol}, 3\right.$ equiv.). Yield: $1.06 \mathrm{~g}, 100 \% .{ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, CDCl3) $\delta 7.77(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{dd}, J=7.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 1 \mathrm{H}), 3.60$ $(\mathrm{dd}, J=7.6,6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.69(\mathrm{dd}, J=7.5,6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.46-2.41(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{~h}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.01(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (500 MHz, CDCl3) δ 194.22, 149.96, 134.78, 127.18, 125.74, 119.59, 117.47, 77.16, 42.32, 38.04, $32.84,21.59$, 14.20. Intermediate 3d' was then brominated following General Procedure (iv) to give $\mathbf{4 d}$.

3e'. 8-butyl-2,3-dihydroquinolin-4(1H)-one. 3e' was synthesized following General Procedure (iii) from $\mathbf{3 e}$ (1.23 g , $6.06 \mathrm{mmol}, 1.00$ equiv.) and TfOH ($1.64 \mathrm{~mL}, 18.58 \mathrm{mmol}, 3.07$ equiv.). Yield: $1.174 \mathrm{~g}, 95 \%{ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, $\mathrm{CDCl} 3) \delta 7.80-7.74(\mathrm{~m}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{q}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~s}, 1 \mathrm{H}), 3.61(\mathrm{q}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 2.70(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{q}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.61(\mathrm{~h}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.42$ (hept, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 0.97(\mathrm{q}$, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (500 MHz, CDCl3) $\delta 194.23$, 194.21, 149.95, 134.69, 134.67, 127.38, 125.71, 125.69, $119.59,117.49,42.35,42.33,38.06,38.04,30.57,30.56,30.52,30.51,22.81,22.80,14.08,14.07$. Intermediate $\mathbf{3} \mathbf{e}^{\prime}$ was then brominated following General Procedure (iv) to give $\mathbf{4 e}$.

3f'. 8-(tert-butyl)-2,3-dihydroquinolin-4(1H)-one. 3f' was synthesized following General Procedure (iii) from $\mathbf{3 f}$ ($1.36 \mathrm{~g}, 6.71 \mathrm{mmol}, 1.00$ equiv.) and $\mathrm{TfOH}\left(1.78 \mathrm{~mL}, 20.14 \mathrm{mmol}, 3.00\right.$ equiv.). Yield: $1.02 \mathrm{~g}, 75 \%{ }^{1} \mathrm{H}$ NMR (500
$\mathrm{MHz}, \mathrm{CDCl} 3) \delta 7.83(\mathrm{ddd}, J=7.8,1.6,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{dd}, J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{td}, J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.66-3.56(\mathrm{~m}, 2 \mathrm{H}), 2.69(\mathrm{ddd}, J=7.7,6.8,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.43(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl} 3\right) \delta$ $194.44,150.68,134.42,132.18,126.36,120.68,117.42,42.24,38.03,34.28,30.05$. Intermediate $\mathbf{3 f}$ ' was then brominated following General Procedure (iv) to give $\mathbf{4 f}$.

4g. 6-bromo-8-fluoro-2,3-dihydroquinolin-4(1H)-one. $\mathbf{4 g}$ was synthesized following General Procedure (iii) from 3g ($1.0 \mathrm{~g}, 4.1 \mathrm{mmol}, 1$ equiv.) and TfOH ($1.09 \mathrm{~mL}, 12.3 \mathrm{mmol}, 3$ equiv.). Yield: $508 \mathrm{mg}, 51 \% .{ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, $\mathrm{CDCl} 3) \delta 7.76(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 4.65(\mathrm{~s}, 1 \mathrm{H}), 3.64(\mathrm{td}, J=7.5,7.1,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.73(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (500 MHz, CDCl3) $\delta 191.33,152.16,150.20,140.23,140.13,125.60,122.79,122.62$, 121.78, 108.04, 107.97, 41.94, 37.80 .

3h'. 8-(trifluoromethyl)-2,3-dihydroquinolin-4(1H)-one. 3h' was synthesized following General Procedure (iii) from 3h ($1.62 \mathrm{~g}, 7.52 \mathrm{mmol}, 1.00$ equiv.) and $\mathrm{TfOH}\left(2.00 \mathrm{~mL}, 22.56 \mathrm{mmol}, 3.00\right.$ equiv.). Yield: $850 \mathrm{mg}, 52 \%{ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl3) $\delta 8.05(\mathrm{ddd}, J=7.9,1.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{ddd}, J=7.6,1.7,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{td}, J=7.7,0.9$ $\mathrm{Hz}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 1 \mathrm{H}), 3.69-3.63(\mathrm{~m}, 2 \mathrm{H}), 2.77-2.71(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl} 3\right) \delta 192.59,148.70$, $132.75,132.71,132.66,132.62,132.22,125.64,123.47,120.74,116.46,41.72,37.44$. Intermediate $\mathbf{3 h}$ ' was then brominated following General Procedure (iv) to give $\mathbf{4 h}$.

General Procedure (iv) for Aromatic Bromination to Produce Aryl Bromides 4a-h

OR

4a. 6-benzyl-8-bromo-2,3-dihydroquinolin-4(1H)-one. 4a was synthesized from 3a' following General Procedure (iv): To a round-bottom flask containing $\mathbf{3 a}^{\prime}(501 \mathrm{mg}, 2.11 \mathrm{mmol}, 1.00$ equiv.), dissolved in dichloromethane (20 mL) under inert atmosphere was added N-bromosuccinimide ($375 \mathrm{mg}, 2.11 \mathrm{mmol}, 1.00$ equiv.) at ambient temperature. After 30 minutes, TLC in 40% ethyl acetate, 60% hexanes showed complete conversion. Reaction was reconcentrated onto silica and was purified by flash chromatography. Yield: $640 \mathrm{mg}, 96 \%$. ${ }^{1} \mathrm{H}$ NMR (500 MHz ,
$\mathrm{CDCl} 3) \delta 7.70(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.89(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 2 \mathrm{H}), 3.60(\mathrm{td}, J=7.2,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.69(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl} 3) \delta 193.10,147.40,140.62,138.57,131.31,128.81,128.70,127.07,126.41,120.28,110.32,77.16$, 41.92, 40.75, 37.55.

4b. 6-bromo-8-methyl-2,3-dihydroquinolin-4(1H)-one. 4b was synthesized following General Procedure (iv) from 3b' ($120 \mathrm{mg}, 0.74 \mathrm{mmol}, 1.00$ equiv.) and NBS ($139 \mathrm{mg}, 0.78 \mathrm{mmol}, 1.05$ equiv.). Yield: $170 \mathrm{mg}, 95 \%{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 7.85(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{dd}, J=2.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~s}, 1 \mathrm{H}), 3.61(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $2.71-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (500 MHz, CDCl3) $\delta 192.79,149.26,137.96,127.94,125.36,120.28$, 109.76, 42.07, 37.60, 16.80.

4d. 6-bromo-8-propyl-2,3-dihydroquinolin-4(1H)-one. 4d was synthesized following General Procedure (iv) from 3d' (294 mg, $1.55 \mathrm{mmol}, 1.00$ equiv.) and NBS ($282 \mathrm{mg}, 1.58 \mathrm{mmol}, 1.02$ equiv.). Yield: $350 \mathrm{mg}, 84 \%{ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl3) $\delta 7.87(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 4.42(\mathrm{~s}, 1 \mathrm{H}), 3.63-3.56(\mathrm{~m}, 2 \mathrm{H}), 2.68(\mathrm{td}, J=7.0,1.1$ $\mathrm{Hz}, 2 \mathrm{H}), 2.44-2.37(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.01(\mathrm{td}, J=7.3,1.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl} 3\right) \delta$ 192.90, 148.83, 136.97, 129.68, 127.97, 120.67, 110.07, 77.16, 42.11, 37.68, 32.56, 21.40, 14.14 .

4e. 6-bromo-8-butyl-2,3-dihydroquinolin-4(1H)-one. $\mathbf{4 e}$ was synthesized following General Procedure (iv) from $\mathbf{3 e}$, ($485 \mathrm{mg}, 2.46 \mathrm{mmol}, 1.00$ equiv.) and NBS ($446 \mathrm{mg}, 2.51 \mathrm{mmol}, 1.05$ equiv.). Yield: $575 \mathrm{mg}, 85 \%$. ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl} 3) \delta 7.86(\mathrm{dd}, J=2.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 4.44(\mathrm{~s}, 1 \mathrm{H}), 3.63-3.55(\mathrm{~m}, 2 \mathrm{H}), 2.68(\mathrm{td}, J=7.0,1.1$ $\mathrm{Hz}, 2 \mathrm{H}), 2.47-2.38(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~h}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.96(\mathrm{td}, J=7.3,1.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl} 3) ~ \delta 193.15,149.07,137.11,130.17,128.14,120.89,110.31,42.36,37.92,30.56,30.51,23.00$, 14.29.

4f. 6-bromo-8-(tert-butyl)-2,3-dihydroquinolin-4(1H)-one. 4f was synthesized following General Procedure (iv) from 3f' ($500 \mathrm{mg}, 2.46 \mathrm{mmol}$, 1.00 equiv.) and NBS ($460 \mathrm{mg}, 2.58 \mathrm{mmol}, 1.05$ equiv.). Yield: $570 \mathrm{mg}, 82 \% .{ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl3) $\delta 7.92(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~s}, 1 \mathrm{H}), 3.61(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$,
$2.72-2.63(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl} 3\right) \delta 192.86,149.20,136.79,134.67,128.30,121.49$, $110.17,77.16,41.78,37.37,34.17,29.59$.

4h. 6-bromo-8-(trifluoromethyl)-2,3-dihydroquinolin-4(1H)-one. 4h was synthesized following General Procedure (iv) from 3h' ($850 \mathrm{mg}, 3.95 \mathrm{mmol}, 1.00$ equiv.) and NBS ($739 \mathrm{mg}, 4.15 \mathrm{mmol}, 1.05$ equiv.). Yield: $1.00 \mathrm{~g}, 86 \% .{ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl3) $\delta 8.13(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H}), 3.70-3.63(\mathrm{~m}, 2 \mathrm{H})$, 2.78 - $2.70(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (500 MHz, CDCl3) $\delta 191.23,147.36,135.24,135.19,135.15,135.10,134.57$, $124.64,122.47,122.03,108.56,41.55,37.08$.

General Procedures (v), (v'), and (\boldsymbol{v}^{\prime}), for N-Trifluoroacetyl Protection, Benzylic Bromination \& Substitution of $4 \boldsymbol{b}$ to Produce Intermediates 4i, 4j, and $\mathbf{4 k}$.

For conversion of $\mathbf{3 b}$ to $\mathbf{4 b}$, see above

4b'. 6-bromo-8-methyl-1-(2,2,2-trifluoroacetyl)-2,3-dihydroquinolin-4(1H)-one. 4b' was synthesized following
General Procedure (v): To a round-bottom flask containing intermediate $\mathbf{4 b}$ ($1.17 \mathrm{~g}, 4.89 \mathrm{mmol}$, 1 equiv.) dissolved in dichloromethane (50 mL) under inert atmosphere was added trifluoroacetic anhydride ($1.37 \mathrm{~mL}, 9.78$ mmol, 2 equiv.) at $0^{\circ} \mathrm{C}$. After 4 hours, reaction was reconcentrated onto silica and was purified by flash chromatography, yielding intermediate $\mathbf{4 b}$ ' as a white crystalline solid. Yield: $1.54 \mathrm{~g}, 95 \%{ }^{1} \mathrm{H}$ NMR (400 MHz , $\mathrm{CDCl} 3) \delta 7.99(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{dd}, J=14.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{td}, J=13.9,3.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.03-2.79(\mathrm{~m}, 2 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl3) $\delta 191.77,139.79,139.42,139.10,136.84$, $129.86,128.58,128.36,121.85,117.65,114.79,77.16,46.17,40.13,39.99,18.70,18.48$.

4b’. 6-bromo-8-(bromomethyl)-1-(2,2,2-trifluoroacetyl)-2,3-dihydroquinolin-4(1H)-one. 4b’ was synthesized following General Procedure (\mathbf{v}^{\prime}): To a round-bottom flask containing intermediate $\mathbf{4 b}^{\prime}$ ($478 \mathrm{mg}, 1.42 \mathrm{mmol}, 1.00$
equiv.) under inert atmosphere was added N-bromosuccinimide ($266 \mathrm{mg}, 1.49 \mathrm{mmol}, 1.05$ equiv.) and benzoyl peroxide ($34 \mathrm{mg}, 0.14 \mathrm{mmol}, 0.1$ equiv.), followed by degassed, Ar-sparged $\mathrm{CCl}_{4}(15 \mathrm{~mL})$. Reaction was heated to reflux for 6 hours. Reaction was cooled to $-20^{\circ} \mathrm{C}$, and precipitate was filtered from solution (washing with additional CCl_{4} at $-20^{\circ} \mathrm{C}$). Filtrate was then reconcentrated onto silica and purified by manually-packed silica column chromatography using 10% ethyl acetate, 90% hexanes, as flash chromatography did not provide sufficient separation. Brominated intermediate $\mathbf{4 b}$ ' , was isolated as a white crystalline solid. Yield: $232 \mathrm{mg}, 40 \%$. ${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl3) $\delta 8.11(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.62-4.52(\mathrm{~m}, 1 \mathrm{H}), 4.41(\mathrm{dd}, J=11.7,3.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.32(\mathrm{dd}, J=11.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{tt}, J=14.4,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dddd}, J=16.7,13.7,5.7,3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.94-2.85(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (500 MHz, CDCl3) $\delta 191.09,138.90,136.23,134.42,131.08,130.77,129.92$, 128.99, 122.30, 77.16, 46.11, 46.08, 39.92, 28.94.

4i. 6-bromo-8-(piperidin-1-ylmethyl)-1-(2,2,2-trifluoroacetyl)-2,3-dihydroquinolin-4(1H)-one. 4i was synthesized following General Procedure (\mathbf{v}^{\prime} '): To a round-bottom flask containing intermediate $\mathbf{4 b}$ ' ${ }^{\prime}(140 \mathrm{mg}, 0.34 \mathrm{mmol}, 1$ equiv.) under inert atmosphere was added $\mathrm{K}_{2} \mathrm{CO}_{3}(140 \mathrm{mg}, 1.02 \mathrm{mmol}, 3$ equiv.) and piperidine ($0.04 \mathrm{~mL}, 0.41$ mmol, 1.2 equiv.), followed by DMF (5 mL) at ambient temperature. After 12 hours, reaction was reconcentrated onto silica and was purified by flash chromatography. N-trifluoroacetyl group was partially removed during reaction, so $4 \mathbf{i}$ was carried forward as a $1: 1$ molar equiv. mixture of $\mathrm{N}-\mathrm{TFA}$ protected ($60 \mathrm{mg}, 0.14 \mathrm{mmol}$) and deprotected ($45 \mathrm{mg}, 0.14 \mathrm{mmol}$) intermediates. Net yield: $0.28 \mathrm{mmol}, 82 \%$. Unprotected: ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\mathrm{CDCl} 3) \delta 7.87(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.44(\mathrm{~s}, 2 \mathrm{H}), 2.63$ $(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 4 \mathrm{H}), 1.54(\mathrm{q}, J=5.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.45(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (500 MHz, CDCl3) δ 192.97, $151.75,137.64,128.90,125.72,120.35,108.66,77.16,62.11,54.04,41.38,37.47,26.23,24.28$. TFA-protected: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 7.97(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~s}, 1 \mathrm{H}), 4.43(\mathrm{dd}, J=14.3,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~d}, J=15.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.27(\mathrm{dd}, 2 \mathrm{H}), 2.96-2.72(\mathrm{~m}, 2 \mathrm{H}), 2.17(\mathrm{~s}, 4 \mathrm{H}), 1.54-1.40(\mathrm{~m}, 4 \mathrm{H}), 1.35(\mathrm{q}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (500 MHz, CDCl3) $\delta 191.76,182.72,139.46,138.55,137.67,129.98,129.33,121.93,119.74,117.45,115.15$, $112.87,60.76,54.74,45.98,40.04,25.82,24.25$.

4j. 6-bromo-8-(morpholinomethyl)-1-(2,2,2-trifluoroacetyl)-2,3-dihydroquinolin-4(1H)-one. $\mathbf{4 j}$ was synthesized following General Procedure (v'') from intermediate 4b" ($250 \mathrm{mg}, 0.60 \mathrm{mmol}, 1$ equiv.), and morpholine (3 mL ,
excess.); $\mathrm{K}_{2} \mathrm{CO}_{3}$ was not used here. No loss of trifluoroacetic protecting group observed. Yield: $160 \mathrm{mg}, 63 \%{ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl3) $\delta 8.09(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=$ $13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{t}, J=4.7 \mathrm{~Hz}, 4 \mathrm{H}), 3.41(\mathrm{~s}, 2 \mathrm{H}), 2.96(\mathrm{ddd}, J=18.8,13.4,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{ddd}, J=18.5,3.9$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.37$ (s, 4H). ${ }^{13} \mathrm{C}$ NMR (500 MHz, CDCl3) $\delta 191.46,139.50,138.53,130.11,129.88,122.18,77.16$, 66.72, 60.08, 53.72, 46.11, 40.04 .

4k. 6-bromo-8-(piperazin-1-ylmethyl)-1-(2,2,2-trifluoroacetyl)-2,3-dihydroquinolin-4(1H)-one. 4k was synthesized following General Procedure (v') from 4b', ($280 \mathrm{mg}, 0.67 \mathrm{mmol}$, 1 equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($251 \mathrm{mg}, 1.35 \mathrm{mmol}$, 2 equiv.), and monoBoc-piperazine ($187 \mathrm{mg}, 1.35 \mathrm{mmol}, 2$ equiv.). Some loss of trifluoroacetic protecting group observed, but not isolated. Yield: $212 \mathrm{mg}, 75 \% .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl} 3\right) \delta 7.99(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.51-4.38(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{t}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.38-3.29(\mathrm{~m}, 4 \mathrm{H}), 2.91-2.84(\mathrm{~m}, 1 \mathrm{H}), 2.79(\mathrm{ddd}, J=18.6,3.7,1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 2.21(\mathrm{t}, J=5.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}(500 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 191.48,154.81,139.39,138.36$, $136.59,130.05,129.69,122.08,119.68,117.38,115.09,79.88,59.83,53.09,46.02,43.33,39.99,28.51$.

General Procedure (vi) for Suzuki Coupling in the Synthesis of 5a-l

5a. 6,8-dibenzyl-2,3-dihydroquinolin-4(1H)-one. 5a was synthesized following General Procedure (vi): To a round-bottom flask containing $4 \mathbf{a}$ ($236 \mathrm{mg}, 0.75 \mathrm{mmol}$, 1 equiv.), under inert atmosphere was added degassed, argon-sparged 3:1 acetone/water (12 mL), followed by $\operatorname{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}$ ($55 \mathrm{mg}, 0.08 \mathrm{mmol}, 0.1$ equiv.), benzyl boronic acid pinacol ester ($0.50 \mathrm{~mL}, 2.24 \mathrm{mmol}$, 2 equiv.), and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($310 \mathrm{mg}, 2.24 \mathrm{mmol}, 3$ equiv.), then heated to reflux $\left(85^{\circ} \mathrm{C}\right)$ overnight. After 12 hours, reaction mixture was cooled to ambient temperature and diluted with ethyl acetate and aqeuous sodium bicarbonate. Organics were isolated, dried over MgSO_{4}, filtered and reconcentrated onto silica.

Crude reaction mixture was purified by flash chromatography. Yield: $210 \mathrm{mg}, 86 \%$. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}, \mathrm{CDCl} 3) \boldsymbol{\delta}$ $7.72(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.19(\mathrm{dd}, J=7.7,4.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.14(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=$ $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~s}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 2 \mathrm{H}), 3.43(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl} 3) \delta 194.17,149.04,141.42,138.31,137.54,130.25,128.99,128.85,128.60,128.32,126.91,126.20$, $126.16,125.69,119.86,42.25,41.13,37.92,37.68$.

5b. 6-benzyl-8-methyl-2,3-dihydroquinolin-4(1H)-one. 5b was synthesized following General Procedure (vi) from 4b ($300 \mathrm{mg}, 1.25 \mathrm{mmol}, 1$ equiv.), benzyl boronic acid pinacol ester ($0.56 \mathrm{~mL}, 2.50 \mathrm{mmol}$, 2 equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (518 $\mathrm{mg}, 3.75 \mathrm{mmol}, 3$ equiv.) and $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}$ ($88 \mathrm{mg}, 0.12 \mathrm{mmol}, 0.1$ equiv.). Yield: $223 \mathrm{mg}, 71 \% .{ }^{1} \mathrm{H} \mathrm{NMR}$ (500 $\mathrm{MHz}, \mathrm{CDCl} 3) \delta 7.64(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.04-7.02(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~s}$, $2 \mathrm{H}), 3.59(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (500 MHz, CDCl3) $\delta 194.24,149.08$, $141.53,136.80,130.14,128.86,128.59,126.14,125.32,123.34,119.11,42.42,41.17,38.06,25.00,17.05$.

5c. 6-benzyl-8-ethyl-2,3-dihydroquinolin-4(1H)-one. 5c was synthesized following General Procedure (vi) from 4c ($200 \mathrm{mg}, 0.79 \mathrm{mmol}$, 1 equiv.), benzyl boronic acid pinacol ester ($0.35 \mathrm{~mL}, 1.57 \mathrm{mmol}, 2$ equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (326 mg , $2.36 \mathrm{mmol}, 3$ equiv.) and $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}\left(58 \mathrm{mg}, 0.08 \mathrm{mmol}, 0.1\right.$ equiv.). Yield: $120 \mathrm{mg}, 57 \% .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\mathrm{CDCl} 3) \delta 7.64(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.13(\mathrm{~m}, 3 \mathrm{H}), 7.05(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.39-4.31$ $(\mathrm{m}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 2 \mathrm{H}), 3.57(\mathrm{td}, J=7.1,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.71-2.64(\mathrm{~m}, 2 \mathrm{H}), 2.44(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.22(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl3) $\delta 194.38$, 148.55, 141.51, 134.74, 134.71, 130.14, 128.99, 128.81, 128.55, $126.09,125.24,125.18,119.27,75.12,42.38,41.23,38.07,24.98,24.94,23.58,12.87,12.85$.

5d. 6-benzyl-8-propyl-2,3-dihydroquinolin-4(1H)-one. 5d was synthesized following General Procedure (vi) from $4 \mathbf{d}\left(102 \mathrm{mg}, 0.38 \mathrm{mmol}, 1\right.$ equiv.), benzyl boronic acid pinacol ester ($0.17 \mathrm{~mL}, 0.76 \mathrm{mmol}, 2$ equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (157 $\mathrm{mg}, 1.14 \mathrm{mmol}, 3$ equiv.) and $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(28 \mathrm{mg}, 0.04 \mathrm{mmol}, 0.1$ equiv.), with the exception that the reaction was run in a microwave at $110^{\circ} \mathrm{C}$ for 30 minutes. Yield: $35 \mathrm{mg}, 32 \% .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl} 3\right) \delta 7.65(\mathrm{~d}, J=2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.27(\mathrm{dd}, J=8.5,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.03(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 2 \mathrm{H}), 3.58(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 2.68(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{t}, J=3.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.62(\mathrm{~h}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 0.98(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.

5e. 6-benzyl-8-butyl-2,3-dihydroquinolin-4(1H)-one. 5e was synthesized following General Procedure (vi) from $\mathbf{4 e}$ ($300 \mathrm{mg}, 1.06 \mathrm{mmol}, 1$ equiv.), benzyl boronic acid pinacol ester ($0.47 \mathrm{~mL}, 2.12 \mathrm{mmol}, 2$ equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (440 mg , $3.18 \mathrm{mmol}, 3$ equiv.) and $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(81 \mathrm{mg}, 0.11 \mathrm{mmol}, 0.1$ equiv.), except reaction was run in microwave at $110^{\circ} \mathrm{C}$ for 30 minutes. Yield: $78 \mathrm{mg}, 25 \%{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl} 3\right) \delta 7.64(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 2 \mathrm{H})$, $7.18(\mathrm{td}, J=8.6,7.8,3.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.03(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 2 \mathrm{H}), 3.58(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.70-2.67(\mathrm{~m}$, $2 \mathrm{H}), 2.41(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.59-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.35(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl} 3) \delta 194.25,141.53,135.81,134.70,128.84,128.58,127.96,126.55,126.12,125.76,125.40,42.52$, 41.23, 38.11, 30.68, 30.64, 22.83, 14.06.

5f. 6-benzyl-8-(tert-butyl)-2,3-dihydroquinolin-4(1H)-one. 5f was synthesized following General Procedure (vi) from $\mathbf{4 f}\left(300 \mathrm{mg}, 1.06 \mathrm{mmol}, 1\right.$ equiv.), benzyl boronic acid pinacol ester ($0.47 \mathrm{~mL}, 2.12 \mathrm{mmol}, 2$ equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($440 \mathrm{mg}, 3.18 \mathrm{mmol}, 3$ equiv.) and $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}$ ($81 \mathrm{mg}, 0.11 \mathrm{mmol}, 0.1$ equiv.), except reaction was run in microwave at $110^{\circ} \mathrm{C}$ for 2 hours. Yield: $87 \mathrm{mg}, 28 \% .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl} 3\right) \delta 7.70(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-$ $7.37(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 2 \mathrm{H}), 3.62-3.57(\mathrm{~m}$, $2 \mathrm{H}), 2.69-2.65(\mathrm{~m}, 2 \mathrm{H}), 1.39(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl} 3\right) \delta 194.52,149.25,141.50,133.32$, $129.81,128.83,128.56,126.08,125.87,120.60,117.41,42.34,41.45,38.10,34.27,30.06$.

5g. 6-benzyl-8-fluoro-2,3-dihydroquinolin-4(1H)-one. 5g was synthesized following General Procedure (vi) from $\mathbf{4 g}$ ($75 \mathrm{mg}, 0.31 \mathrm{mmol}, 1$ equiv.), benzyl boronic acid pinacol ester ($0.14 \mathrm{~mL}, 0.61 \mathrm{mmol}, 2$ equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (128 mg , 0.92 mmol, 3 equiv.) and $\operatorname{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}$ ($23 \mathrm{mg}, 0.03 \mathrm{mmol}, 0.1$ equiv.). Yield: $29 \mathrm{mg}, 37 \% .{ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, $\mathrm{CDCl} 3) \delta 7.54-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.94(\mathrm{dd}, J=11.7,1.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 2 \mathrm{H}), 3.61(\mathrm{td}, J=7.5,7.1,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.75-2.68(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (500 MHz, $\mathrm{CDCl} 3) \delta 192.90,152.40,150.47,140.70,139.68,139.57,130.23,128.89,128.73,126.45,122.43,120.44,120.30$, 42.29, 41.10, 38.20 .

5h. 6-benzyl-8-(trifluoromethyl)-2,3-dihydroquinolin-4(1H)-one. 5h was synthesized following General Procedure (vi) from 4 h ($300 \mathrm{mg}, 1.02 \mathrm{mmol}, 1$ equiv.), benzyl boronic acid pinacol ester ($0.45 \mathrm{~mL}, 2.04 \mathrm{mmol}, 2$ equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (423 mg, $3.06 \mathrm{mmol}, 3$ equiv.) and $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}$ ($73 \mathrm{mg}, 0.10 \mathrm{mmol}, 0.1$ equiv.). Yield: $110 \mathrm{mg}, 35 \% .{ }^{1} \mathrm{H}$

NMR (500 MHz, CDCl3) $\delta 7.92(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{dd}, J=8.2,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-$ $7.18(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.14(\mathrm{~m}, 2 \mathrm{H}), 4.96(\mathrm{~s}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 2 \mathrm{H}), 3.64(\mathrm{td}, J=7.0,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.75-2.67(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (500 MHz, CDCl3) $\delta 192.72,147.26,140.45,133.27,132.02,129.55,128.81,126.54,120.84,41.84,40.82$, 37.57.

5i. 6-benzyl-8-(piperidin-1-ylmethyl)-2,3-dihydroquinolin-4(1H)-one. 5i was synthesized following General Procedure (vi) from mixture of $\mathbf{4 i}$ previously described ($105 \mathrm{mg}, 0.28 \mathrm{mmol}$, 1 equiv.), benzyl boronic acid pinacol ester ($0.10 \mathrm{~mL}, 0.43 \mathrm{mmol}, 1.5$ equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}\left(120 \mathrm{mg}, 0.86 \mathrm{mmol}, 3\right.$ equiv.) and $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}$ ($21 \mathrm{mg}, 0.028 \mathrm{mmol}$, 0.1 equiv.). Yield: $88 \mathrm{mg}, 92 \% .{ }^{1} \mathrm{H} \operatorname{NMR}(500 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 7.58(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.14-7.06(\mathrm{~m}, 3 \mathrm{H}), 6.85(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 2 \mathrm{H}), 3.46(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{~s}, 2 \mathrm{H}), 2.56(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 2 \mathrm{H}), 2.29-2.20(\mathrm{~m}, 4 \mathrm{H}), 1.46(\mathrm{p}, J=5.4 \mathrm{~Hz}, 4 \mathrm{H}), 1.37(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl} 3\right) \delta$ 194.42, 151.61, $141.51,136.59,129.02,128.82,128.54,126.33,126.09,119.16,75.12,62.58,54.09,54.03,41.75,41.06,37.90$, 26.26, 24.97, 24.38.

5j. 6-benzyl-8-(morpholinomethyl)-2,3-dihydroquinolin-4(1H)-one. 5j was synthesized following General Procedure (vi) from $\mathbf{4 j}$ ($160 \mathrm{mg}, 0.38 \mathrm{mmol}, 1$ equiv.), benzyl boronic acid pinacol ester ($0.13 \mathrm{~mL}, 0.57 \mathrm{mmol}, 1.5$ equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($160 \mathrm{mg}, 1.14 \mathrm{mmol}, 3$ equiv.) and $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}\left(30 \mathrm{mg}, 0.04 \mathrm{mmol}, 0.1\right.$ equiv.). Yield: $75 \mathrm{mg}, 60 \% .{ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl3) $\delta 7.68(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 2 \mathrm{H}), 7.22-7.13(\mathrm{~m}, 3 \mathrm{H}), 6.96(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.83(\mathrm{~s}, 2 \mathrm{H}), 3.68(\mathrm{t}, J=4.7 \mathrm{~Hz}, 4 \mathrm{H}), 3.56(\mathrm{p}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.47(\mathrm{~s}, 2 \mathrm{H}), 2.65(\mathrm{dd}, J=7.7,6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.43-$ 2.37 (m, 4H). ${ }^{13} \mathrm{C}$ NMR (500 MHz, CDCl3) $\delta 194.16,151.08,141.36,136.94,129.29,128.78,128.75,128.56$, $128.53,128.35,126.77,126.14,119.35,77.16,67.10,62.16,53.22,53.15,41.75,41.01,37.83,24.96$.

5k. 6-benzyl-8-(piperazin-1-ylmethyl)-2,3-dihydroquinolin-4(1H)-one. 5k was synthesized following General Procedure (vi) from $4 \mathbf{k}$ ($212 \mathrm{mg}, 0.50 \mathrm{mmol}, 1$ equiv.), benzyl boronic acid pinacol ester ($0.22 \mathrm{~mL}, 1.00 \mathrm{mmol}, 2$ equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($207 \mathrm{mg}, 1.50 \mathrm{mmol}, 3$ equiv.) and $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(37 \mathrm{mg}, 0.05 \mathrm{mmol}, 0.1$ equiv.). Yield: $84 \mathrm{mg}, 39 \%$. ${ }^{1} \mathrm{H} \operatorname{NMR}(500 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 7.69(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 3 \mathrm{H}), 6.94(\mathrm{~d}, J=2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 2 \mathrm{H}), 3.55(\mathrm{ddd}, J=7.7,5.3,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.48(\mathrm{~s}, 2 \mathrm{H}), 3.45-3.36(\mathrm{~m}, 4 \mathrm{H}), 2.68-$
$2.61(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 4 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl} 3\right) \delta 194.18,178.30,154.82,151.11,141.40$, $136.90,129.39,128.83,128.61,126.84,126.19,122.69,119.45,80.00,61.88,52.54,41.79,41.05,37.88,28.54$.
51. 6-benzyl-8-phenethyl-2,3-dihydroquinolin-4(1H)-one. 5l was synthesized following General Procedure (vi) from 4a ($130 \mathrm{mg}, 0.41 \mathrm{mmol}, 1$ equiv.), phenethyl boronic acid MIDA ester ($161 \mathrm{mg}, 0.62 \mathrm{mmol}, 1.5$ equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($171 \mathrm{mg}, 1.24 \mathrm{mmol}, 3$ equiv.) and $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}$ ($30 \mathrm{mg}, 0.04 \mathrm{mmol}, 0.1$ equiv.). Yield: $65 \mathrm{mg}, 46 \%{ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl} 3) \delta 7.67(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 4 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{dd}, J=9.7,7.7 \mathrm{~Hz}, 4 \mathrm{H}), 7.02(\mathrm{~d}, J$ $=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 2 \mathrm{H}), 3.39(\mathrm{td}, J=7.7,7.1,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.93-2.87(\mathrm{~m}, 2 \mathrm{H}), 2.73(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.66-$ $2.60(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (500 MHz, CDCl3) $\delta 194.30,148.77,141.43,141.25,136.03,130.18,128.79,128.65$, $128.55,128.48,126.93,126.40,126.09,125.71,119.56,42.37,41.14,37.97,35.30,32.85$.

General Procedure (vii) for Carbonylation of $4 \boldsymbol{a}$ to the Carboxylic Acid Intermediate $4 \mathbf{a}^{\prime}$ and Methyl Ester $5 \boldsymbol{n}$

4a'. 6-benzyl-4-oxo-1,2,3,4-tetrahydroquinoline-8-carboxylic acid. 4a' was synthesized following General Procedure (vii): To a flame-dried glass microwave tube containing degassed 4:1 DMF: $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ under inert atmosphere was added $\mathbf{4 a}$ ($305 \mathrm{mg}, 0.97 \mathrm{mmol}, 1$ equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($200 \mathrm{mg}, 1.45 \mathrm{mmol}, 1.5$ equiv.) and $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}$ ($71 \mathrm{mg}, 0.097 \mathrm{mmol}, 0.1$ equiv.). To a separate 30 mL pressure tube containing $2 \mathrm{M} \mathrm{NaOH}(15 \mathrm{~mL})$ stirring, with a port from the septum of the pressure tube leading into the reaction solution, was added oxalyl chloride (1 mL total volume). Carbon monoxide generated in situ from the decomposition of oxalyl chloride bubbled through the vented reaction mixture 10 minutes. Vent was replaced with a balloon filled with CO , and heated at $80^{\circ} \mathrm{C}$ for 5 hours. After cooling to ambient temperature, reaction solvents were removed under vacuum and residue was resuspended in ethyl acetate and water at pH 1 . Organics were isolated, dried with MgSO_{4}, filtered, and reconcentrated onto silica. Reaction was purified by flash chromatography. Yield: $150 \mathrm{mg}, 55 \% .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 8.04(\mathrm{~s}, 1 \mathrm{H})$, $8.00(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 2 \mathrm{H}), 3.65(\mathrm{t}, J=$
$7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.73-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.12(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (500 MHz, CDCl3) δ 193.29, 172.27, 152.62, 140.82, $139.57,134.93,128.79,128.75,128.29,126.41,120.42,111.83,40.83,37.24$.

5n. methyl 6-benzyl-4-oxo-1,2,3,4-tetrahydroquinoline-8-carboxylate. 5n was synthesized following General Procedure (vii) from $4 \mathbf{4}$ ($220 \mathrm{mg}, 0.70 \mathrm{mmol}, 1$ equiv.), oxalyl chloride (1 mL , excess), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($142 \mathrm{mg}, 1.04 \mathrm{mmol}$, 1.5 equiv.) and $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}$ ($51 \mathrm{mg}, 0.07 \mathrm{mmol}, 0.1$ equiv.) in $1: 1 \mathrm{DMF}: \mathrm{MeOH}$. Yield: $103 \mathrm{mg}, 50 \%{ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl} 3) \delta 7.93(\mathrm{~s}, 2 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.14(\mathrm{~m}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{td}, J=7.1$, $2.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.69(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl} 3$) δ 192.93, 167.99, 152.05, 140.82, 133.83, $128.61,128.55,127.84,126.28,120.14,112.39,51.81,40.71,40.70,37.17$.

General Procedure (viii) for Amide Coupling of 4a' to Produce 5m, 5o, 5p

5m. 6-benzyl-N-ethyl-4-oxo-1,2,3,4-tetrahydroquinoline-8-carboxamide. 5m was synthesized following General Procedure (viii): To a pear-shaped flask containing intermediate $\mathbf{4 a}^{\prime}$ ($78 \mathrm{mg}, 0.28 \mathrm{mmol}, 1.0$ equiv.) dissolved in DMF (3 mL) under inert atmosphere was added PyBOP ($172 \mathrm{mg}, 0.33 \mathrm{mmol}, 1.2$ equiv.), ethylamine hydrochloride ($27 \mathrm{mg}, 0.33 \mathrm{mmol}, 1.2$ equiv.) and DIPEA ($0.15 \mathrm{~mL}, 0.84 \mathrm{mmol}, 3.0$ equiv.), and stirred at ambient temperature. After 3 hours, solvent was removed under reduced pressure and reconcentrated residue onto silica. Purified by flash chromatography. Product was highly fluorescent under long-wave UV (285 nm) light. Yield: $66 \mathrm{mg}, 77 \%{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 7.86(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.21(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 3.87(\mathrm{~s}, 2 \mathrm{H}), 3.59(\mathrm{td}, J=7.8,7.2,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.42(\mathrm{p}, J=7.1,6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.67(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.23(\mathrm{t}, J$ $=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
50. 6-benzyl-4-oxo-N-phenyl-1,2,3,4-tetrahydroquinoline-8-carboxamide. $\mathbf{6 0}$ was synthesized following General Procedure (viii) from 4a' ($40 \mathrm{mg}, 0.14 \mathrm{mmol}, 1.0$ equiv.), aniline ($0.02 \mathrm{~mL}, 0.18 \mathrm{mmol}, 1.2$ equiv.), PyBOP (94 mg ,
$0.18 \mathrm{mmol}, 1.2$ equiv.) and DIPEA ($0.07 \mathrm{~mL}, 0.42 \mathrm{mmol}, 3.0$ equiv.). Product was highly fluorescent under 385 nm light. Yield: $30 \mathrm{mg}, 60 \% .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 7.89(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.85(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{dt}, J=8.8,1.8$ $\mathrm{Hz}, 2 \mathrm{H}$), 7.46 (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.37 (t, $J=7.8 \mathrm{~Hz}, 3 \mathrm{H}$), 7.27 (dd, $J=7.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.17$ (m, 1H), 7.16 $(\mathrm{d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.88(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.59(\mathrm{tt}, J=7.8,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.67(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(500$ $\mathrm{MHz}, \mathrm{CDCl} 3) \delta 193.52,167.11,151.49,140.71,137.50,133.96,132.34,129.40,129.21,129.02,128.79,128.01$, $126.51,125.05,120.95,120.71,120.51,117.83,77.16,40.96,40.85,37.39$.

5p. N,6-dibenzyl-4-oxo-1,2,3,4-tetrahydroquinoline-8-carboxamide. 5p was synthesized following General Procedure (viii) from 4a' ($43 \mathrm{mg}, 0.15 \mathrm{mmol}$, 1.0 equiv.), benzylamine ($0.02 \mathrm{~mL}, 0.18 \mathrm{mmol}, 1.2$ equiv.), PyBOP ($95 \mathrm{mg}, 0.18 \mathrm{mmol}, 1.2$ equiv.) and DIPEA ($0.13 \mathrm{~mL}, 0.75 \mathrm{mmol}, 5$ equiv.). Yield: $40 \mathrm{mg}, 70 \%{ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl} 3) \delta 8.06(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.15-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.51(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 2 \mathrm{H}), 3.58(\mathrm{td}, J=7.6,7.2,2.3$ $\mathrm{Hz}, 2 \mathrm{H}), 2.66(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.22(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl} 3$) δ 193.62, 168.60, 151.49, 140.78, $138.05,133.96,132.03,128.91,128.74,128.70,127.89,127.77,127.73,126.39,120.40,117.30,43.88,40.95$, 40.78, 37.40, 22.22.

General Procedure (ix) for Reductive Amination in the Preparation of Chiral Sulfinamides 6a-q

6a. (R)-N-((R)-6,8-dibenzyl-1,2,3,4-tetrahydroquinolin-4-yl)-2-methylpropane-2-sulfinamide. 6a was synthesized following General Procedure (ix): To a pear-shaped flask containing intermediate $\mathbf{5 a}$ ($70 \mathrm{mg}, 0.21 \mathrm{mmol}, 1$ equiv.) under inert atmosphere was added (R)-2-methyl-2-propanesulfinamide ($104 \mathrm{mg}, 0.86 \mathrm{mmol}, 4$ equiv.), followed by THF (3 mL) at ambient temperature. Reaction mixture was cooled to $0^{\circ} \mathrm{C}$ before adding $\mathrm{Ti}(\mathrm{OEt})_{4}(0.27 \mathrm{~mL}, 1.28$ mmol, 6 equiv.). Upon reaching ambient temperature, reflux condenser under inert atmosphere was affixed and reaction was heated to reflux. After 48 hours, reaction was cooled to ambient temperature, then transferred to a round-bottom flask containing $\mathrm{NaBH}_{4}\left(50 \mathrm{mg}, 1.28 \mathrm{mmol}, 6\right.$ equiv.) under inert atmosphere in THF (3 mL) at $-78^{\circ} \mathrm{C}$ via syringe. Reaction flask was warmed to ambient temperature, and after 3 hours was quenched with saturated aqeuous NaCl . Reaction mixture was diluted with ethyl acetate and saturated aqeuous ammonium chloride. Organics were isolated and dried over MgSO_{4}, filtered and concentrated onto silica. Crude reaction mixture was purified by flash chromatography. Product had a much lower Rf than starting material by TLC in 80% ethyl acetate, 20% hexanes. Yield: $38 \mathrm{mg}, 41 \% .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl} 3\right) \delta 7.31-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.21-7.11(\mathrm{~m}, 5 \mathrm{H}), 7.06(\mathrm{~d}, J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.57-4.48(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 2 \mathrm{H}), 3.25(\mathrm{td}, J=11.8$, $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{dt}, J=11.7,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.07-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.81(\mathrm{tt}, J=13.2,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (500 MHz, CDCl3) $\delta 141.97,141.31,139.10,131.26,129.81,129.21,128.81,128.75,128.53,128.46$, $126.50,125.91,124.70,121.02,77.16,55.42,49.86,41.15,37.88,36.68,28.28,22.76$.

6b. (R)-N-((R)-6-benzyl-8-methyl-1,2,3,4-tetrahydroquinolin-4-yl)-2-methylpropane-2-sulfinamide. 6b was synthesized following General Procedure (ix) from 5b (75 mg, 0.30 mmol , 1 equiv.), (R)-2-methyl-2propanesulfinamide ($106 \mathrm{mg}, 0.90 \mathrm{mmol}, 3$ equiv.), and $\mathrm{Ti}(\mathrm{OEt})_{4}\left(0.38 \mathrm{~mL}, 1.80 \mathrm{mmol}, 6\right.$ equiv.), then NaBH_{4} (68 $\mathrm{mg}, 1.80 \mathrm{mmol}, 6$ equiv.). Yield: not calculated. ${ }^{1} \mathrm{H} \operatorname{NMR}(500 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 7.29-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.12(\mathrm{~m}$, $3 \mathrm{H}), 7.00(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{q}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.40(\mathrm{td}, J$ $=11.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{dt}, J=11.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-2.06(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.89(\mathrm{dddd}, J=16.7,8.1,4.1$, $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.21(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (500 MHz, CDCl3) $\delta 142.09,141.30,130.69,129.79,128.86,128.50,125.94$, $122.12,120.17,116.96,55.42,49.71,41.19,36.77,28.34,22.80,22.25,17.31$.

6c. (R)-N-((R)-6-benzyl-8-ethyl-1,2,3,4-tetrahydroquinolin-4-yl)-2-methylpropane-2-sulfinamide. 6c was synthesized following General Procedure (ix) from 5c (100 mg, $0.38 \mathrm{mmol}, 1$ equiv.), (R)-2-methyl-2-
propanesulfinamide ($137 \mathrm{mg}, 1.13 \mathrm{mmol}, 3$ equiv.), and $\mathrm{Ti}(\mathrm{OEt})_{4}\left(0.47 \mathrm{~mL}, 2.26 \mathrm{mmol}, 6\right.$ equiv.), then $\mathrm{NaBH}_{4}(85$ $\mathrm{mg}, 2.26 \mathrm{mmol}, 6$ equiv.). Yield: not calculated. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl} 3$) $87.28-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.16(\mathrm{~m}$, $2 \mathrm{H}), 7.16-7.14(\mathrm{~m}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{q}, J=2.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.84$ (d, J $=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{td}, J=11.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.33-3.26(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.08(\mathrm{dq}, J=13.6,3.2$ $\mathrm{Hz}, 1 \mathrm{H}), 1.89(\mathrm{ttd}, J=12.1,3.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.23(\mathrm{t}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl} 3\right) \delta$ $142.10,140.76,129.83,128.85,128.52,128.49,128.48,127.72,125.92,120.36,55.42,55.31,49.81,47.33,41.31$, $36.72,28.35,24.98,23.80,23.73,22.80,22.65,12.84$.

6d. (R)-N-((R)-6-benzyl-8-propyl-1,2,3,4-tetrahydroquinolin-4-yl)-2-methylpropane-2-sulfinamide. $\quad \mathbf{6 d}$ was synthesized following General Procedure (ix) from $5 \mathbf{5}$ ($88 \mathrm{mg}, 0.31 \mathrm{mmol}, 1$ equiv.), (R)-2-methyl-2propanesulfinamide ($115 \mathrm{mg}, 0.95 \mathrm{mmol}, 3$ equiv.), and $\mathrm{Ti}(\mathrm{OEt})_{4}\left(0.40 \mathrm{~mL}, 1.89 \mathrm{mmol}, 6\right.$ equiv.), then $\mathrm{NaBH}_{4}(71$ $\mathrm{mg}, 1.89 \mathrm{mmol}, 6$ equiv.). Yield: $20 \mathrm{mg}, 17 \% .{ }^{1} \mathrm{H} \operatorname{NMR}(500 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 7.21-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=2.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.12-7.08(\mathrm{~m}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.79-3.75(\mathrm{~m}, 2 \mathrm{H}), 3.29(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{dt}, J=11.5,4.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{t}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 2.02(\mathrm{dq}$, $J=13.7,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.84-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.55(\mathrm{qd}, J=7.2,4.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.15(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 17 \mathrm{H}), 0.93(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 141.26,131.32,130.35,129.62,128.78,128.67,128.61,128.44,128.35$, $128.26,128.12,125.82,121.94,108.32,55.39,49.57,41.12,36.44,32.65,27.75,22.64,21.17,14.13$.

6e. (R)-N-((R)-6-benzyl-8-butyl-1,2,3,4-tetrahydroquinolin-4-yl)-2-methylpropane-2-sulfinamide. 6e was synthesized following General Procedure (ix) from $5 \mathbf{5}$ ($78 \mathrm{mg}, 0.27 \mathrm{mmol}, 1$ equiv.), (R)-2-methyl-2propanesulfinamide ($97 \mathrm{mg}, 0.80 \mathrm{mmol}, 3$ equiv.), and $\mathrm{Ti}(\mathrm{OEt})_{4}\left(0.34 \mathrm{~mL}, 1.60 \mathrm{mmol}, 6\right.$ equiv.), then $\mathrm{NaBH}_{4}(61$ $\mathrm{mg}, 1.60 \mathrm{mmol}, 6$ equiv.). Yield: $89 \mathrm{mg}, 84 \%$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 7.20-7.14$ (m, 1H), 7.11 (d, $J=7.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.11-7.03(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{q}, J=$ $3.8,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.38-3.17(\mathrm{~m}, 2 \mathrm{H}), 2.31(\mathrm{dt}, J=21.0,7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.02(\mathrm{ddq}, J=13.3$, $6.5,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.26(\mathrm{~m}, 2 \mathrm{H}), 1.14(\mathrm{dd}, J=5.0,1.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.88$ (ddd, $J=12.4,7.8,6.8 \mathrm{~Hz}, 3 \mathrm{H}$) ${ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 142.12$, 131.41, 130.49, 129.57, 128.85, 128.81, $128.53,128.49,128.39,125.92,120.50,117.03,55.44,49.88,41.28,36.77,30.83,30.67,28.42,23.01,22.82,14.11$.

6f. (R)-N-((R)-6-benzyl-8-(tert-butyl)-1,2,3,4-tetrahydroquinolin-4-yl)-2-methylpropane-2-sulfinamide. $\quad \mathbf{6 f}$ was synthesized following General Procedure (ix) from 5f ($87 \mathrm{mg}, 0.30 \mathrm{mmol}$, 1 equiv.), (R)-2-methyl-2propanesulfinamide ($109 \mathrm{mg}, 0.90 \mathrm{mmol}, 3$ equiv.), and $\mathrm{Ti}(\mathrm{OEt})_{4}\left(0.38 \mathrm{~mL}, 1.80 \mathrm{mmol}, 6\right.$ equiv.), then NaBH_{4} (68 $\mathrm{mg}, 1.80 \mathrm{mmol}, 6$ equiv.). Yield: $27 \mathrm{mg}, 23 \% .{ }^{1} \mathrm{H} \operatorname{NMR}(500 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 7.18(\mathrm{~s}, 1 \mathrm{H}), 7.14-7.10(\mathrm{~m}, 2 \mathrm{H})$, $7.10-7.06(\mathrm{~m}, 1 \mathrm{H}), 6.93(\mathrm{~s}, 2 \mathrm{H}), 6.57(\mathrm{tt}, J=7.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.81-3.72(\mathrm{~m}, 2 \mathrm{H}), 3.34-$ $3.21(\mathrm{~m}, 2 \mathrm{H}), 2.02-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.81(\mathrm{tdd}, J=16.7,8.4,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.31-1.25(\mathrm{~m}, 9 \mathrm{H}), 1.16-1.11(\mathrm{~m}, 9 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (500 MHz, CDCl 3$) \delta 142.01,141.55,133.25,131.16,129.43,129.16,129.13,128.92,128.84,128.71$, $128.66,128.45,127.33,127.17,126.46,126.34,125.88,121.13,116.66,77.16,55.40,50.33,41.45,36.56,29.91$, 29.70, 28.06, 22.80 .

6g. (R)-N-((R)-6-benzyl-8-fluoro-1,2,3,4-tetrahydroquinolin-4-yl)-2-methylpropane-2-sulfinamide. $\quad \mathbf{6 g} \quad$ was synthesized following General Procedure (ix) from 5 g ($25 \mathrm{mg}, 0.10 \mathrm{mmol}$, 1 equiv.), (R)-2-methyl-2propanesulfinamide ($36 \mathrm{mg}, 0.30 \mathrm{mmol}, 3$ equiv.), and $\mathrm{Ti}(\mathrm{OEt})_{4}\left(0.12 \mathrm{~mL}, 0.60 \mathrm{mmol}, 6\right.$ equiv.), then $\mathrm{NaBH}_{4}(23$ $\mathrm{mg}, 0.60 \mathrm{mmol}, 6$ equiv.). Yield: $16 \mathrm{mg} ; 53 \%$. ${ }^{1} \mathrm{H} \operatorname{NMR}(500 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 7.27(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.14$ $(\mathrm{m}, 3 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 6.70(\mathrm{dd}, J=12.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{q}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~d}, J=3.7 \mathrm{~Hz}$, $2 \mathrm{H}), 3.36(\mathrm{td}, J=11.6,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{dt}, J=11.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{dq}, J=13.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.97-1.88(\mathrm{~m}$, 1H), $1.62(\mathrm{~s}, 1 \mathrm{H}), 1.22(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl} 3\right) \delta 141.34,131.91,129.73,128.88,128.62$, $126.23,125.41,122.55,114.87,114.73,110.15,55.58,49.28,41.10,36.09,28.36,22.79$.

6h. (R)-N-((R)-6-benzyl-8-(trifluoromethyl)-1,2,3,4-tetrahydroquinolin-4-yl)-2-methylpropane-2-sulfinamide. $\mathbf{6 h}$ was synthesized following General Procedure (ix) from 5h ($110 \mathrm{mg}, 0.36 \mathrm{mmol}$, 1 equiv.), (R)-2-methyl-2propanesulfinamide ($132 \mathrm{mg}, 1.08 \mathrm{mmol}, 3$ equiv.), and $\mathrm{Ti}(\mathrm{OEt})_{4}\left(0.45 \mathrm{~mL}, 2.16 \mathrm{mmol}, 6\right.$ equiv.), then NaBH_{4} (82 $\mathrm{mg}, 2.16 \mathrm{mmol}, 6$ equiv.). Yield: $128 \mathrm{mg}, 86 \%{ }^{1} \mathrm{H} \operatorname{NMR}(500 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 7.30-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.15(\mathrm{~m}$, $4 \mathrm{H}), 4.59(\mathrm{~s}, 1 \mathrm{H}), 4.54(\mathrm{q}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.79(\mathrm{~s}, 2 \mathrm{H}), 3.41(\mathrm{td}, J=12.0,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{dt}, J=7.8,4.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.10(\mathrm{dq}, J=13.8,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{ddt}, J=17.0,12.9,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.22(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (500 MHz, $\mathrm{CDCl} 3) \delta 141.13,140.96,134.78,128.80,128.68,127.21,126.30,122.16,55.63,49.84,40.86,36.30,27.23,22.77$.

6i. (R)-N-((R)-6-benzyl-8-(piperidin-1-ylmethyl)-1,2,3,4-tetrahydroquinolin-4-yl)-2-methylpropane-2-sulfinamide. $\mathbf{6 i}$ was synthesized following General Procedure (ix) from 5i ($88 \mathrm{mg}, 0.26 \mathrm{mmol}, 1$ equiv.), (R)-2-methyl-2propanesulfinamide ($96 \mathrm{mg}, 0.79 \mathrm{mmol}, 3$ equiv.), and $\mathrm{Ti}(\mathrm{OEt})_{4}\left(0.33 \mathrm{~mL}, 1.58 \mathrm{mmol}, 6\right.$ equiv.), then NaBH_{4} (60 $\mathrm{mg}, 1.58 \mathrm{mmol}, 6$ equiv.). Yield: $85 \mathrm{mg}, 74 \%$. Carried forward without characterization.

6j. (R)-N-((R)-6-benzyl-8-(morpholinomethyl)-1,2,3,4-tetrahydroquinolin-4-yl)-2-methylpropane-2-sulfinamide. $\mathbf{6 j}$ was synthesized following General Procedure (ix) from 5j ($75 \mathrm{mg}, 0.22 \mathrm{mmol}, 1$ equiv.), (R)-2-methyl-2propanesulfinamide ($81 \mathrm{mg}, 0.66 \mathrm{mmol}, 3$ equiv.), and $\mathrm{Ti}(\mathrm{OEt})_{4}\left(0.28 \mathrm{~mL}, 1.34 \mathrm{mmol}, 6\right.$ equiv.), then NaBH_{4} (51 $\mathrm{mg}, 1.34 \mathrm{mmol}, 6$ equiv.). Yield: $31 \mathrm{mg}, 31 \% .{ }^{1} \mathrm{H} \operatorname{NMR}(500 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 7.26(\mathrm{~s}, 2 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 3 \mathrm{H})$, $7.07(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{q}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{t}, J=4.7$ $\mathrm{Hz}, 4 \mathrm{H}), 3.46(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.36-3.33(\mathrm{~m}, 1 \mathrm{H}), 3.32-3.23(\mathrm{~m}, 2 \mathrm{H}), 2.37(\mathrm{t}, J=10.1 \mathrm{~Hz}, 4 \mathrm{H}), 2.10-2.02$ $(\mathrm{m}, 1 \mathrm{H}), 1.89-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.21(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl} 3\right) \delta 143.41,141.97,131.00,129.99,128.86$, $128.79,128.46,125.93,121.35,120.64,116.06,67.17,62.46,53.22,49.92,41.08,36.19,28.37,22.78$.

6k. (R)-N-((R)-6-benzyl-8-(piperazin-1-ylmethyl)-1,2,3,4-tetrahydroquinolin-4-yl)-2-methylpropane-2-sulfinamide. $\mathbf{6 k}$ was synthesized following General Procedure (ix) from $\mathbf{5 k}$ ($84 \mathrm{mg}, 0.19 \mathrm{mmol}, 1$ equiv.), (R)-2-methyl-2propanesulfinamide ($71 \mathrm{mg}, 0.58 \mathrm{mmol}, 3$ equiv.), and $\mathrm{Ti}(\mathrm{OEt})_{4}\left(0.24 \mathrm{~mL}, 1.16 \mathrm{mmol}, 6\right.$ equiv.), then NaBH_{4} (44 $\mathrm{mg}, 1.16 \mathrm{mmol}, 6$ equiv.). Yield: $83 \mathrm{mg}, 80 \% .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 7.27-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.12(\mathrm{~m}$, $3 \mathrm{H}), 7.07(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{q}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.52-$ $3.43(\mathrm{~m}, 1 \mathrm{H}), 3.39(\mathrm{q}, J=6.7,4.9 \mathrm{~Hz}, 4 \mathrm{H}), 3.33(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.27(\mathrm{ddd}, J=11.7,8.1,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-$ $2.30(\mathrm{~m}, 4 \mathrm{H}), 2.13-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.85(\mathrm{tt}, J=13.0,12.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.22(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl} 3) \delta 154.87,143.41,141.97,130.94,129.99,128.92,128.81,128.49,125.95,121.54,120.68,79.81$, $62.11,55.45,52.53,49.92,41.10,36.18,28.52,28.36,22.80,22.63$.
61. (R)-N-((R)-6-benzyl-8-phenethyl-1,2,3,4-tetrahydroquinolin-4-yl)-2-methylpropane-2-sulfinamide. $\mathbf{6 l}$ was synthesized following General Procedure (ix) from 5l ($65 \mathrm{mg}, 0.19 \mathrm{mmol}$, 1 equiv.), (R)-2-methyl-2propanesulfinamide ($70 \mathrm{mg}, 0.57 \mathrm{mmol}, 3$ equiv.), and $\mathrm{Ti}(\mathrm{OEt})_{4}\left(0.24 \mathrm{~mL}, 1.14 \mathrm{mmol}, 6\right.$ equiv.), then NaBH_{4} (44 $\mathrm{mg}, 1.14 \mathrm{mmol}, 6$ equiv.). Yield: $61 \mathrm{mg}, 72 \%$. Carried forward without characterization.

6m. (R)-6-benzyl-4-(((R)-tert-butylsulfinyl)amino)-N-ethyl-1,2,3,4-tetrahydroquinoline-8-carboxamide. $\mathbf{6 m}$ was synthesized following General Procedure (ix) from 5 m ($64 \mathrm{mg}, 0.21 \mathrm{mmol}, 1$ equiv.), (R)-2-methyl-2propanesulfinamide ($76 \mathrm{mg}, 0.62 \mathrm{mmol}, 3$ equiv.), and $\mathrm{Ti}(\mathrm{OEt})_{4}\left(0.26 \mathrm{~mL}, 1.24 \mathrm{mmol}, 6\right.$ equiv.), then NaBH_{4} (47 $\mathrm{mg}, 1.24 \mathrm{mmol}, 6$ equiv.). Yield: $61 \mathrm{mg}, 71 \% .{ }^{1} \mathrm{H} \operatorname{NMR}(500 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 7.58(\mathrm{~s}, 1 \mathrm{H}), 7.30-7.22(\mathrm{~m}, 2 \mathrm{H})$, $7.19(\mathrm{dd}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{dd}, J=5.6,3.1 \mathrm{~Hz}, 3 \mathrm{H}), 7.04(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{~s}, 1 \mathrm{H}), 4.51(\mathrm{q}, J=2.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 2 \mathrm{H}), 3.39(\mathrm{qd}, J=7.3,4.9 \mathrm{~Hz}, 3 \mathrm{H}), 3.31(\mathrm{ddd}, J=11.9,5.8,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~s}, 1 \mathrm{H}), 2.07(\mathrm{dt}, J=$ $7.0,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.83(\mathrm{tt}, J=13.2,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}(500 \mathrm{MHz}, \mathrm{CDCl} 3)$ $\delta 169.55,144.90,141.55,134.37,130.65,129.68,128.86,128.76,128.59,128.49,127.73,126.85,126.18,125.96$, $121.93,115.25,115.01,55.53,50.17,40.90,35.53,26.92,22.78,22.76,15.01$.

6n. ethyl (R)-6-benzyl-4-(((R)-tert-butylsulfinyl)amino)-1,2,3,4-tetrahydroquinoline-8-carboxylate. 6n was synthesized following General Procedure (ix) from 5n (42 mg, 0.14 mmol , 1 equiv.), (R)-2-methyl-2propanesulfinamide ($52 \mathrm{mg}, 0.42 \mathrm{mmol}, 3$ equiv.), and $\mathrm{Ti}(\mathrm{OEt})_{4}\left(0.18 \mathrm{~mL}, 0.85 \mathrm{mmol}, 6\right.$ equiv.), then NaBH_{4} (32 $\mathrm{mg}, 0.85 \mathrm{mmol}, 6$ equiv.). NMR indicated conversion of $\mathbf{6 n}$ methyl ester to an ethyl ester in $\mathbf{7 n}$. Yield: $48 \mathrm{mg}, 83 \%$. ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl} 3\right) \delta 7.75(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.07$ $(\mathrm{m}, 4 \mathrm{H}), 4.44(\mathrm{q}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{qd}, J=7.1,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 2 \mathrm{H}), 3.36(\mathrm{~m}, 1 \mathrm{H}), 3.29(\mathrm{dt}, J=12.0,4.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.00(\mathrm{~s}, 1 \mathrm{H}), 2.02(\mathrm{dqd}, J=13.6,3.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{~s}$, 9H). ${ }^{13} \mathrm{C}$ NMR (500 MHz, CDCl3) $\delta 168.50,146.63,141.63,136.18,131.87,128.72,128.54,126.63,126.08$, $121.61,109.73,60.37,55.52,50.03,40.89,35.53,26.55,22.73,14.47$.
60. (R)-6-benzyl-4-(((R)-tert-butylsulfinyl)amino)-N-phenyl-1,2,3,4-tetrahydroquinoline-8-carboxamide. 60 was synthesized following General Procedure (ix) from 50 ($42 \mathrm{mg}, 0.12 \mathrm{mmol}$, 1 equiv.), (R)-2-methyl-2propanesulfinamide ($43 \mathrm{mg}, 0.36 \mathrm{mmol}, 3$ equiv.), and $\mathrm{Ti}(\mathrm{OEt})_{4}\left(0.15 \mathrm{~mL}, 0.72 \mathrm{mmol}, 6\right.$ equiv.), then NaBH_{4} (28 $\mathrm{mg}, 0.72 \mathrm{mmol}, 6$ equiv. $)$. Yield: $45 \mathrm{mg}, 81 \%{ }^{1}{ }^{1} \mathrm{H} \operatorname{NMR}(500 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 7.52(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=$ $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.16(\mathrm{~m}$, $1 \mathrm{H}), 7.13$ (ddt, $J=7.6,6.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.41(\mathrm{td}, J=12.2,3.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.33(\mathrm{dq}, J=7.9,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{dd}, J=13.7,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{td}, J=12.9,6.5$
$\mathrm{Hz}, 1 \mathrm{H}), 1.21$ ($\mathrm{s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (500 MHz, CDCl3) $\delta 167.95,145.34,141.35,137.90,134.96,129.12,128.81$, $128.68,127.81,127.15,126.31,124.62,122.25,120.78,114.91,55.60,50.21,40.91,35.59,26.80,22.76$.

6p. (R)-N,6-dibenzyl-4-(((R)-tert-butylsulfinyl)amino)-1,2,3,4-tetrahydroquinoline-8-carboxamide. 6p was synthesized following General Procedure (ix) from 5p ($40 \mathrm{mg}, 0.11 \mathrm{mmol}, 1$ equiv.), (R)-2-methyl-2propanesulfinamide ($40 \mathrm{mg}, 0.32 \mathrm{mmol}, 3$ equiv.), and $\mathrm{Ti}(\mathrm{OEt})_{4}\left(0.14 \mathrm{~mL}, 0.65 \mathrm{mmol}, 6\right.$ equiv.), then NaBH_{4} (25 $\mathrm{mg}, 0.65 \mathrm{mmol}, 6$ equiv.). Yield: $43 \mathrm{mg}, 84 \%$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 7.71-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.28(\mathrm{~m}$, $5 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.18-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 4.56(\mathrm{dd}$, $J=5.7,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.52(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.87-3.74(\mathrm{~m}, 2 \mathrm{H}), 3.45-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{dq}, J=11.9,4.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.09(\mathrm{~s}, 1 \mathrm{H}), 2.11-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{ddt}, J=16.2,12.7,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.21(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (500 MHz, CDCl3) $\delta 169.48,145.21,141.45,134.69,128.89,128.79,128.62,127.87,127.76,127.67,126.88,126.22,122.10$, 114.50, 55.57, 50.19, 43.81, 40.87, 35.56, 26.85, 22.78.

6q. (R)-N-((R)-6-benzyl-8-bromo-1,2,3,4-tetrahydroquinolin-4-yl)-2-methylpropane-2-sulfinamide. 6q was synthesized following General Procedure (ix) from $4 \mathbf{a}$ ($80 \mathrm{mg}, 0.25 \mathrm{mmol}, 1$ equiv.), (R)-2-methyl-2propanesulfinamide ($92 \mathrm{mg}, 0.76 \mathrm{mmol}, 3$ equiv.), and $\mathrm{Ti}(\mathrm{OEt})_{4}\left(0.32 \mathrm{~mL}, 1.52 \mathrm{mmol}, 6\right.$ equiv.), then $\mathrm{NaBH}_{4}(58$ $\mathrm{mg}, 1.52 \mathrm{mmol}, 6$ equiv.). Yield: $71 \mathrm{mg}, 67 \% .{ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}, \mathrm{CDCl} 3) \delta 7.29-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.15(\mathrm{~m}$, $4 \mathrm{H}), 7.06(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{q}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 2 \mathrm{H}), 3.41(\mathrm{tdd}, J=11.9,3.0,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.37-3.32(\mathrm{~m}, 1 \mathrm{H}), 2.98(\mathrm{~s}, 1 \mathrm{H}), 2.13-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.21(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (500 MHz , $\mathrm{CDCl} 3) ~ \delta 141.27,140.26,132.57,130.70,129.96,128.85,128.62,126.23,121.86,109.13,55.58,49.86,40.80$, 36.61, 27.91, 22.

[^0]| $\mathbf{6 a}$ | $\mathrm{R}_{2}=\mathrm{Bn}$ |
| :--- | :--- |
| $\mathbf{6 b}$ | $\mathrm{R}_{2}=\mathrm{Me}$ |
| $\mathbf{6 c}$ | $\mathrm{R}_{2}=\mathrm{Et}$ |
| $\mathbf{6 d}$ | $\mathrm{R}_{2}=n-\mathrm{Pr}$ |
| $\mathbf{6 e}$ | $\mathrm{R}_{2}=n-\mathrm{Bu}$ |
| $\mathbf{6 f}$ | $\mathrm{R}_{2}=t-\mathrm{Bu}$ |
| $\mathbf{6 g}$ | $\mathrm{R}_{2}=\mathrm{F}$ |
| $\mathbf{6 h}$ | $\mathrm{R}_{2}=\mathrm{CF}_{3}$ |
| $\mathbf{6 i}$ | $\mathrm{R}_{2}=$ methylpiperidine |
| $\mathbf{6 j}$ | $\mathrm{R}_{2}=$ methylmorpholine |
| $\mathbf{6 k}$ | $\mathrm{R}_{2}=$ methylpiperazine |
| $\mathbf{6 I}$ | $\mathrm{R}_{2}=$ EtPh |
| $\mathbf{6 m}$ | $\mathrm{R}_{2}=$ CONHEt |
| $\mathbf{6 n}$ | $\mathrm{R}_{2}=$ COOEt |
| $\mathbf{6 0}$ | $\mathrm{R}_{2}=$ CONHPh |
| $\mathbf{6 p}$ | $\mathrm{R}_{2}=$ CONHBn |
| $\mathbf{6 q}$ | $\mathrm{R}_{2}=$ Br |

7a	$\mathrm{R}_{2}=\mathrm{Bn}$
7b	$\mathrm{R}_{2}=\mathrm{Me}$
7c	$\mathrm{R}_{2}=\mathrm{Et}$
7d	$\mathrm{R}_{2}=n-\mathrm{Pr}$
7e	$\mathrm{R}_{2}=n-\mathrm{Bu}$
7f	$\mathrm{R}_{2}=t-\mathrm{Bu}$
7g	$\mathrm{R}_{2}=\mathrm{F}$
7h	$\mathrm{R}_{2}=\mathrm{CF}_{3}$
7i	$\mathrm{R}_{2}=$ methylpiperidine
7j	$\mathrm{R}_{2}=$ methylmorpholine
7k	$\mathrm{R}_{2}=$ methylpiperazine
71	$\mathrm{R}_{2}=\mathrm{EtPh}$
7 m	$\mathrm{R}_{2}=$ CONHEt
7n	$\mathrm{R}_{2}=$ coost
70	$\mathrm{R}_{2}=\mathrm{CONHPh}$
7p	$\mathrm{R}_{2}=\mathrm{CONHBn}$
7 q	$\mathrm{R}_{2}=\mathrm{Br}$
7 re	$\mathrm{R}_{2}=\mathrm{COOH} \quad($ from $\mathbf{6 n}$)

7 a.
(S)-2-amino-N-((R)-6,8-dibenzyl-1,2,3,4-tetrahydroquinolin-4-yl)-3-(4-hydroxy-2,6-
dimethylphenyl)propanamide. 7a was synthesized following General Procedure (x): To a pear-shaped flask containing $\mathbf{6 a}(26 \mathrm{mg}, 0.06 \mathrm{mmol}, 1$ equiv.) was added dioxane $(15 \mathrm{~mL})$, followed by concentrated $\mathrm{HCl}(0.12 \mathrm{~mL}$, excess) at ambient temperature. After 1 hour, solvent was removed and residual oil was washed with diethyl ether. Reaction flask was cooled to $0^{\circ} \mathrm{C}$, then ether was decanted leaving the amine salt as a white solid. Carried forward without further purification or characterization. General Procedure (\mathbf{x}^{\prime}): To a pear-shaped flask under inert atmosphere was added $\mathbf{6 a}$ amine salt ($22 \mathrm{mg}, 0.06 \mathrm{mmol}, 1$ equiv.), di-Boc-Dmt ($33 \mathrm{mg}, 0.078 \mathrm{mmol}, 1.3$ equiv.), PyBOP ($42 \mathrm{mg}, 0.078 \mathrm{mmol}, 1.3$ equiv.), and $6-\mathrm{Cl} \mathrm{HOBt}(14 \mathrm{mg}, 0.078 \mathrm{mmol}, 1.3$ equiv.), followed by DMF (10 mL) and DIPEA ($0.13 \mathrm{~mL}, 0.71 \mathrm{mmol}, 12$ equiv.) at ambient temperature. After stirring 6 hours, solvent was removed under vacuum and residual oil was loaded onto silica. Boc-protected intermediates were purified by flash chromatography, but were generally not characterized by NMR. General Procedure (${ }^{\prime}$ ''): Isolated Boc-protected product was suspended in DCM (9 mL), and TFA was added (3 mL). After 1 hour, solvent was removed under vacuum and product was resuspended in a solution of 99.9% acetonitrile, $0.1 \% \mathrm{TFA}$, then diluted with deionized water. Final products were purified by reverse-phase semi-preparative HPLC. Final yield not calculated. ${ }^{1}$ H NMR (500 MHz, Methanol- d_{4}) $\delta 8.20(\mathrm{dd}, J=8.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.08$ (ddd, $J=$ $23.4,11.4,7.1 \mathrm{~Hz}, 5 \mathrm{H}), 6.90(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.02-4.97(\mathrm{~m}$,
$1 \mathrm{H}), 3.86(\mathrm{dt}, J=11.5,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 2 \mathrm{H}), 3.24(\mathrm{td}, J=12.5,11.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dt}, J=$ $12.4,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{dt}, J=13.9,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{t}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 6 \mathrm{H}), 1.75(\mathrm{ddt}, J=17.8,10.7$, $3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{dd}, J=12.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}) . \mathrm{HPLC}($ gradient A): retention time $=44.3 \mathrm{~min}$. ESI-MS $520.3[\mathrm{M}+\mathrm{H}]+$ and $542.3[\mathrm{M}+\mathrm{Na}]+$.

7b. (S)-2-amino-N-((R)-6-benzyl-8-methyl-1,2,3,4-tetrahydroquinolin-4-yl)-3-(4-hydroxy-2,6-
dimethylphenyl)propanamide. 7b was synthesized following General Procedures (x) from $\mathbf{6 b}$ ($0.30 \mathrm{mmol}, 1$ equiv.) and concentrated $\mathrm{HCl}\left(0.03 \mathrm{~mL}\right.$, excess). Carried forward without characterization following General Procedure (x^{\prime}) from 6b amine salt ($20 \mathrm{mg}, 0.070 \mathrm{mmol}$, 1 equiv.), di-Boc-Dmt ($31 \mathrm{mg}, 0.076 \mathrm{mmol}, 1.1$ equiv.), PyBOP (40 mg , $0.076 \mathrm{mmol}, 1.1$ equiv.), and 6-Cl HOBt ($13 \mathrm{mg}, 0.076 \mathrm{mmol}, 1.1$ equiv.), followed by DIPEA ($0.12 \mathrm{~mL}, 0.70$ mmol, 10 equiv.). Boc-deprotected following General Procedure (x ''). Final yield not calculated. ${ }^{1}$ H NMR (500 MHz, Methanol $\left.-d_{4}\right) \delta 7.22(\mathrm{td}, \mathrm{J}=7.5,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{td}, \mathrm{J}=8.7,4.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 6.49(\mathrm{~s}$, $2 H), 4.98(\mathrm{~m}, 1 \mathrm{H}), 3.90-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 2 \mathrm{H}), 3.26(\mathrm{dd}, \mathrm{J}=13.6,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.25-3.19(\mathrm{~m}, 1 \mathrm{H}), 3.02(\mathrm{dd}$, $\mathrm{J}=13.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.76-2.64(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 6 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 1.90-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.54(\mathrm{~m}, 1 \mathrm{H})$. HPLC (gradient A): retention time $=28.4$ min. ESI-MS $466.3[\mathrm{M}+\mathrm{Na}]+$.

7 c.
(S)-2-amino-N-((R)-6-benzyl-8-ethyl-1,2,3,4-tetrahydroquinolin-4-yl)-3-(4-hydroxy-2,6-
dimethylphenyl)propanamide. 7c was synthesized following General Procedure (x) from $\mathbf{6 c}$ ($0.38 \mathrm{mmol}, 1$ equiv.) and concentrated $\mathrm{HCl}(0.03 \mathrm{~mL}$, excess). Carried forward without characterization following General Procedure (x') from $\mathbf{6 c}$ amine salt ($45 \mathrm{mg}, 0.15 \mathrm{mmol}, 1$ equiv.), di-Boc-Dmt ($67 \mathrm{mg}, 0.16 \mathrm{mmol}, 1.1$ equiv.), PyBOP ($85 \mathrm{mg}, 0.16$ mmol, 1.1 equiv.), and $6-\mathrm{Cl} \operatorname{HOBt}(28 \mathrm{mg}, 0.16 \mathrm{mmol}$, 1.1 equiv.), followed by DIPEA ($0.26 \mathrm{~mL}, 1.50 \mathrm{mmol}, 10$ equiv.). Boc-deprotected following General Procedure (x ''). Final yield not calculated. ${ }^{1} \mathrm{H}$ NMR (500 MHz , Methanol- d_{4}) $\delta 7.21(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{t}, J=8.8 \mathrm{~Hz}, 3 \mathrm{H}), 6.77(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.48(\mathrm{~s}, 2 \mathrm{H}), 4.92(\mathrm{t}, J=$ $3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{dd}, J=11.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 2 \mathrm{H}), 3.29-3.22(\mathrm{~m}, 1 \mathrm{H}), 3.09-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.99(\mathrm{dd}, J=$ $13.7,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{t}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 6 \mathrm{H}), 1.70(\mathrm{t}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.56-$ $1.48(\mathrm{~m}, 1 \mathrm{H}), 1.11(\mathrm{td}, J=7.5,0.9 \mathrm{~Hz}, 3 \mathrm{H})$. HPLC (gradient A): retention time $=32.1$. ESI-MS $480.3[\mathrm{M}+\mathrm{Na}]+$.
dimethylphenyl)propanamide. 7d was synthesized following General Procedures (x) from $\mathbf{6 d}$ ($19 \mathrm{mg}, 0.05 \mathrm{mmol}, 1$ equiv.) and concentrated $\mathrm{HCl}(0.02 \mathrm{~mL}$, excess). Carried forward without characterization following General Procedure (x ') from 6d amine salt ($16 \mathrm{mg}, 0.050 \mathrm{mmol}, 1$ equiv.), di-Boc-Dmt ($23 \mathrm{mg}, 0.055 \mathrm{mmol}, 1.1$ equiv.), PyBOP ($29 \mathrm{mg}, 0.055 \mathrm{mmol}, 1.1$ equiv.), and $6-\mathrm{Cl} \mathrm{HOBt}(19 \mathrm{mg}, 0.055 \mathrm{mmol}, 1.1$ equiv.), followed by DIPEA ($0.09 \mathrm{~mL}, 0.50 \mathrm{mmol}, 10$ equiv.) and stirred 18 hours. Boc-deprotected following General Procedure (x''). Final yield not calculated. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, Methanol- $\left.d_{4}\right) \delta 7.21(\mathrm{td}, J=7.3,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.16-7.08(\mathrm{~m}, 3 \mathrm{H}), 6.85$ $(\mathrm{dt}, J=5.3,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.48(\mathrm{~s}, 2 \mathrm{H}), 4.96(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{ddd}, J=11.6,5.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=2.4$ $\mathrm{Hz}, 2 \mathrm{H}), 3.25(\mathrm{t}, 1 \mathrm{H}), 3.11(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{ddd}, J=13.5,5.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{tt}, J=10.6,2.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.39(\mathrm{td}, J=7.9,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 7 \mathrm{H}), 1.76(\mathrm{dddd}, J=17.9,14.1,9.1,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.59-1.48(\mathrm{~m}, 3 \mathrm{H}), 0.93$ $(\operatorname{td}, J=7.3,1.4 \mathrm{~Hz}, 3 \mathrm{H})$. HPLC (gradient A): retention time $=37.1 \mathrm{~min}$. ESI-MS $494.3[\mathrm{M}+\mathrm{Na}]+$.

7 e.
(S)-2-amino-N-((R)-6-benzyl-8-butyl-1,2,3,4-tetrahydroquinolin-4-yl)-3-(4-hydroxy-2,6-
dimethylphenyl)propanamide. 7e was synthesized following General Procedure (x) from $\mathbf{6 e}(82 \mathrm{mg}, 0.21 \mathrm{mmol}, 1$ equiv.) and concentrated $\mathrm{HCl}(0.03 \mathrm{~mL}$, excess). Carried forward without characterization following General Procedure (x^{\prime}) from 6e amine salt ($68 \mathrm{mg}, 0.21 \mathrm{mmol}, 1$ equiv.), di-Boc-Dmt ($93 \mathrm{mg}, 0.23 \mathrm{mmol}, 1.1$ equiv.), PyBOP ($118 \mathrm{mg}, 0.23 \mathrm{mmol}, 1.1$ equiv.), and $6-\mathrm{Cl} \mathrm{HOBt}(38 \mathrm{mg}, 0.23 \mathrm{mmol}, 1.1$ equiv.), followed by DIPEA (0.40 $\mathrm{mL}, 2.1 \mathrm{mmol}, 10$ equiv.) and stirred 18 hours. Boc-deprotected following General Procedure (x '’). Final yield not calculated. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, Methanol- $\left.d_{4}\right) \delta 7.23-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.08(\mathrm{~m}, 3 \mathrm{H}), 6.82(\mathrm{dq}, J=6.6,2.2 \mathrm{~Hz}$, $2 \mathrm{H}), 6.48(\mathrm{~s}, 2 \mathrm{H}), 4.95(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{ddd}, J=11.6,5.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.25(\mathrm{ddd}$, $J=13.3,11.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{dq}, J=12.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{ddd}, J=13.7,5.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{tt}, J=12.2$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{td}, J=7.6,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.79-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.34$ (hept, $J=7.2,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 0.91(\mathrm{td}, J=7.3,1.2 \mathrm{~Hz}, 3 \mathrm{H})$. HPLC (gradient A): retention time $=40.9 \mathrm{~min}$. ESI-MS $508.3[\mathrm{M}+\mathrm{Na}]+$.
$7 f$. (S)-2-amino-N-((R)-6-benzyl-8-(tert-butyl)-1,2,3,4-tetrahydroquinolin-4-yl)-3-(4-hydroxy-2,6dimethylphenyl)propanamide. $7 \mathbf{f}$ was synthesized following General Procedure (x) from $\mathbf{6 f}(27 \mathrm{mg}, 0.068 \mathrm{mmol}, 1$ equiv.) and concentrated $\mathrm{HCl}(0.02 \mathrm{~mL}$, excess). Carried forward without characterization following General

Procedure (x^{\prime}) from $6 \mathbf{f}$ amine salt ($22 \mathrm{mg}, 0.068 \mathrm{mmol}$, 1 equiv.), di-Boc-Dmt ($31 \mathrm{mg}, 0.074 \mathrm{mmol}, 1.1$ equiv.), PyBOP ($39 \mathrm{mg}, 0.074 \mathrm{mmol}, 1.1$ equiv.), and $6-\mathrm{Cl} \mathrm{HOBt}(13 \mathrm{mg}, 0.074 \mathrm{mmol}, 1.1$ equiv.), followed by DIPEA ($0.12 \mathrm{~mL}, 0.67 \mathrm{mmol}, 10$ equiv.), stirring 18 hours before Boc-deprotecting. Boc-deprotected following General Procedure (x ''). Final yield not calculated. ${ }^{1} \mathrm{H}$ NMR (500 MHz , Methanol- d_{4}) $\delta 7.23-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.07(\mathrm{~m}$, $3 \mathrm{H}), 6.91(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.92(\mathrm{~s}, 1 \mathrm{H}), 3.90-3.81(\mathrm{~m}, 1 \mathrm{H})$, $3.75(\mathrm{~s}, 2 \mathrm{H}), 3.25(\mathrm{ddd}, J=13.7,11.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{ddd}, J=13.8,5.3,2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.48(\mathrm{t}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.67(\mathrm{t}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.47(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{~d}, J=$ $2.3 \mathrm{~Hz}, 9 \mathrm{H}$). HPLC (gradient A): retention time $=44.7 \mathrm{~min}$. ESI-MS $486.3[\mathrm{M}+\mathrm{H}]+$ and $508.3[\mathrm{M}+\mathrm{Na}]+$.

7g (S)-2-amino-N-((R)-6-benzyl-8-fluoro-1,2,3,4-tetrahydroquinolin-4-yl)-3-(4-hydroxy-2,6-
dimethylphenyl)propanamide. 7 g was synthesized following General Procedure (x) from $\mathbf{6 g}$ ($19 \mathrm{mg}, 0.05 \mathrm{mmol}, 1$ equiv.) and concentrated $\mathrm{HCl}(0.03 \mathrm{~mL}$, excess). Carried forward without characterization following General Procedure (x^{\prime}) from $\mathbf{6 g}$ amine salt ($55 \mathrm{mg}, 0.14 \mathrm{mmol}$, 1 equiv.), di-Boc-Dmt ($60 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.1$ equiv.), PyBOP ($73 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.1$ equiv.), and $6-\mathrm{Cl} \mathrm{HOBt}(24 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.1$ equiv.), followed by DIPEA (0.25 $\mathrm{mL}, 1.4 \mathrm{mmol}, 10$ equiv.). Boc-deprotected following General Procedure (x '’). Final yield not calculated. ${ }^{1} \mathrm{H}$ NMR (500 MHz, Methanol- d_{4}) $\delta 7.25-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.48(\mathrm{~s}, 2 \mathrm{H}), 4.93(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{dd}, J=11.6,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 2 \mathrm{H}), 3.25(\mathrm{t}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.19-3.13(\mathrm{~m}$, $1 \mathrm{H}), 3.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{t}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.23(\mathrm{~m}, 7 \mathrm{H}), 1.68(\mathrm{t}, J=$ $12.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}) . \mathrm{HPLC}($ gradient A): retention time $=35.2 \mathrm{~min}$. ESI-MS $470.2[\mathrm{M}+\mathrm{Na}]+$.

7h.
(S)-2-amino- N-((R)-6-benzyl-8-(trifluoromethyl)-1,2,3,4-tetrahydroquinolin-4-yl)-3-(4-hydroxy-2,6-
dimethylphenyl)propanamide. $7 \mathbf{h}$ was synthesized following General Procedure (x) from $\mathbf{6 h}(128 \mathrm{mg}, 0.31 \mathrm{mmol}, 1$ equiv.) and concentrated $\mathrm{HCl}(0.05 \mathrm{~mL}$, excess). Carried forward without characterization following General Procedure (x^{\prime}) from $\mathbf{6 h}$ amine salt ($48 \mathrm{mg}, 0.140 \mathrm{mmol}$, 1 equiv.), di-Boc-Dmt ($63 \mathrm{mg}, 0.154 \mathrm{mmol}, 1.1$ equiv.), PyBOP ($78 \mathrm{mg}, 0.154 \mathrm{mmol}, 1.1$ equiv.), and $6-\mathrm{Cl} \mathrm{HOBt}(26 \mathrm{mg}, 0.154 \mathrm{mmol}, 1.1$ equiv.), followed by DIPEA ($0.25 \mathrm{~mL}, 1.40 \mathrm{mmol}, 10$ equiv.). Boc-deprotected following General Procedure (x '"). Final yield not calculated. ${ }^{1} \mathrm{H}$ NMR (500 MHz, Methanol- $\left.d_{4}\right) \delta 8.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.08(\mathrm{~m}$, $3 \mathrm{H}), 7.06(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.50-6.46(\mathrm{~m}, 2 \mathrm{H}), 4.95(\mathrm{q}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{dd}, J=11.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}$,
$2 \mathrm{H}), 3.25(\mathrm{dd}, J=13.6,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{dtd}, J=12.6,4.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=13.7,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-$ $2.41(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{dq}, J=13.2,3.7 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{cd}_{3} \mathrm{od}\right) \delta 168.36,157.38$, $142.65,142.38,140.00,135.67,129.64,129.48,128.97,127.69,127.12,123.27,121.87,116.46,53.39,46.76$, $41.44,37.53,31.94,28.05,20.44$. HPLC (gradient A): retention time $=42.1 \mathrm{~min}$. ESI-MS $498.24[\mathrm{M}+\mathrm{H}]+$.

7i. (S)-2-amino-N-((R)-6-benzyl-8-(piperidin-1-ylmethyl)-1,2,3,4-tetrahydroquinolin-4-yl)-3-(4-hydroxy-2,6dimethylphenyl)propanamide. $7 \mathbf{i}$ was synthesized following General Procedure (x) from $\mathbf{6 i}(85 \mathrm{mg}, 0.19 \mathrm{mmol}, 1$ equiv.) and concentrated $\mathrm{HCl}(0.05 \mathrm{~mL}$, excess). Carried forward without characterization following General Procedure (x ') from $6 \mathbf{i}$ amine salt ($37 \mathrm{mg}, 0.090 \mathrm{mmol}$, 1 equiv.), di-Boc-Dmt ($41 \mathrm{mg}, 0.099 \mathrm{mmol}, 1.1$ equiv.), PyBOP ($52 \mathrm{mg}, 0.099 \mathrm{mmol}, 1.1$ equiv.), and $6-\mathrm{Cl} \mathrm{HOBt}(17 \mathrm{mg}, 0.099 \mathrm{mmol}, 1.1$ equiv.), followed by DIPEA ($0.16 \mathrm{~mL}, 0.90 \mathrm{mmol}, 10$ equiv.). Boc-deprotected following General Procedure (x '"). Final yield not calculated. ${ }^{1} \mathrm{H}$ NMR (500 MHz, Methanol- d_{4}) $\delta 7.25-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.10(\mathrm{~m}, 3 \mathrm{H}), 7.01(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.47(\mathrm{~s}, 2 \mathrm{H}), 4.93(\mathrm{dt}, J=7.9,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-4.02(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{dd}, J=11.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}$, $2 \mathrm{H}), 3.37(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.26(\mathrm{dd}, J=13.6,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{dt}, J=12.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{dd}, J=13.7$, $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.95-2.84(\mathrm{~m}, 2 \mathrm{H}), 2.54-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 6 \mathrm{H}), 1.89(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.80(\mathrm{~d}, J=12.8 \mathrm{~Hz}$, $1 \mathrm{H}), 1.71(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{~m}, 1 \mathrm{H}), 1.53(\mathrm{q}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{~m}, 1 \mathrm{H})$. HPLC (gradient A): retention time $=$ 27.6min. ESI-MS 527.3[M + H $]+$ and $549.3[\mathrm{M}+\mathrm{Na}]+$.

7j. (S)-2-amino-N-((R)-6-benzyl-8-(morpholinomethyl)-1,2,3,4-tetrahydroquinolin-4-yl)-3-(4-hydroxy-2,6dimethylphenyl)propanamide. $7 \mathbf{j}$ was synthesized following General Procedure (x) from $\mathbf{6 j}$ ($31 \mathrm{mg}, 0.070 \mathrm{mmol}, 1$ equiv.) and concentrated $\mathrm{HCl}(0.03 \mathrm{~mL}$, excess). Carried forward without characterization following General Procedure (x^{\prime}) from $\mathbf{6 j}$ amine salt ($25 \mathrm{mg}, 0.068 \mathrm{mmol}$, 1 equiv.), di-Boc-Dmt ($31 \mathrm{mg}, 0.075 \mathrm{mmol}, 1.1$ equiv.), PyBOP ($39 \mathrm{mg}, 0.075 \mathrm{mmol}, 1.1$ equiv.), and $6-\mathrm{Cl} \mathrm{HOBt}(13 \mathrm{mg}, 0.075 \mathrm{mmol}, 1.1$ equiv.), followed by DIPEA ($0.13 \mathrm{~mL}, 0.70 \mathrm{mmol}, 10$ equiv.). Boc-deprotected following General Procedure (x '"). Final yield not calculated. ${ }^{1} \mathrm{H}$ NMR (500 MHz, Methanol- d_{4}) $\delta 7.24-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 3 \mathrm{H}), 7.01(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.47(\mathrm{~s}, 2 \mathrm{H}), 4.92(\mathrm{~m}, 1 \mathrm{H}), 4.17(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~m}, 1 \mathrm{H}), 3.88(\operatorname{broad} \mathrm{~s}, 4 \mathrm{H}), 3.78(\mathrm{~s}, 2 \mathrm{H}), 3.26(\mathrm{~m}, 1 \mathrm{H}), 3.19$ (broad s, 4H), $3.07(\mathrm{dt}, J=12.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{dd}, J=13.7,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{td}, J=11.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}$,
$6 \mathrm{H}), 1.64(\mathrm{ddt}, J=13.0,11.4,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.55-1.47(\mathrm{~m}, 1 \mathrm{H})$. HPLC (gradient A): retention time $=24.2 \mathrm{~min}$. ESI-MS $551.3[\mathrm{M}+\mathrm{Na}]+$.

7k. (S)-2-amino-N-((R)-6-benzyl-8-(piperazin-1-ylmethyl)-1,2,3,4-tetrahydroquinolin-4-yl)-3-(4-hydroxy-2,6dimethylphenyl)propanamide. $7 \mathbf{k}$ was synthesized following General Procedure (x) from $\mathbf{6 k}(43 \mathrm{mg}, 0.080 \mathrm{mmol}, 1$ equiv.) and concentrated $\mathrm{HCl}(0.015 \mathrm{~mL}, 0.18 \mathrm{mmol}, 2$ equiv.). Reaction was monitored by TLC for disappearance of $\mathbf{6 k}$, and solvent was removed after 12 minutes. Recovered 40 mg crude product. Carried forward without characterization following General Procedure (x^{\prime}) from 6k amine salt ($40 \mathrm{mg}, 0.079 \mathrm{mmol}$, 1 equiv.), diBoc-Dmt ($36 \mathrm{mg}, 0.087 \mathrm{mmol}, 1.1$ equiv.), PyBOP ($46 \mathrm{mg}, 0.087 \mathrm{mmol}, 1.1$ equiv.), and $6-\mathrm{Cl} \mathrm{HOBt}(15 \mathrm{mg}, 0.087 \mathrm{mmol}, 1.1$ equiv.), followed by DIPEA ($0.14 \mathrm{~mL}, 0.79 \mathrm{mmol}, 10$ equiv.). Boc-deprotected following General Procedure (x^{\prime}). Final yield not calculated. ${ }^{1} \mathrm{H}$ NMR (500 MHz, Methanol- $\left.d_{4}\right) \delta 7.20(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.14-7.07(\mathrm{~m}, 3 \mathrm{H}), 6.88(\mathrm{~s}$, $1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 6.48(\mathrm{~s}, 2 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 2 \mathrm{H}), 3.47-3.44(\mathrm{~m}, 2 \mathrm{H}), 3.26(\mathrm{~m}$, $1 \mathrm{H}), 3.21-3.15(\mathrm{~m}, 4 \mathrm{H}), 3.09(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=13.8,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 6 \mathrm{H}), 1.66$ $(\mathrm{t}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.56-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 4 \mathrm{H})$. HPLC (gradient A): retention time $=21.7 \mathrm{~min}$. ESI-MS $528.3[\mathrm{M}+\mathrm{H}]+$ and $550.3[\mathrm{M}+\mathrm{Na}]+$.
71.
(S)-2-amino-N-((R)-6-benzyl-8-phenethyl-1,2,3,4-tetrahydroquinolin-4-yl)-3-(4-hydroxy-2,6-
dimethylphenyl)propanamide. 71 was synthesized following General Procedure (x) from $61(61 \mathrm{mg}, 0.14 \mathrm{mmol}, 1$ equiv.) and concentrated $\mathrm{HCl}(0.03 \mathrm{~mL}$, excess). Carried forward without characterization following General Procedure (x ') from 61 amine salt ($32 \mathrm{mg}, 0.084 \mathrm{mmol}, 1$ equiv.), di-Boc-Dmt ($38 \mathrm{mg}, 0.093 \mathrm{mmol}, 1.1$ equiv.), PyBOP ($49 \mathrm{mg}, 0.093 \mathrm{mmol}, 1.1$ equiv.), and $6-\mathrm{Cl} \mathrm{HOBt}(16 \mathrm{mg}, 0.093 \mathrm{mmol}, 1.1$ equiv.), followed by DIPEA ($0.15 \mathrm{~mL}, 0.84 \mathrm{mmol}, 10$ equiv.). Boc-deprotected following General Procedure (x^{\prime} '). Yield after deprotection: 17 $\mathrm{mg}, 31 \%$ over 2 steps. ${ }^{1} \mathrm{H}$ NMR (500 MHz, Methanol- $\left.d_{4}\right) \delta 8.12(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 4 \mathrm{H}), 7.16-$ $7.09(\mathrm{~m}, 4 \mathrm{H}), 7.05-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~s}, 2 \mathrm{H}), 4.94(\mathrm{q}, J=4.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.86(\mathrm{dd}, J=11.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 2 \mathrm{H}), 3.25(\mathrm{dd}, J=13.6,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{dt}, J=12.2,4.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.01$ (dd, $J=13.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.70(\mathrm{td}, J=8.0,7.5,4.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.51(\mathrm{td}, J=11.8$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 6 \mathrm{H}), 1.76-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.47(\mathrm{~m}, 1 \mathrm{H})$. HPLC (gradient A): retention time $=45.3 \mathrm{~min}$. ESI-MS $556.3[\mathrm{M}+\mathrm{Na}]+$.
tetrahydroquinoline-8-carboxamide. $\mathbf{7 m}$ was synthesized following General Procedure (x) from $\mathbf{6 m}(61 \mathrm{mg}, 0.15$ mmol, 1 equiv.) and concentrated $\mathrm{HCl}(0.03 \mathrm{~mL}$, excess). Carried forward without characterization following General Procedure (x^{\prime}) from $\mathbf{6 m}$ amine salt ($41 \mathrm{mg}, 0.12 \mathrm{mmol}, 1$ equiv.), di-Boc-Dmt ($53 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.1$ equiv.), and PyBOP ($68 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.1$ equiv.), followed by DIPEA ($0.21 \mathrm{~mL}, 1.19 \mathrm{mmol}, 10$ equiv.). Bocdeprotected following General Procedure ($\mathrm{x}{ }^{\prime}$). Final yield not calculated. ${ }^{1} \mathrm{H}$ NMR (500 MHz , Methanol- d_{4}) $\delta 8.21$ $(\mathrm{d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.11(\mathrm{~m}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.47(\mathrm{~s}, 2 \mathrm{H}), 4.92-4.87(\mathrm{~m}, 0 \mathrm{H}), 3.82(\mathrm{dd}, J=11.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 2 \mathrm{H}), 3.30(\mathrm{~s}, 2 \mathrm{H}), 3.24(\mathrm{dd}, J=13.5,11.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.99(\mathrm{dd}, J=13.4,4.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{td}, J=12.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 6 \mathrm{H}), 1.62(\mathrm{ddt}, J=12.5,8.3,4.1$ $\mathrm{Hz}, 1 \mathrm{H}), 1.50(\mathrm{dd}, J=13.3,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.16(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{HPLC}$ (gradient A): retention time $=32.5 \mathrm{~min}$. ESI-MS $501.3[\mathrm{M}+\mathrm{H}]+$ and $523.3[\mathrm{M}+\mathrm{Na}]+$.

7n. ethyl (R)-4-((S)-2-amino-3-(4-hydroxy-2,6-dimethylphenyl)propanamido)-6-benzyl-1,2,3,4-tetrahydroquinoline8 -carboxylate. $7 \mathbf{n}$ was synthesized following General Procedure (x) from $\mathbf{6 n}(48 \mathrm{mg}, 0.12 \mathrm{mmol}, 1$ equiv.) and concentrated $\mathrm{HCl}\left(0.03 \mathrm{~mL}\right.$, excess). Yield: $40 \mathrm{mg}, 99 \%$. ${ }^{1} \mathrm{H}$ NMR (500 MHz , Methanol- $\left.d_{4}\right) \delta 7.78(\mathrm{~d}, J=2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 3 \mathrm{H}), 4.48(\mathrm{t}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.33-4.26(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 2 \mathrm{H}), 3.56(\mathrm{dtd}$, $J=13.1,4.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.45-3.37(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (500 MHz, $\left.\operatorname{cd}_{3} \mathrm{Od}\right) \delta 169.20,147.37,142.73,136.75,134.04,129.74,129.51,128.39,127.14,117.52,111.58,111.41,109.38$, $61.54,41.59,36.22,26.03,14.62$. Carried forward following General Procedure (x') from $\mathbf{6 n}$ amine salt (30 mg , $0.086 \mathrm{mmol}, 1$ equiv.), di-Boc-Dmt ($41 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.15$ equiv.), PyBOP ($52 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.15$ equiv.), and 6-Cl HOBt ($17 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.15$ equiv.), followed by DIPEA ($0.16 \mathrm{~mL}, 0.92 \mathrm{mmol}, 11$ equiv.). Boc-deprotected following General Procedure (x'’). Final yield not calculated. ${ }^{1} \mathrm{H}$ NMR (500 MHz , Methanol- d_{4}) $\delta 7.61(\mathrm{~d}, J=2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~s}$, $2 \mathrm{H}), 4.92(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{qd}, J=7.2,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{dd}, J=11.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 2 \mathrm{H}), 3.25(\mathrm{dd}, J$ $=13.6,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{dt}, J=12.7,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J=13.7,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{td}, J=12.2,3.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.27(\mathrm{~s}, 6 \mathrm{H}), 1.63(\mathrm{tt}, J=11.9,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.52(\mathrm{dq}, J=13.2,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{cd}_{3} \mathrm{od}\right) \delta 168.25,157.41,147.68,142.95,140.00,137.00,135.31,132.61,129.62,129.41,127.01,123.26$,
$121.33,116.49,61.28,53.35,47.06,36.90,31.94,27.77,20.43,14.63$. HPLC (gradient A): retention time $=43.1$ min. ESI-MS $525.3[\mathrm{M}+\mathrm{Na}]+$.
70. (R)-4-((S)-2-amino-3-(4-hydroxy-2,6-dimethylphenyl)propanamido)-6-benzyl-N-phenyl-1,2,3,4-tetrahydroquinoline-8-carboxamide. 70 was synthesized following General Procedure (x) from 60 ($45 \mathrm{mg}, 0.097$ mmol, 1 equiv.) and concentrated $\mathrm{HCl}(0.03 \mathrm{~mL}$, excess). Carried forward without characterization following General Procedure (x^{\prime}) from $\mathbf{6 0}$ amine salt ($24 \mathrm{mg}, 0.061 \mathrm{mmol}, 1$ equiv.), di-Boc-Dmt ($28 \mathrm{mg}, 0.067 \mathrm{mmol}, 1.1$ equiv.), PyBOP ($35 \mathrm{mg}, 0.067 \mathrm{mmol}, 1.1$ equiv.), and $6-\mathrm{Cl} \mathrm{HOBt}(12 \mathrm{mg}, 0.067 \mathrm{mmol}, 1.1$ equiv.), followed by DIPEA ($0.10 \mathrm{~mL}, 0.61 \mathrm{mmol}, 10$ equiv.). Boc-deprotected following General Procedure (x ''). Final yield not calculated. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, Methanol- $\left.d_{4}\right) \delta 8.23(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.32(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.48(\mathrm{~s}, 2 \mathrm{H}), 4.96-4.90(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{dd}, J=13.6,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.09$ $-2.96(\mathrm{~m}, 2 \mathrm{H}), 2.44(\mathrm{t}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 6 \mathrm{H}), 1.65(\mathrm{tt}, J=12.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.57-1.48(\mathrm{~m}, 1 \mathrm{H}) . \mathrm{HPLC}$ $($ gradient A): retention time $=43.0 \mathrm{~min}$. ESI-MS $549.3[\mathrm{M}+\mathrm{H}]+$ and $571.3[\mathrm{M}+\mathrm{Na}]+$.

7p. (R)-4-((S)-2-amino-3-(4-hydroxy-2,6-dimethylphenyl)propanamido)-N,6-dibenzyl-1,2,3,4-tetrahydroquinoline-8carboxamide. $7 \mathbf{p}$ was synthesized following General Procedure (x) from $\mathbf{6 p}(43 \mathrm{mg}, 0.090 \mathrm{mmol}, 1$ equiv.) and concentrated $\mathrm{HCl}(0.03 \mathrm{~mL}$, excess). Carried forward without characterization following General Procedure (x') from 6p amine salt ($36 \mathrm{mg}, 0.088 \mathrm{mmol}, 1$ equiv.), diBoc-Dmt ($40 \mathrm{mg}, 0.097 \mathrm{mmol}, 1.1$ equiv.), PyBOP (51 mg , $0.097 \mathrm{mmol}, 1.1$ equiv.), and $6-\mathrm{Cl} \mathrm{HOBt}(17 \mathrm{mg}, 0.097 \mathrm{mmol}, 1.1$ equiv.), followed by DIPEA ($0.15 \mathrm{~mL}, 0.88$ mmol, 10 equiv.). Boc-deprotected following General Procedure (x ''). Final yield not calculated. ${ }^{1} \mathrm{H}$ NMR (500 MHz, Methanol $\left.-d_{4}\right) \delta 8.20(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.11(\mathrm{~m}, 3 \mathrm{H})$, $6.95(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~s}, 2 \mathrm{H}), 4.90(\mathrm{~s}, 1 \mathrm{H}), 4.52-4.42(\mathrm{~m}, 2 \mathrm{H}), 3.83(\mathrm{dd}, J=11.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}$, $2 \mathrm{H}), 3.24(\mathrm{dd}, J=13.6,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{td}, J=13.9,4.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.45-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 6 \mathrm{H}), 1.63(\mathrm{tt}, J=$ $12.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.55-1.46(\mathrm{~m}, 1 \mathrm{H})$. HPLC (gradient A): retention time $=42.0 \mathrm{~min}$. ESI-MS $563.3[\mathrm{M}+\mathrm{H}]+$ and $585.3[\mathrm{M}+\mathrm{Na}]+$.
dimethylphenyl)propanamide. $7 \mathbf{q}$ was synthesized following General Procedure (x) from $\mathbf{6 q}(71 \mathrm{mg}, 0.17 \mathrm{mmol}, 1$ equiv.) and concentrated $\mathrm{HCl}(0.03 \mathrm{~mL}$, excess). Carried forward without characterization following General Procedure (x^{\prime}) from 6q amine salt ($62 \mathrm{mg}, 0.175 \mathrm{mmol}, 1$ equiv.), di-Boc-Dmt ($78 \mathrm{mg}, 0.192 \mathrm{mmol}, 1.1$ equiv.), PyBOP ($99 \mathrm{mg}, 0.192 \mathrm{mmol}, 1.1$ equiv.), and $6-\mathrm{Cl} \mathrm{HOBt}(32 \mathrm{mg}, 0.192 \mathrm{mmol}, 1.1$ equiv.), followed by DIPEA ($0.31 \mathrm{~mL}, 1.75 \mathrm{mmol}, 10$ equiv.), stirring 18 hours before Boc-deprotecting. Boc-deprotected following General Procedure (x''). Final yield not calculated. ${ }^{1} \mathrm{H}$ NMR (500 MHz , Methanol- d_{4}) $\delta 8.16(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.20$ $(\mathrm{m}, 2 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.08(\mathrm{~m}, 3 \mathrm{H}), 6.86(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~s}, 2 \mathrm{H}), 4.91(\mathrm{dt}, J=7.9,4.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.83(\mathrm{dd}, J=11.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 2 \mathrm{H}), 3.25(\mathrm{dd}, J=13.6,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.12-3.04(\mathrm{~m}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J$ $=13.7,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{td}, J=12.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 6 \mathrm{H}), 1.64(\mathrm{ddt}, J=13.0,11.6,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{dq}, J=$ $13.3,3.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($500 \mathrm{MHz}, \mathrm{cd}_{3} \mathrm{od}$) $\delta 168.28,157.38,142.79,141.86,139.99,133.41,131.24,130.77$, $129.66,129.43,127.06,123.26,121.64,116.45,109.56,53.39,46.91,41.45,37.96,31.94,28.75,20.45$. HPLC (gradient A): retention time $=39.9 \mathrm{~min}$. ESI-MS $508.16[\mathrm{M}+\mathrm{H}]+$ and $510.16[\mathrm{M}+\mathrm{Na}]+$.

7r. (R)-4-((S)-2-amino-3-(4-hydroxy-2,6-dimethylphenyl)propanamido)-6-benzyl-1,2,3,4-tetrahydroquinoline-8carboxylic acid. General Procedure (xi): To a pear-shaped flask containing Boc $7 \mathbf{n}(34 \mathrm{mg}, 0.048 \mathrm{mmol}, 1$ equiv.) under inert atmosphere was added $1: 1 \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(6 \mathrm{~mL})$, followed by $\mathrm{LiOH}(6 \mathrm{mg}, 0.25 \mathrm{mmol}, 5$ equiv.) at ambient temperature, stirring for 6 hours. Solution was titrated to pH 1 with HCl , then organics were extracted with ethyl acetate. Organics were dried with MgSO_{4}, filtered, and reconcentrated. Crude product was then Bocdeprotected and purified by HPLC following General Procedure (x '"). Final yield not calculated. ${ }^{1}$ H NMR (500 MHz, Methanol $\left.-d_{4}\right) \delta 7.62(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.10(\mathrm{~m}, 3 \mathrm{H}), 7.02(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.48(\mathrm{~s}, 2 \mathrm{H}), 4.92(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{dd}, J=11.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 2 \mathrm{H}), 3.25(\mathrm{dd}, J=13.6,11.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.10(\mathrm{dt}, J=12.2,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J=13.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 6 \mathrm{H}), 1.63(\mathrm{tt}, J=12.0$, $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.52(\mathrm{dq}, J=13.0,3.6 \mathrm{~Hz}, 1 \mathrm{H})$. HPLC (gradient A): retention time $=31.1 \mathrm{~min}$. ESI-MS $474.3[\mathrm{M}+\mathrm{H}]+$ and $496.3[\mathrm{M}+\mathrm{Na}]+$.

[^0]: General Procedures (x, $\boldsymbol{x}, \mathbf{x}$ ’, and $\boldsymbol{x i}$) for Sulfinamide Cleavage, Amide Coupling, Boc-Deprotection and Ester Hydrolysis to Produce Final Compounds 7a-r

