## Supporting Information for:

# Critical Domain Sizes of Heterogeneous Nanopattern <br> Surfaces with Optimal Protein Resistance 

Yun Li, Wenhao Qian, Jin Huang, Xianjing Zhou*, Biao Zuo, Xinping Wang ${ }^{*}$, Wei Zhang

Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China.

[^0]

Figure S1. Representative SEM and EDS results of gold coated tip (A, a), proteins functionalized tip $(B, b)$, and proteins functionalized tip after being used in force measurement (C, c). Scale bar: 200 nm .


Figure S2. The representative lateral force trace (left) and retrace (right) maps of $\mathrm{mPEG}_{110^{-}}$ V-PMMA $82-b-$ PFMA $_{5}$ V-shaped brush.

As we all know, friction coefficient ( $\mu$ ) can be calculated as the specific value of the friction force $\left(\mathrm{F}_{\text {friction }}\right)$ and load force $\left(\mathrm{F}_{\text {load }}\right)$. In the measurement of AFM, $\mathrm{F}_{\text {friction }}$ and $\mathrm{F}_{\text {load }}$ are converted from voltage, and $\mu$ can be obtained through the relations as follows:
$\mu=\frac{\mathrm{F}_{\text {friction }}}{\mathrm{F}_{\text {load }}}=\frac{k_{1} \mathrm{~V}_{\text {friction }}}{k_{2} \mathrm{~V}_{\text {load }}}$
Where $\mathrm{V}_{\text {friction }}$ is friction induced voltage, $\mathrm{V}_{\text {load }}$ is load voltage (2 V was used in our work), $k_{1}$ and $k_{2}$ are two constants, which are related to lateral sensitivity and lateral force constant, normal sensitivity and normal force constant, respectively. Because Bruker MultiMode-8 instrument does not provide a way to calibrate lateral sensitivity and lateral force constant of a cantilever, the absolute value of friction coefficient can't be obtained. And the relative friction coefficient is calculated through the equation as follows:
$\mu_{\text {relative }}=\frac{k_{2}}{k_{1}} \mu=\frac{\mathrm{V}_{\text {friction }}}{\mathrm{V}_{\text {load }}}$
$\mathrm{V}_{\text {friction }}$ is calculated as half of the difference value between the two friction images $\left(\mathrm{V}_{\text {friction }}=\left(\mathrm{V}_{\text {trace }}-\mathrm{V}_{\text {retrace }}\right) / 2\right)$, as shown in Figure S2. (According to the data of Figure $\left.\mathrm{S} 2, \mathrm{~V}_{\text {friction }}=(1.885-1.705) / 2=0.09, \mu_{\text {relative }}=0.045\right)$


Figure S3. AFM height images $(2.0 \mu \mathrm{~m} \times 2.0 \mu \mathrm{~m})$ of $\mathrm{mPEG}_{110}-\mathrm{V}-\mathrm{PMMA}_{\mathrm{n}}-b-\mathrm{PFMA}_{5}$ brushes. (A-F) $\mathrm{n}=30,64,82,93,109$ and 128 , respectively. (G) Modulus vs temperature for bright domain obtained by AFM PeakForce QNM mode.


Figure S4. Power spectrum obtained by circular average of FT AFM images of V-shaped brushes $\mathrm{mPEG}_{110}-\mathrm{V}_{-} \mathrm{PMMA}_{\mathrm{n}}-b-\mathrm{PFMA}_{5}$ in Figure 2.


Figure S 5 . Atomic $\% \mathrm{~N}_{1 \mathrm{~s}}$ of adsorbed protein, average measured adhesion force and the relative friction coefficient of BSA versus domain sizes in $\mathrm{mPEG}_{110}-\mathrm{V}-\mathrm{PMMA}_{\mathrm{n}}-b-\mathrm{PFMA}_{5}$ brushes.


Figure S6. Fluorescence microscopy images of V-shaped polymer brushes with two arms of $m P E G$ and PS after FITC-BSA adsorption. (A) $\mathrm{mPEG}_{42}-\mathrm{V}^{2} \mathrm{PS}_{43}$, (B) $\mathrm{mPEG}_{42}-\mathrm{V}^{2}-\mathrm{PS}_{78}$, (C) $\mathrm{mPEG}_{42}-\mathrm{V}_{-} \mathrm{PS}_{128}$, (D) $\quad \mathrm{mPEG}_{110}-\mathrm{V}_{-} \mathrm{PS}_{61}$, (E) $\quad \mathrm{mPEG}_{110}-\mathrm{V}_{-\mathrm{PS}_{119}}$, (F) $\mathrm{mPEG}_{110}-\mathrm{V}-\mathrm{PS}_{169}$, (G) $\mathrm{mPEG}_{110}-\mathrm{V}_{-\mathrm{PS}_{227}}$.


Figure S7. Fluorescence microscopy images of V-shaped polymer brushes with two arms of mPEG and PS after FITC-HFg adsorption. (A) $\mathrm{mPEG}_{42}$ - $\mathrm{V}^{-\mathrm{PS}_{43}}$, (B) $\mathrm{mPEG}_{42}$ - $\mathrm{V}^{-\mathrm{PS}_{78}}$, (C) $m$ PEG $_{42}-\mathrm{V}_{-}-\mathrm{PS}_{128}$, (D) $m \mathrm{PEG}_{110}-\mathrm{V}_{-} \mathrm{PS}_{61}$, (E) $m \mathrm{PEG}_{110}-\mathrm{V}_{-}-\mathrm{PS}_{119}$, (F) $\mathrm{mPEG}_{110}-\mathrm{V}-\mathrm{PS}_{169}$, (G) $\mathrm{mPEG}_{110}-\mathrm{V}_{-} \mathrm{PS}_{227}$.


Figure S8. Atomic $\% \mathrm{~N}_{1 \mathrm{~s}}$ of adsorbed protein, average measured adhesion force and the relative friction coefficient of BSA (a) and HFg (b) versus domain sizes in mPEG-V-PS brushes.


Figure S9. AFM phase images, height images and height profiles of $\mathrm{mPEG}_{110^{-}}$ V-PMMA ${ }_{82}-b-$ PFMA $_{5}$ brushes in air (A, C, E) and in PBS solutions (B, D, F), respectively.


Figure S10. AFM phase images, height images and height profiles of $\mathrm{mPEG}_{110}-\mathrm{V}$ -
$\mathrm{PMMA}_{109}-b-\mathrm{PFMA}_{5}$ brushes in air (A, C, E) and in PBS solutions (B, D, F), respectively.


[^0]:    * Corresponding author.

    Xinping Wang \& Xianjing Zhou
    Email: wxinping@yahoo.com; xjzhou@zstu.edu.cn
    Tel/fax:+86-571-8684-3600

