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ANN Detailed Methodology  

Each node has an associated weight that is directly proportional to the influence of that 

particular feature on the final output of the network. These weights are typically initialized 

randomly. For this study feed forward neural networks 1 were used. The data moves in a single 

direction: from the input layer to the output.  During the “training” phase, where the dataset of 

interest is “fed” in to the network, the weights are adjusted through a method known as 

“backpropagation 2”; the act of propagating information back through the network, such as the 

gradient of the loss function of interest, such as mean absolute error, root mean squared (RMS) 

error, and so forth. Each weight is adjusted respectively. After a certain number of iterations, 

also known as epochs, of the above process, a local minima will have been found for the 

specific ANN and dataset. The final model consists of the original architecture (the topology of 

the model) in addition to a matrix of optimized weights.  A wide range of (linear) combinations of 

the original features is not sufficient to represent nonlinear functions. Rather, an “activation 

function” is needed to provide a saturation limit such as the sigmoid function or the ‘rectifier 3’, 

which is presently the most popular function for deep ANNs. It is this combination that allows for 

Artificial Neural Networks to represent complex and non-linear relationships between the given 

inputs and outputs.  



Multiple feed forward architectures were tested, some of which are presented in table S1 

in the form of units in each layer separated by a dash, where the first represents the input layer. 

It must be noted that these models were not tuned in the same fashion as the final models, as 

the regularization coefficients and loss function were not optimized. 

Table S1 

Sample of tested ANN architectures 

Architecture Mean error (RON) Mean error (MON) 

absolute RMS 
percentag

e 
absolute RMS 

percentag
e 

9-20-1 3.9 5.1 4.4 4.6 5.7 5.7 
9-20-40-1 2.9 4.1 3.3 3.6 4.6 4.5 
9-80-160-1 2.4 3.8 2.8 2.8 3.9 3.4 
9-200-400-1 2.5 4.0 3.0 2.6 4.1 3.0 
9-160-80-40-1 2.9 4.6 3.2 3.4 4.9 4.1 
9-80-160-80-1 2.8 4.2 3.1 2.7 4.6 3.3 
9-20-40-80-160-
1 

3.1 3.9 3.4 3.4 4.8 4.1 

 

 Overall, models with two hidden layers and a high number of nodes resulted in the 

lowest overall error metrics and best generalization performance. The most likely explanation for 

this result is that ‘deeper models’, models with more hidden layers, have too many features for 

the used dataset, and therefore ‘overfit’ the training data. Therefore, the network is effectively 

‘memorizing’ the individual data points, as opposed to finding a general pattern, hence 

performing poorly on the test set. This is subject to improvement with a larger dataset. 

 A common method for combating overfitting is known as “regularization”. There are 

many different methods, although they all boil down to the penalization of solutions that are 

“complex”. L1 4 regularization penalizes solutions with a relatively high number of non-zero 

weights – solutions that depend on a lot of features, while L2 4 regularization penalizes solutions 

with large weight coefficients – solutions that depend heavily on single features. Another 

method of interest known as ‘dropout 5’ drops arbitrary nodes in the network during each epoch, 

forcing the network not to rely heavily on specific nodes thus reducing the likelihood of over 

fitting. 

Apart from the architecture, several other parameters were varied, including the 

regularization type, the optimizer, the loss function, and the number of training epochs. L1, L2, 

and ‘dropout’ were tested as regularization methods. Dropout lead to the highest stability and 

the lowest overall error metrics. ‘Adam 6’ an extension of stochastic gradient descent, was 



settled upon as the optimizer. The optimal loss function differed for the two models: for RON it 

was found to be mean squared error, while for MON it was mean absolute error. Lastly, 5000 

epochs were chosen due to empirical evidence. The summaries of the developed ANN models 

for RON and MON are reported in Table S2 and Table S3. 

Table S2: RON ANN Model Summary  
____________________________________________________________________________ 
Layer (type)                     Output Shape          Param #      Connected to                      
____________________________________________________________________________ 
dense_370 (Dense)                (None, 341)           3410        dense_input_1[0][0]               
____________________________________________________________________________ 
dropout_247 (Dropout)            (None, 341)           0            dense_370[0][0]                   
____________________________________________________________________________ 
dense_371 (Dense)                (None, 603)           206226     dropout_247[0][0]                 
____________________________________________________________________________ 
dropout_248 (Dropout)            (None, 603)           0            dense_371[0][0]                   
____________________________________________________________________________ 
dense_372 (Dense)                (None, 1)               604          dropout_248[0][0]                 
____________________________________________________________________________ 
Total parameters: 210240 
 
 
Table S3: MON ANN Model Summary 
______________________________________________________________________ 
Layer (type)                     Output Shape          Param #     Connected to                      
______________________________________________________________________ 
dense_298 (Dense)                (None, 541)           5410        dense_input_3[0][0]               
______________________________________________________________________ 
dropout_199 (Dropout)            (None, 541)           0            dense_298[0][0]                   
______________________________________________________________________ 
dense_299 (Dense)                (None, 314)           170188     dropout_199[0][0]                 
______________________________________________________________________ 
dropout_200 (Dropout)            (None, 314)           0            dense_299[0][0]                   
______________________________________________________________________ 
dense_300 (Dense)                (None, 1)                315          dropout_200[0][0]                 
______________________________________________________________________ 
Total parameters: 175913 
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