Supporting Information

Immobilized ferrous ion and glucose oxidase on graphdiyne and its

application on one-step glucose detection

Jiaming Liu^{†,‡}, Xiaomei Shen^ζ, Didar Baimanov^{†,‡}, Liming Wang[†], Yating Xiao^{†,‡}, Huibiao Liu[§], Yuliang Li[§], Xingfa Gao^{ζ,*}, Yuliang Zhao^{†,‡} and Chunying Chen^{†,‡,*}

[†] CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China

[‡] University of Chinese Academy of Sciences, Beijing 100049, China

§ CAS Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

 ζ College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China

Corresponding author: gaox@jxnu.edu.cn, chenchy@nanoctr.cn.

Figure S2. Zeta potential of GDY and Fe-GDY.

Figure S3. High resolution asymmetric C 1s XPS spectra of GDY (a) and Fe-GDY (b).

Figure S4. Selectivity analysis for glucose detection using Fe-GDY/GOx.