Formation of Chiral Allylic Ethers via an Enantioselective PalladiumCatalyzed Alkenylation of Acyclic Enol Ethers

Harshkumar H. Patel, Matthew B. Prater, Scott O. Squire Jr. and Matthew S. Sigman*Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake City, UT-84112Table of Contents
General considerations S-2
Synthesis of triflate reagents S-3
Synthesis of substrates (alkenols) S-5
Reaction optimization and procedures S-14
Characterization of compounds S-17
Other Alkenyl Triflates S-32
Derivatization of alkenylated products S-33
Determination of absolute configuration S-36
Determination of enantiomeric ratios and SFC traces S-38
References S-66
NMR spectra S-67

General considerations:

Dry dimethylformamide (DMF) and dimethylacetamide (DMA) were purchased from Aldrich and stored over activated $3 \AA$ molecular sieves ($3 \AA$ MS). All glassware was dried in a $120^{\circ} \mathrm{C}$ oven or flame-dried and cooled under nitrogen or vacuum, unless otherwise noted. Powdered $3 \AA$ MS were activated by heating under a flame, under high vacuum and then stored under nitrogen. Alkene substrates were purchased from Aldrich, TCI or Alfa Aesar or prepared according to the literature procedures. Triflates were prepared according to the literature procedures. Tris(dibenzylideneacetone)dipalladium(0) was synthesized according to the literature procedure. ${ }^{1}$ The PyrOx ligand used in these studies was synthesized according to the literature procedure. ${ }^{21} \mathrm{H}$ NMR spectra were obtained at $300 \mathrm{MHz}, 400 \mathrm{MHz}$, or 500 MHz , chemical shifts are reported in ppm, and referenced to the CHCl_{3} singlet at 7.26 ppm . ${ }^{13} \mathrm{C}$ NMR spectra were obtained at 75 MHz , 100 MHz , or 126 MHz and referenced to the center peak of the CDCl_{3} triplet at 77.00 ppm . The abbreviations $\mathrm{s}, \mathrm{d}, \mathrm{t}, \mathrm{q}, \mathrm{p}$, sext, dd , dt , and m stand for the resonance multiplicities singlet, doublet, triplet, quintet, doublet of doublets, doublet of triplets and multiplet, respectively. Thin-layer chromatography was performed with EMD silica gel 60 F254 plates eluting with solvents indicated, visualized by a 254 nm UV lamp and stained with phosphomolybdic acid. Flash chromatography was performed using EM reagent silica 60 (230-400 mesh). IR spectra were recorded using a Thermo Nicolet FT-IR. High resolution mass spectrometry (HRMS) data were obtained on a Waters LCP Premier XE instrument by ESI/TOF. SFC (supercritical fluid chromatography) analysis was performed at $25-40^{\circ} \mathrm{C}$, using a Waters instrument fitted with a chiral stationary phase as indicated. Gas chromatography analysis was performed using a Hewlett Packard HP6890 instrument under the conditions indicated. Optical rotations were measured (Na D line) on a Perkin Elmer Model 343 Polarimeter fitted with a micro cell with a 1 dm path length; concentrations are reported in $\mathrm{g} / 100 \mathrm{~mL}$.

Synthesis of Substrates:

Preparation of Alkenyl Triflates

General reaction for the preparation of alkenyl triflates.

(Z)-1-(2-oxodihydrofuran-3(2H)-ylidene)ethyl trifluoromethanesulfonate (1a):

A previously reported procedure was used for the synthesis of 1a from 3-acetyldihydrofuran$2(3 \mathrm{H})$-one. ${ }^{3}$
methyl 2-(((trifluoromethyl)sulfonyl)oxy)cyclopent-1-ene-1-carboxylate (1b):

A previously reported procedure was used for the synthesis of $\mathbf{1 b}$ from methyl 2-oxocyclopentane-1-carboxylate. ${ }^{4}$
ethyl 2-(((trifluoromethyl)sulfonyl)oxy)cyclohept-1-ene-1-carboxylate (1c):

A previously reported procedure was used for the synthesis of $\mathbf{1 c}$ from ethyl 2-oxocycloheptane-1-carboxylate. ${ }^{5}$

1-(tert-butyl) 3-ethyl 4-(((trifluoromethyl)sulfonyl)oxy)-5,6-dihydropyridine-1,3(2H)dicarboxylate (1d):

A previously reported procedure was used for the synthesis of $\mathbf{1 d}$ from 1-(tert-butyl) 3-ethyl 4-oxopiperidine-1,3-dicarboxylate. ${ }^{6}$

2-methyl-3-oxocyclohex-1-en-1-yl trifluoromethanesulfonate (1e):

A previously reported procedure was used for the synthesis of $\mathbf{1 e}$ from 2-methyl-3oxocyclohexanone. ${ }^{6}$
ethyl (Z)-2-methyl-3-(((trifluoromethyl)sulfonyl)oxy)but-2-enoate (1f):

A previously reported procedure was used for the synthesis of $\mathbf{1 f}$ from ethyl 2-methyl-3oxobutanoate. ${ }^{7}$
ethyl (E)-2-methyl-3-(((trifluoromethyl)sulfonyl)oxy)but-2-enoate (1g):

A previously reported procedure was used for the synthesis of $\mathbf{1 g}$ from ethyl 2-methyl-3oxobutanoate. ${ }^{7}$
ethyl (Z)-2-benzyl-3-(((trifluoromethyl)sulfonyl)oxy)but-2-enoate (1h):

A previously reported procedure was used for the synthesis of $\mathbf{1 h}$ from ethyl 2-benzyl-3oxobutanoate. ${ }^{7}$
ethyl(Z)-5-(1,3-dioxoisoindolin-2-yl)-2-(1-(((trifluoromethyl)sulfonyl)oxy)ethylidene)pentanoate (1i):

A previously reported procedure was used for the synthesis of 1i from ethyl 2-acetyl-5-(1,3-
dioxoisoindolin-2-yl)pentanoate. ${ }^{8}$
ethyl (Z)-2-methyl-3-(((trifluoromethyl)sulfonyl)oxy)-5-(trimethylsilyl)pent-2-enoate (1j):

A previously reported procedure was used for the synthesis of $\mathbf{1} \mathbf{j}$ from ethyl 2-methyl-3-oxo-5(trimethylsilyl)pentanoate. ${ }^{8}$
methyl 4-(((trifluoromethyl)sulfonyl)oxy)-6,7-dihydrobenzofuran-5-carboxylate (1k):

A previously reported procedure was used for the synthesis of $\mathbf{1 k}$ from ethyl 4-oxo-4,5,6,7-tetrahydrobenzofuran-5-carboxylate. ${ }^{9}$

Synthesis of alkenol substrates:

General procedure A: Preparation of acyclic enol ethers from methyl propiolate.

Step 1: To a stirred solution of 1,4-diazabicyclo[2.2.2]octane ($270 \mathrm{mg}, 2.4 \mathrm{mmol}, 0.10$ equiv.) and alcohol or phenol (26.0 mmol , 1.1 equiv.) in THF $(150 \mathrm{~mL})$ at room temperature was added methyl propiolate ($2.0 \mathrm{~g}, 24.0 \mathrm{mmol}, 1 \mathrm{eq}$.$) via syringe pump over 10$ minutes, before stirring at room temperature for a further 30 minutes. Sodium hydroxide (10% solution, 200 mL) was added and the aqueous was extracted with DCM ($4 \times 100 \mathrm{~mL}$), combined, washed with brine ($3 \times 150 \mathrm{~mL}$), dried over sodium sulfate, filtered and concentrated in vacuum. The ester product was isolated after subsequent purification on silica gel by flash chromatography or used without further purification.

Step 2: To a stirred solution of the ester (1.0 equiv) in toluene $(100 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added

DIBAL-H (1 M in tol., 2.5 equiv.) at a rate of $1 \mathrm{~mL} \mathrm{~min}^{-1}$. After addition the reaction was stirred at $-78^{\circ} \mathrm{C}$ for 6 hours, before pouring onto ice-cold saturated Rochelle salt solution $(100 \mathrm{~mL})$ followed by the addition of EtOAc (100 mL). The biphasic mixture was vigorously stirred at $0{ }^{\circ} \mathrm{C}$ for 2 hours before separating and extracting with EtOAc (100 mL). The organics were combined and washed with saturated Rochelle salt solution (150 mL), dried over sodium sulfate, filtered and concentrated in vacuum to afford the primary alcohol product without further purification.

(E)-3-(4-methoxyphenoxy)prop-2-en-1-ol (2l)

Product $2 \mathbf{2}$ was synthesized according to the literature procedure. ${ }^{10}$

(E)-3-(o-tolyloxy)prop-2-en-1-ol (2m)

The general procedure A was followed with o-cresol ($1.2 \mathrm{~g}, 11 \mathrm{mmol}, 1.1$ equiv), methyl propiolate ($840 \mathrm{mg}, 10 \mathrm{mmol}, 1.0$ equiv), and $\operatorname{DABCO}(110 \mathrm{mg}, 1.0 \mathrm{mmol}, 0.10$ equiv). The resulting mixture ($1.7 \mathrm{~g}, 9.0 \mathrm{mmol}, 1.0$ equiv) was reduced with $\operatorname{DIBAL}-\mathrm{H}(3.2 \mathrm{~g}, 22 \mathrm{mmol}, 2.5$ equiv). Purification on silica gel ($0-18 \%$ ethyl acetate in hexanes) yielded 1.4 g of a clear liquid (83% yield over 2 steps). $\mathbf{R}_{f}=0.23(30 \% \mathrm{EtOAc} /$ hexanes $) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.21-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.01$ $(\mathrm{td}, J=13.2,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{dt}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{dt}, J=12.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.46-$ $5.39(\mathrm{~m}, 1 \mathrm{H}), 4.17-4.12(\mathrm{~m}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{bs}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~ N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $154.74,146.56,131.15,128.29,126.93,123.51,116.70,109.43,59.89,15.91$. IR (neat) $3318,3042,2921$, 2868, 1672, 1609, 1585, 1487, 1456, 1253, 1161, $1118 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{2}(\mathrm{M})^{+}: 165.0916$, found 165.0900 .

(E)-3-(m-tolyloxy)prop-2-en-1-ol (2n)

The general procedure A was followed using m-cresol ($1.4 \mathrm{~g} 13 \mathrm{mmol}, 1.1$ equiv), methyl propiolate ($840 \mathrm{mg}, 12 \mathrm{mmol}, 1.0$ equiv), $\mathrm{DABCO}(130 \mathrm{mg}, 1.2 \mathrm{mmol}, 0.10$ equiv). The resulting mixture ($2.3 \mathrm{~g}, 12 \mathrm{mmol}, 1.0$ equiv) was reduced with DIBAL-H ($4.3 \mathrm{~g}, 30 \mathrm{mmol}, 2.5$ equiv). Purification of this material by chromatography on silica gel (gradient elution: 0-15\% EtOAc/hexanes) afforded a clear liquid ($1.50 \mathrm{~g}, 76 \%$ yield over 2 steps) $\mathbf{R}_{f}=0.10(10 \%$ EtOAc/hexanes). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.21-7.16(\mathrm{~m}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.82-6.77(\mathrm{~m}, 2 \mathrm{H}), 6.69(\mathrm{~m}, 1 \mathrm{H}), 5.52(\mathrm{~m}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.67-1.61$ (bs, 1 H). ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.75,145.71,139.82,129.33,124.10,117.64,113.92$, 110.49, 59.84, 21.32. IR (neat) 3318, 3042, 2921, 2868, 1672, 1609, 1585 1487, 1456, 1253, 1161, $1118 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{2}(\mathrm{M})^{+}: 165.0916$, found 165.0899 .

(E)-3-((5,6,7,8-tetrahydronaphthalen-2-yl)oxy)prop-2-en-1-ol (2o)

The general procedure A was followed using 5,6,7,8-tetrahydronaphthalen-2-ol (1.9 g, 13 mmol , 1.1 equiv), methyl propiolate ($840 \mathrm{mg}, 12 \mathrm{mmol}, 1.0$ equiv), and DABCO ($130 \mathrm{mg}, 1.2 \mathrm{mmol}$, 0.10 equiv). The resulting mixture ($2.7 \mathrm{~g}, 12 \mathrm{mmol}, 1.0$ equiv) was reduced with DIBAL-H (4.3 $\mathrm{g}, 30 \mathrm{mmol}, 2.5$ equiv). The crude material of this reaction was used without further purification. $\left(1.7 \mathrm{~g}, 70 \%\right.$ yield over 2 steps) $\mathbf{R}_{f}=0.23$ ($30 \% \mathrm{EtOAc} /$ hexanes). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.02(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{dd}, J=8.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.73-6.70(\mathrm{~m}, 2 \mathrm{H}), 6.69(\mathrm{~d}, J=1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.51(\mathrm{dt}, J=12.1,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-4.14(\mathrm{~m}, 2 \mathrm{H}), 2.76-2.72(\mathrm{~m}, 4 \mathrm{H}), 1.79(\mathrm{p}, J=3.3 \mathrm{~Hz}$, $4 \mathrm{H}), 1.29(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.47,146.41,138.58,132.14$, $130.12,117.18,114.59,109.79,60.07,29.53,28.67,23.21,22.96$. IR (neat) $3312,2925,2857$, 2837, 2360, 2340, 1670, 1608, 1496, 1437, 1245, 1226, $1164 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{2}(\mathrm{M})^{+}: 205.1229$, found 205.1216.

(E)-3-(naphthalen-2-yloxy)prop-2-en-1-ol (2p)

The general procedure A was followed using 2-naphthol ($1.9 \mathrm{~g}, 13 \mathrm{mmol}, 1.1$ equiv), methyl propiolate ($840 \mathrm{mg}, 12 \mathrm{mmol}, 1.0$ equiv), and $\mathrm{DABCO}(130 \mathrm{mg}, 1.2 \mathrm{mmol}, 0.10$ equiv). This resulting material ($2.6 \mathrm{~g}, 12 \mathrm{mmol}, 1.0$ equiv) was reduced with DIBAL-H ($4.3 \mathrm{~g}, 30 \mathrm{mmol}, 2.5$ equiv) Purification of this material by chromatography on silica gel (gradient elution: 0-10\% EtOAc/hexanes) afforded product 2p as a white solid ($2.2 \mathrm{~g}, 92 \%$ yield over 2 steps) $\mathbf{R}_{f}=0.2(10 \%$ EtOAc/hexanes). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.82(\mathrm{dd}, J=8.8,3.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.79-7.75$ (m, $1 \mathrm{H}), 7.49(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{~m}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{dd}, J=8.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}$, $J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{dt}, J=12.1,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.63(\mathrm{bs}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.53,145.33,134.10,130.04,129.79,127.68,127.00,126.61,124.62,118.64,111.35$, 111.26, 59.83. IR (neat) $3363,3058,2879,2360,2342,1705,1670,1627,1597,1507,1464,1441$, $1358 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{O}_{2}(\mathrm{M})^{+}: 201.0918$, found 201.0916.

(E)-3-(3-(trifluoromethyl)phenoxy)prop-2-en-1-ol (2q)

The general procedure A was followed using 3-trifluoromethylphenol ($2.1 \mathrm{~g}, 13 \mathrm{mmol}, 1.1$ equiv), methyl propiolate ($840 \mathrm{mg}, 12 \mathrm{mmol}, 1.0$ equiv), and DABCO ($130 \mathrm{mg}, 1.2 \mathrm{mmol}, 0.10$ equiv). This resulting mixture ($2.7 \mathrm{~g}, 12 \mathrm{mmol}, 1.0$ equiv) was reduced with DIBAL-H ($4.3 \mathrm{~g}, 30 \mathrm{mmol}$, 2.5 equiv). Purification of this material by chromatography on silica gel (gradient elution: 10-20\% EtOAc/hexanes) afforded product $\mathbf{2 q}$ as a white solid ($2.6 \mathrm{~g}, 92 \%$ yield over 2 steps) $\mathbf{R}_{f}=0.31$ ($30 \% \mathrm{EtOAc} / \mathrm{hexanes}$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.36(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{dt}, J=12.0,7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.86,144.37,132.15(\mathrm{q}, J=$ $32.4 \mathrm{~Hz}), 130.29,123.63(\mathrm{~d}, J=272.3 \mathrm{~Hz}), 120.24(\mathrm{~d}, J=1.5 \mathrm{~Hz}), 119.86(\mathrm{q}, J=4.0 \mathrm{~Hz}), 113.71$ (q, $J=3.9 \mathrm{~Hz}$), 112.46, 59.69. IR (neat) $3312,2878,2361,2340,1675,1594,1492,1451,1324$, 1224, 1115, 1063, $993 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{~F}_{3}(\mathrm{M}-\mathrm{H})^{+}: 217.0476$, found
217.0502.

(E)-3-(4-bromophenoxy)prop-2-en-1-ol (2r)

The general procedure A was followed using 4-bromophenol ($2.3 \mathrm{~g}, 13 \mathrm{mmol}, 1.1$ equiv), methyl propiolate ($840 \mathrm{mg}, 12 \mathrm{mmol}, 1.0$ equiv), and DABCO ($130 \mathrm{mg}, 1.2 \mathrm{mmol}, 0.10$ equiv). This crude material ($1.0 \mathrm{~g}, 3.9 \mathrm{mmol}, 1.0$ equiv) was reduced with DIBAL-H ($1.4 \mathrm{~g}, 9.7 \mathrm{mmol}, 2.5$ equiv). Purification of this material by chromatography on silica gel (gradient elution: 10-15\% EtOAc/hexanes) afforded product $\mathbf{2 r}$ as a white solid ($0.759 \mathrm{~g}, 77 \%$ yield over 2 steps) $\mathbf{R}_{f}=0.18$ ($10 \% \mathrm{EtOAc} / \mathrm{hexanes}$). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.39(\mathrm{~m}, 3 \mathrm{H}), 6.89-6.86(\mathrm{~m}, 2 \mathrm{H})$, $6.65(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-4.13(\mathrm{~d}, 2 \mathrm{H}), 1.51(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.79,144.82,132.53,118.62,115.65,111.59,59.55$. IR (neat): 3317, 3072, 2872, 2360, 2341, 1701, 1672, 1585, 1483, 1228, $1167 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{Br}(\mathrm{M}-\mathrm{H})^{+}: 226.9708$, found 226.9735.

(E)-3-(4-(methylsulfonyl)phenoxy)prop-2-en-1-ol (2s)

The general procedure A was followed using 4-(methylsulfonyl)phenol ($2.2 \mathrm{~g}, 13 \mathrm{mmol}, 1.1$ equiv), methyl propiolate ($840 \mathrm{mg}, 12 \mathrm{mmol}, 1.0$ equiv), and DABCO ($130 \mathrm{mg}, 1.2 \mathrm{mmol}, 0.10$ equiv). This crude material ($2.3 \mathrm{~g}, 8.8 \mathrm{mmol}, 1.0$ equiv) was reduced with DIBAL-H ($3.2 \mathrm{~g}, 22$ $\mathrm{mmol}, 2.5$ equiv). Purification of this material by chromatography on silica gel (gradient elution: $10-40 \%$ EtOAc/hexanes) afforded product 2 s as a white solid ($1.8 \mathrm{~g}, 90 \%$ yield over 2 steps) $\mathbf{R}_{f}=$ 0.37 (60% EtOAc/hexanes). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.16 (d, $J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{dt}, J=12.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.22(\mathrm{~m}, 2 \mathrm{H}), 3.06$ (s, 3H). ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.80,142.90,134.59,129.71,116.81,114.25,59.50$, 44.76. IR (neat) 3380, 3009, 2926, 2361, 2341, 1638, 1589, 1491, 1290, 1143, $962 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{SNa}(\mathrm{M}+\mathrm{Na})^{+}: 251.0354$, found 251.0351 .

(E)-3-(4-chlorophenoxy)prop-2-en-1-ol (2t)

The general procedure A was followed using 3-chlorophenol ($1.7 \mathrm{~g}, 13 \mathrm{mmol}, 1.1$ equiv), methyl propiolate ($840 \mathrm{mg}, 12 \mathrm{mmol}, 1.0$ equiv), and $\operatorname{DABCO}(130 \mathrm{mg}, 1.2 \mathrm{mmol}, 0.10$ equiv). This crude material ($1.0 \mathrm{~g}, 4.7 \mathrm{mmol}, 1.0$ equiv) was reduced with DIBAL-H ($1.7 \mathrm{~g}, 11.8 \mathrm{mmol}, 2.5$ equiv) Purification of this material by chromatography on silica gel (gradient elution: 10\% EtOAc/hexanes) afforded product $\mathbf{2 t}$ as a yellow oil ($0.50 \mathrm{~g}, 56 \%$ yield over 2 steps) $\mathbf{R}_{f}=0.32$ ($30 \% \mathrm{EtOAc} / \mathrm{hexanes}$). ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32-7.20(\mathrm{~m}, 2 \mathrm{H}), 6.96-6.87(\mathrm{~m}, 2 \mathrm{H})$, $6.64(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{dt}, J=12.1,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.21-4.11(\mathrm{~d}, J=7.22 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (75 MHz , Chloroform-d) $\delta 155.30,145.17,129.63,128.33,118.28,111.41,59.79$. IR (neat) 3306, 2873, 1672, 591, 1484, 1281, 1233, 1166, 1085, 990; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{Cl}$ $(\mathrm{M}-\mathrm{H})^{+}: 183.0213$, found 183.0234 .

Preparation of enol ether via Cu catalyzed coupling reactions

General Procedure B: In a 10 mL round bottom flask a mixture of (E)-alkenyl iodide (1.0 mmol , 1.0 equiv), the corresponding phenol ($1.2 \mathrm{mmol}, 1.2$ equiv), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($650 \mathrm{mg}, 2 \mathrm{mmol}, 2$ equiv), $\mathrm{Ni}(\mathrm{acac})_{2}(13 \mathrm{mg}, 0.05 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{CuI}(10 \mathrm{mg}, 0.05 \mathrm{mmol}, 5 \mathrm{~mol} \%)$ and $\mathrm{NMP}(3 \mathrm{~mL})$ was heated at $100^{\circ} \mathrm{C}$ under nitrogen for 12 h (TLC). The reaction mixture was then allowed to cool and was extracted with ethyl acetate ($3 \times 20 \mathrm{~mL}$). The extract was washed with water $(10 \mathrm{~mL})$ and brine (10 mL). Then the organic phase was dried over sodium sulfate and evaporated to leave the crude product, which was purified by column chromatography over silica gel (hexane/ethyl acetate) to provide the pure acyclic enol ether.

(E)- 4-(4-methoxyphenoxy)but-3-en-1-ol (2u)

Compound $\mathbf{2 u}$ was prepared according to the general procedure \mathbf{B} using (E)-tert-butyl((4-iodobut-3-en-1-yl)oxy)dimethylsilane ($310 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0$ equiv) and p-methoxyphenol ($150 \mathrm{mg}, 1.2$ mmol, 1.0 equiv) and purified using silica gel flash chromatography (gradient elution: $5 \rightarrow 25 \%$ ethyl acetate/hexanes) to afford product $\mathbf{2 u}$ as a white oil ($160 \mathrm{mg}, 82 \%$ yield): $\mathbf{R}_{\boldsymbol{f}}=0.12$ (15% ethyl acetate in hexane). ${ }^{1} \mathbf{H}$ NMR (500 MHz , Chloroform- d) $\delta 6.95-6.88(\mathrm{~m}, 2 \mathrm{H}), 6.87-6.80(\mathrm{~m}$, $2 \mathrm{H}), 6.46(\mathrm{~d}, J=12.1,1 \mathrm{H}), 5.21(\mathrm{dt}, J=12.2,7.8,1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.68-3.61(\mathrm{~m}, 2 \mathrm{H}), 2.26(\mathrm{~m}$, 2H). $1.43(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.36,150.95,145.16,117.91,114.67,107.10$, 62.35, 55.65, 30.80.; IR (neat) 3324, 3050, 3011, 2930, 2834, 1674, 1503, 1461, 1441, 1216, 1176. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: 217.0841$, found 217.0857.

(E)-4-(benzo[d][1,3]dioxol-5-yloxy)but-3-en-1-ol (2v)

Compound $\mathbf{2 v}$ was prepared according to the general procedure \mathbf{B} using (E)-tert-butyl((4-iodobut-3-en-1-yl)oxy)dimethylsilane ($310 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0$ equiv) and sesamol ($170 \mathrm{mg}, 1.2 \mathrm{mmol}, 1.0$ equiv) and purified using silica gel flash chromatography (gradient elution: $15 \rightarrow 40 \%$ ethyl acetate/hexanes) to afford product 2 v as a white oil ($155 \mathrm{mg}, 75 \%$ yield): $\mathbf{R}_{\boldsymbol{f}}=0.18$ (40% ethyl acetate in hexane). ${ }^{1} \mathbf{H}$ NMR (500 MHz , Chloroform- d) $\delta 6.68(\mathrm{dd}, J=8.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{t}, J$ $=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.44-6.34(\mathrm{~s}, 2 \mathrm{H}), 5.90(\mathrm{~s}, 2 \mathrm{H}), 5.21(\mathrm{dt}, J=12.2,8.7,1 \mathrm{H}), 3.61(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, $2.23(\mathrm{~m}, 2 \mathrm{H}), 2.16(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.11,148.13,144.60,143.11,108.61$, 107.91, 107.78, 101.28, 99.71, 62.20, 30.63.; IR (neat) 3357, 2887, 2361, 1671, 1631, 1501, 1479, 1176, 1139; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}: 209.0814$, found 209.0811 .

(E)-4-phenoxybut-3-en-1-ol (2w)

Compound $\mathbf{2 w}$ was prepared according to the general procedure \mathbf{B} using (E)-tert-butyl((4-iodobut-3-en-1-yl)oxy)dimethylsilane ($310 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0$ equiv) and phenol ($110 \mathrm{mg}, 1.2 \mathrm{mmol}, 1.0$ equiv) and purified using silica gel flash chromatography (gradient elution: $5 \rightarrow 15 \%$ ethyl acetate/hexanes) to afford product $\mathbf{2 w}$ as a white oil ($140 \mathrm{mg}, 85 \%$ yield): $\mathbf{R}_{\boldsymbol{f}}=0.22$ (15% ethyl acetate in hexane). ${ }^{1} \mathbf{H}$ NMR (500 MHz , Chloroform- d) $\delta 7.30(\mathrm{dd}, J=9.7,5.9 \mathrm{~Hz}, 2 \mathrm{H}$), 7.05 (td, $J=7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.52(\mathrm{~d}, J=12.0,1 \mathrm{H}), 5.33(\mathrm{dt}, J=12.2,7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.66(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{~m}, 2 \mathrm{H}), 2.18-2.14(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.05$, 143.85, 129.59, 122.74, 116.48, 108.59, 62.29, 30.79.; IR (neat) 3329, 2925, 2361, 2339, 1672, 1590, 1489, 1226, 2339; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}: 169.0916$, found 169.0891 .

(E)-5-(4-methoxyphenoxy)pent-4-en-1-ol (2x)

Compound $\mathbf{2 x}$ was prepared according to the general procedure \mathbf{B} using (E)-tert-butyl((5-iodopent-4-en-1-yl)oxy)dimethylsilane ($330 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0$ equiv) and p-methoxyphenol ($150 \mathrm{mg}, 1.2$ mmol, 1.0 equiv) and purified using silica gel flash chromatography (gradient elution: $15 \rightarrow 40 \%$ ethyl acetate/hexanes) to afford product 2 x as a white oil ($150 \mathrm{mg}, 72 \%$ yield): $\mathbf{R}_{f}=0.14$ (20% ethyl acetate in hexane). ${ }^{1} \mathbf{H}$ NMR (500 MHz , Chloroform- d) $\delta 6.94-6.85$ (m, 2H), $6.88-6.79$ (m, $2 \mathrm{H}), 6.39(\mathrm{~d}, J=12.1,1 \mathrm{H}), 5.26(\mathrm{dt}, J=12.2,7.5,1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.72-3.65(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{dt}$, $J=7.6,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.71-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~ N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.18$, 151.16, 143.22, 117.72, 114.63, 111.16, 62.16, 55.65, 32.89, 23.59.; IR (neat) 3355, 2933, 2361, 1670, 1501, 1464, 1212, 1179, 1101; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}: 209.1157$, found 209.1178.

(E)-5-(4-methoxyphenoxy)pent-4-en-1-ol (2y)

Compound $\mathbf{2 y}$ was prepared according to the general procedure \mathbf{B} using (E)-tert-butyl((5-iodopent-4-en-1-yl)oxy)dimethylsilane ($330 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0$ equiv) and sesamol ($170 \mathrm{mg}, 1.2 \mathrm{mmol}$) and
purified using silica gel flash chromatography (gradient elution: $15 \rightarrow 40 \%$ ethyl acetate/hexanes) to afford product $\mathbf{2 y}$ as a white oil ($166 \mathrm{mg}, 74 \%$ yield): $\mathbf{R}_{\boldsymbol{f}}=0.2$ (45% ethyl acetate in hexane). ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz, Chloroform- d) $\delta 6.70(\mathrm{dd}, J=8.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~s}, J=2.4,1 \mathrm{H}), 6.41-6.38$ $(\mathrm{m}, 1 \mathrm{H}), 6.34(\mathrm{~d}, J=12.1,1 \mathrm{H}), 5.92(\mathrm{~s}, 2 \mathrm{H}), 5.27(\mathrm{dt}, J=12.0,7.5,1 \mathrm{H}), 3.77-3.60(\mathrm{~m}, 2 \mathrm{H}), 2.09$ $(\mathrm{q}, J=7.6,2 \mathrm{H}), 1.70(\mathrm{~s}, 1 \mathrm{H}), 1.67-1.59(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 152.33, 148.14, $142.98,142.88,111.72,108.43,107.95,101.31,99.61,62.03,32.76,23.50$. ; IR (neat) 3352, 2933, $23261,1670,1501,1464,1441,1212,1179,1101$; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{4}$ $(\mathrm{M}+\mathrm{H})^{+}: 223.0970$, found 223.0973.

Optimization for the redox-relay Heck reaction of acyclic enol ethers:

General Procedure used for optimization: To a dry 1 dram vial, equipped with a stir bar, was added $\mathrm{Pd}_{2} \mathrm{dba}_{3} \cdot \mathrm{CHCl}_{3}(5 \mathrm{mg}, 0.005 \mathrm{mmol}, 5.0 \mathrm{~mol} \%$), ligand ($3 \mathrm{mg}, 0.012 \mathrm{mmol}, 12 \mathrm{~mol} \%$), $3 \AA \mathrm{MS}$ ($50 \mathrm{mg}, 50 \mathrm{mg} / \mathrm{mmol} \mathbf{1}$) and sealed using a rubber septum. The reaction vial was evacuated and refilled with N_{2} three times. To this, solvent (1 mL) was added under nitrogen and the resulting mixture was stirred for 10 min at room temperature. Next, the substrate alkenol (2a) (0.25 mmol , 1.0 equiv) and alkenyl triflate $\mathbf{1 a}$ ($0.25 \mathrm{mmol}, 1.0$ equiv) were added sequentially, via microsyringe. The resulting mixture was stirred at room temperature for 12 h . The mixture was then diluted with $\mathrm{EtOAc}(150 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 30 \mathrm{~mL})$ and brine $(30 \mathrm{~mL})$. The combined aqueous layers were back extracted using EtOAc $(30 \mathrm{~mL})$ and the organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The resulting crude residue was analyzed via ${ }^{1} \mathrm{H}$ NMR using 2-methoxy naphthalene as an internal standard.

Results of the initial study using an alkyl enol ether in the redox relay Heck reaction.
a)

Results of the initial study using an aryl enol ether in the redox relay Heck reaction.

The isolation of the desired aldehyde product $\mathbf{3 c}$ via column chromatography using either silica gel or neutral alumina resulted in the degradation of the product via E1cb elimination and leading
to a mixture of the decomposed product $\mathbf{4}$ and desired product $\mathbf{3 c}$ in $1: 1$ ratio. Thus, for better isolation and characterization the aldehyde product $\mathbf{3 c}$ was further processed and reduced to the alcohol using sodium borohydride in methanol. Although, this led to the addition of an extra step, it allowed easy isolation and handling of the alcohol product.

Optimized General Reaction:

General Procedure C:

Step 1: To a dry 1.5 dram vial, equipped with a stir bar, was added $\mathrm{Pd}_{2} \mathrm{dba}_{3} \cdot \mathrm{CHCl}_{3}(26 \mathrm{mg}, 0.025$ $\mathrm{mmol}, 5.0 \mathrm{~mol} \%$), ligand ($15 \mathrm{mg}, 0.06 \mathrm{mmol}, 12 \mathrm{~mol} \%$), $3 \AA \mathrm{MS}(250 \mathrm{mg}, 50 \mathrm{mg} / \mathrm{mmol} 1)$ and sealed using a rubber septum. The reaction vial was evacuated and refilled with N_{2} three times. To this, DMF (2 mL) was added under nitrogen and the resulting mixture was stirred for 10 min at room temperature. Next, the substrate alkenol (2) ($0.5 \mathrm{mmol}, 1.0$ equiv) and alkenyl triflate 1 (0.5 mmol, 1.0 equiv) were added sequentially, via micro-syringe. The resulting mixture was stirred at room temperature for 12 h . The mixture was then diluted with EtOAc (150 mL) and washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 30 \mathrm{~mL})$ and brine (30 mL). The combined aqueous layers were back extracted using EtOAc (30 mL) and the organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure.

Step2: The crude extract was then dissolved in 10 mL of MeOH in a 50 mL round bottomed flask equipped with a stir bar. The resulting mixture was cooled to $0{ }^{\circ} \mathrm{C}$ followed by addition of NaBH_{4} (5 equiv). The resulting mixture was allowed to warm to room temperature and stirred for 2 hours. After complete consumption of the aldehyde by TLC, the reaction mixture was quenched by adding 1 mL of water. This mixture was concentrated under vacuum and then diluted with EtOAc $(150 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 30 \mathrm{~mL})$ and brine $(30 \mathrm{~mL})$. The organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The resulting residue was purified by
silica gel flash chromatography to give the corresponding alcohol products (5).

Note: Alternatively, for products $\mathbf{5 d} \mathbf{d} \mathbf{5 i}$ and $\mathbf{5 n}$ the crude extract from step 1 was dissolved in 5 mL of hexafluoroisopropanol in a 50 mL round bottomed flask equipped with a stir bar. The resulting mixture was cooled to $0^{\circ} \mathrm{C}$ followed by addition of $\mathrm{NaBH}(\mathrm{HFIP})_{3}$ (2 equiv). The resulting mixture was allowed to warm to room temperature and stirred for 4-6 hours. After complete consumption of the aldehyde by TLC, the reaction mixture was quenched by adding 1 mL of water. This mixture was diluted with EtOAc $(150 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 30 \mathrm{~mL})$ and brine $(30 \mathrm{~mL})$. The organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The resulting residue was purified by silica gel flash chromatography to give the corresponding alcohol products (5).

General Procedure D:

To a dry 1.5 -dram vial, equipped with a stir bar, was added $\mathrm{Pd}_{2} \mathrm{dba}_{3} \cdot \mathrm{CHCl}_{3}(13 \mathrm{mg}, 0.0125 \mathrm{mmol}$, $5.0 \mathrm{~mol} \%$), ligand ($8 \mathrm{mg}, 0.03 \mathrm{mmol}, 12 \mathrm{~mol} \%$), $3 \AA \mathrm{MS}(125 \mathrm{mg}, 50 \mathrm{mg} / \mathrm{mmol} \mathbf{1})$ and sealed using a rubber septum. The reaction vial was evacuated and refilled with N_{2} three times. To this, THF (1 mL) was added under nitrogen and the resulting mixture was stirred for 10 min at room temperature. Next, the substrate alkenol (2) ($0.25 \mathrm{mmol}, 1.0$ equiv) and alkenyl triflate $\mathbf{1}$ (0.25 mmol, 1.0 equiv) were added sequentially, via micro-syringe. The resulting mixture was stirred at room temperature for 12 h . The mixture was then diluted with EtOAc (150 mL) and washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 30 \mathrm{~mL})$ and brine (30 mL). The combined aqueous layers were back extracted using EtOAc (30 mL) and the organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The resulting crude residue was purified by silica gel flash chromatography to give the corresponding aldehyde products (3).

Characterization:

(S,Z)-3-(5-hydroxy-3-phenoxypentan-2-ylidene)dihydrofuran-2(3H)-one (5a)

5a
Compound 5a was prepared according to the general procedure \mathbf{C} using alkenyl triflate 1a (130 $\mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv) and reacting with alkenol substrate $2 \mathrm{c}(75 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ equiv) and purified using silica gel flash chromatography (gradient elution: $15 \rightarrow 35 \%$ ethyl acetate $/$ hexanes) to afford product $\mathbf{5 a}$ as a light yellow oil ($118 \mathrm{mg}, 90 \%$ yield): $\mathbf{R}_{\boldsymbol{f}}=0.31$ (40% ethyl acetate in hexane); $[\alpha]^{\mathbf{2 0}} \mathbf{D}=+45^{\circ}\left(\mathrm{c}=0.22, \mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \delta 7.31$ - 7.18 (m, 2H), $7.00-6.83(\mathrm{~m}, 3 \mathrm{H}), 6.51(\mathrm{dt}, J=6.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.46-4.26(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~m}$, 2H), $2.90(\mathrm{~m}, 2 \mathrm{H}), 2.51(\mathrm{~s}, 1 \mathrm{H}), 2.26-2.12(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.79(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 170.41,157.47,153.39,129.59,121.75,121.19,115.22,71.74,65.34,59.52,37.18$, 27.64, 15.73.; IR (neat) 3446, 2951, 2361, 2337, 1707, 1636, 1598, 1494, 1435, $1238 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4}(\mathrm{M}+\mathrm{Na})^{+}: 285.1102$, found 285.1102.

methyl (S)-2-(3-hydroxy-1-phenoxypropyl)cyclopent-1-ene-1-carboxylate (5b)

5b
Compound $\mathbf{5 b}$ was prepared according to general procedure \mathbf{C} using alkenyl triflate $\mathbf{1 b}$ (137 mg , $0.50 \mathrm{mmol}, 1.0$ equiv) and reacting with alkenol substrate $\mathbf{2 d}(75 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ equiv) and purified using silica gel flash chromatography (gradient elution: $10 \rightarrow 25 \%$ ether/pentane) to afford product 5b as a light yellow oil ($120 \mathrm{mg}, 85 \%$ yield): $\mathbf{R}_{\boldsymbol{f}}=0.22$ (30% ether in hexane); $[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}=+$ $74.7^{\circ}\left(\mathrm{c}=0.37, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.91(\mathrm{dt}, J=8.1,6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.91-6.78(\mathrm{~m}, 2 \mathrm{H}), 6.00(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.65(\mathrm{~m}, 5 \mathrm{H}), 2.77(\mathrm{sb}, 1 \mathrm{H}), 2.72-2.52$ (m, 2H), 2.51-2.39(m, 1H), 2.29-2.15 (m, 1H), 1.95-1.85 (m, 1H), 1.88-1.68 (m, 2H); ${ }^{13}$ C NMR
($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.50,159.88,157.82,129.77,129.46,120.90,114.94,72.45,59.44,51.59$, 36.85, 33.53, 32.90, 21.33.; IR (neat) 3446, 2951, 2361, 2337, 1707, 1636, 1598, 1494, $1435 \mathrm{~cm}^{-}$ ${ }^{1}$; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: 299.1259$, found 299.1276.

methyl (S)-2-(3-hydroxy-1-phenoxypropyl)cyclohept-1-ene-1-carboxylate (5c)

Compound $\mathbf{5 c}$ was prepared according to general procedure \mathbf{C} using alkenyl triflate $\mathbf{1 c}(150 \mathrm{mg}$, $0.50 \mathrm{mmol}, 1.0$ equiv) and reacting with alkenol substrate $\mathbf{2 c}(75 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.0$ equiv) and purified using silica gel flash chromatography (gradient elution: $0 \rightarrow 15 \%$ acetone/pentane) to afford product $5 \mathbf{c}$ as a light yellow oil ($110 \mathrm{mg}, 70 \%$ yield): $\mathbf{R}_{f}=0.21$ (25% acetone in hexane); $[\alpha]^{\mathbf{2 0}} \mathbf{D}=+52.4^{\mathrm{o}}\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.93-6.85$ $(\mathrm{m}, 1 \mathrm{H}), 6.89-6.77(\mathrm{~m}, 2 \mathrm{H}), 5.66(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.77-3.61(\mathrm{~m}, 2 \mathrm{H}), 3.15(\mathrm{~s}$, $1 \mathrm{H}), 2.54-2.38(\mathrm{~m}, 2 \mathrm{H}), 2.41-2.31(\mathrm{~m}, 2 \mathrm{H}), 2.21-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.74-$ $1.61(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.28-1.15(\mathrm{~m}, 2 \mathrm{H}) . ;{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.07$, $157.94,152.80,133.98,129.22,120.76,115.41,75.09,59.24,51.93,36.45,32.20,30.20,27.72$, 25.94, 25.46; IR (neat) 3431, 2924, 2852, 1708, 1598, 1493, 1453, 1258, $1237 \mathrm{~cm}^{-1}$; HRMS (ESITOF) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: 327.1572$, found 327.1587.

1-(tert-butyl) 3-ethyl (S)-4-(4-hydroxy-1-phenylbutan-2-yl)-5,6-dihydropyridine-1,3(2H)dicarboxylate (5d)

Compound 5d was prepared according to general procedure C using alkenyl triflate $\mathbf{1 d}$ (200 mg , $0.50 \mathrm{mmol}, 1.0$ equiv) and reacting with alkenol substrate $\mathbf{2 c}(75 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ equiv) and purified using silica gel flash chromatography (gradient elution: $20 \rightarrow 50 \%$ acetone/hexane) to
afford product $\mathbf{5 d}$ as a light yellow oil ($140 \mathrm{mg}, 68 \%$ yield): $\mathbf{R}_{\boldsymbol{f}}=0.22$ (50% acetone in hexane); $[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}=+11{ }^{\mathrm{o}}\left(\mathrm{c}=0.23, \mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.18(\mathrm{~m}, 2 \mathrm{H}), 6.92(\mathrm{t}, J$ $=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.07(\mathrm{~s}, 1 \mathrm{H}), 4.25(\mathrm{~m}, 2 \mathrm{H}), 4.05(\mathrm{~d}, J=18.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.77$ $(\mathrm{m}, 2 \mathrm{H}), 3.48-3.36(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{~s}, 1 \mathrm{H}), 2.39-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 1 \mathrm{H}), 2.15(\mathrm{~m}, 1 \mathrm{H}), 1.91$ $(\mathrm{m}, 1 \mathrm{H}), 1.52-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.33(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 165.85,157.67,154.48,150.87,129.56,124.15,121.19,115.15,80.07,74.23,61.08,59.62$, 37.08, 28.39, 28.34, 26.93, 24.31, 14.13.; IR (neat) 3435, 2977, 2931, 1697, 1595, 1491, 1420, 1238, $1166 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{O}_{6} \mathrm{NNa}(\mathrm{M}+\mathrm{Na})^{+}$: 428.2049, found 428.2064.

(S)-3-(3-hydroxy-1-phenoxypropyl)-2-methylcyclohex-2-en-1-one (5e)

Compound 5e was prepared according to general procedure \mathbf{c} using alkenyl triflate $\mathbf{1 e}(130 \mathrm{mg}$, $0.5 \mathrm{mmol}, 1.0$ equiv) and reacting with alkenol substrate $2 \mathrm{c}(75 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ equiv) and purified using silica gel chromatography ($0-20 \%$ EtOAc in hexanes). Unfortunately, the ketone was also reduced by NaBH_{4} and yielded a $3: 1$ diastereomeric ratio. This residue ($80 \mathrm{mg}, 0.3 \mathrm{mmol}$ 1 equiv) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and MnO_{2} was added ($260 \mathrm{mg}, 3 \mathrm{mmol}, 10$ equiv) was added. The resultant mixture was stirred for three hours and upon consumption of starting material by TLC, the reaction mixture was filtered through a short silica plug, concentrated in vacuum and purified by column chromatography to obtain a light yellow oil ($83 \mathrm{mg}, 64 \%$). $\mathbf{R}_{\boldsymbol{f}}=0.21$ (30% ethylacetate in hexane); $[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}=+60^{\circ}\left(\mathrm{c}=0.2, \mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}{ }^{1} \mathrm{H}\right.$ NMR (500 MHz , Chloroform- d) $\delta 7.28-7.22(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{~m}, 1 \mathrm{H}), 6.81-6.76(\mathrm{~m}, 2 \mathrm{H}), 5.29(\mathrm{dd}, J=9.8,3.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.95-3.80(\mathrm{~m}, 2 \mathrm{H}), 2.43-2.30(\mathrm{~m}, 3 \mathrm{H}), 2.23(\mathrm{~m}, 1 \mathrm{H}), 2.18-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.91(\mathrm{t}, J=1.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.90-1.80$ (m, 2H). ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.26,157.68,157.39,131.04,129.66,121.37,114.87,74.71,59.37$, 37.79, 36.12, 24.09, 22.35, 10.24.; IR (neat) 3421, 2929, 2871, 2361, 2339, 1653, 1598, 1489, 1228 cm^{-1}; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: 283.1310$, found 283.1310.

Compound $\mathbf{5 f}$ was prepared according to general procedure \mathbf{C} using alkenyl triflate $\mathbf{1 f}$ (140 mg , $0.50 \mathrm{mmol}, 1.0$ equiv) and reacting with alkenol substrate $\mathbf{2 c}(75 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ equiv) and purified using silica gel flash chromatography (gradient elution: $0 \rightarrow 20 \%$ ether/pentane) to afford product $\mathbf{5 f}$ as a light yellow oil ($111 \mathrm{mg}, 80 \%$ yield): $\mathbf{R}_{\boldsymbol{f}}=0.26$ (10% acetone in hexane); $[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}=$ $+104^{\circ}\left(\mathrm{c}=0.26, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \delta 7.24-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.93-6.85(\mathrm{~m}$, $1 \mathrm{H}), 6.85-6.79(\mathrm{~m}, 2 \mathrm{H}), 5.77(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.33-4.15(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{~m}, 2 \mathrm{H}), 3.07(\mathrm{~s}, 1 \mathrm{H})$, $2.23-2.12(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.82(\mathrm{~m}, 4 \mathrm{H}), 1.73(\mathrm{~s}, 2 \mathrm{H}), 1.32(\mathrm{td}, J=7.1,1.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.47,158.07,146.47,129.61,126.42,121.16,115.72,75.44,61.15,59.69$, 37.12, 16.09, 14.46, 13.67.; IR (neat) 3467, 2926, 2361, 2337, 1706, 1599, 1494, 1279, $1238 \mathrm{~cm}^{-}$ ${ }^{1}$; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: 301.1416$, found 301.1432 .

ethyl (S,E)-6-hydroxy-2,3-dimethyl-4-phenoxyhex-2-enoate (5g)

Compound $\mathbf{5 g}$ was prepared according to general procedure \mathbf{C} using alkenyl triflate $\mathbf{1 g}$ (140 mg , $0.50 \mathrm{mmol}, 1.0$ equiv) and reacting with alkenol substrate $2 \mathrm{c}(75 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ equiv) and purified using silica gel flash chromatography (gradient elution: $0 \rightarrow 20 \%$ ether/pentane) to afford product $\mathbf{5 g}$ as a light yellow oil ($109.6 \mathrm{mg}, 79 \%$ yield): $\mathbf{R}_{\boldsymbol{f}}=0.26$ (10% acetone in hexane); $[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}$ $=+44.5^{\circ}\left(\mathrm{c}=0.25, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.90(\mathrm{ddt}, J=$ 8.6, 7.3, 1.3 Hz, 1H), $6.85-6.78(\mathrm{~m}, 2 \mathrm{H}), 5.81-5.74(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{~m}, 2 \mathrm{H}), 3.80-3.65(\mathrm{~m}, 2 \mathrm{H})$, $3.00(\mathrm{~s}, 1 \mathrm{H}), 2.23-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.84(\mathrm{~m}, 4 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{td}, J=7.1,1.4 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.20,157.76,146.20,129.33,126.17,120.89,115.44,75.22$, 60.88, 59.47, 36.81, 15.80, 14.18, 13.39.; IR (neat) 3391, 2930, 2361, 1704, 1594, 1491, $1235 \mathrm{~cm}^{-}$
${ }^{1}$; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: 301.1416$, found 301.1424 .

ethyl (S,Z)-2-benzyl-6-hydroxy-3-methyl-4-phenoxyhex-2-enoate (5h)

Compound $\mathbf{5 h}$ was prepared according to general procedure \mathbf{C} using alkenyl triflate $\mathbf{1 h}(180 \mathrm{mg}$, $0.50 \mathrm{mmol}, 1.0$ equiv) and reacting with alkenol substrate $\mathbf{2 c}(75 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ equiv) and purified using silica gel flash chromatography (gradient elution: $0 \rightarrow 15 \%$ ether/pentane) to afford product 25 h as a light yellow oil ($140 \mathrm{mg}, 81 \%$ yield): $\mathrm{R}_{f}=0.2$ (15% ether in hexane); $[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}=$ $+35^{\circ}\left(\mathrm{c}=0.38, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.08(\mathrm{~m}, 5 \mathrm{H}), 7.09-7.00(\mathrm{~m}, 2 \mathrm{H})$, $6.96(\mathrm{tq}, J=7.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-6.86(\mathrm{~m}, 2 \mathrm{H}), 5.86(\mathrm{~m}, 1 \mathrm{H}), 4.26-4.07(\mathrm{~m}, 2 \mathrm{H}), 3.89-3.74$ $(\mathrm{m}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 2 \mathrm{H}), 2.26(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{~s}, 1 \mathrm{H}), 1.21(\mathrm{td}, J=7.1,1.8 \mathrm{~Hz}$, 3H); ${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 168.66, 157.65, 147.77, 138.65, 130.02, 129.41, 128.36, $127.95,126.10,121.13,115.71,75.49,60.97,59.55,36.92,35.61,14.02,13.54$.; ATR-FTIR (neat) 3443, 2930, 2361, 2338, 1701, 1599, 1494, 1288, $1237 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: 377.1729$, found 377.1743 .

ethyl (S,Z)-2-(3-(1,3-dioxoisoindolin-2-yl)propyl)-6-hydroxy-3-methyl-4-phenoxyhex-2enoate (5i)

Compound $\mathbf{5 i}$ was prepared according to general procedure \mathbf{C} using alkenyl triflate $\mathbf{1 i} \mathbf{(2 2 0} \mathrm{mg}$, $0.50 \mathrm{mmol}, 1.0$ equiv) and reacting with alkenol substrate $2 \mathrm{c}(75 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.0$ equiv) and purified using silica gel flash chromatography (gradient elution: $15 \rightarrow 40 \%$ acetone/hexane) to afford product $\mathbf{5 i}$ as a light yellow oil ($200 \mathrm{mg}, 87 \%$ yield): $\mathbf{R}_{f}=0.37$ (50% acetone in hexane); $[\alpha]^{\mathbf{2 0}} \mathbf{D}=+36^{\circ}\left(\mathrm{c}=0.3, \mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83(\mathrm{dt}, J=5.5,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.71$ (dq, $J=5.2,3.4,3.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.29-7.14$ (m, 2H), 6.89 (tdt, $J=7.3,2.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-6.75$ $(\mathrm{m}, 2 \mathrm{H}), 5.70-5.63(\mathrm{~m}, 1 \mathrm{fH}), 4.30-4.15(\mathrm{~m}, 2 \mathrm{H}), 3.81-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{td}, J=6.8,2.2 \mathrm{~Hz}$,
$2 H), 2.82-2.75(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.23(\mathrm{~m}, 2 \mathrm{H}), 2.22-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.89(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.72(\mathrm{~m}$, $5 \mathrm{H}), 1.35-1.21(\mathrm{~m}, 3 \mathrm{H}), 1.07-1.02(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.75,168.24$, $157.70,146.49,133.92,132.04,130.04,129.40,123.17,121.02,115.45,75.61,61.01,59.54,37.57$, 37.91, 27.47, 27.26, 14.11, 12.95.; ATR-FTIR (neat) 2933, 2361, 2339, 1713, 1652, 1396, 1233 $\mathrm{cm}^{-1} ;$ HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{NO}_{6} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}: 474.1893$, found 474.1916.
ethyl (S, Z)-6-hydroxy-2-methyl-4-phenoxy-3-(2-(trimethylsilyl)ethyl)hex-2-enoate (5j)

Compound $\mathbf{5} \mathbf{j}$ was prepared according to general procedure \mathbf{C} using alkenyl triflate $\mathbf{1 j} \mathbf{~ (1 9 0 ~} \mathrm{mg}$, $0.50 \mathrm{mmol}, 1.0$ equiv) and reacting with alkenol substrate $2 \mathrm{c}(86 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.0$ equiv) and purified using silica gel flash chromatography (gradient elution: $0 \rightarrow 5 \%$ acetone/hexane) to afford product $\mathbf{5 j}$ as a light yellow oil ($55 \mathrm{mg}, \mathbf{3 0 \%}$ yield) $\mathbf{R}_{\boldsymbol{f}}=0.25$ (10% acetone in hexane); $[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}=+$ $38^{\circ}\left(\mathrm{c}=0.32, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.90(\mathrm{tdt}, J=7.4,2.1$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{dtt}, J=6.6,2.0,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.78(\mathrm{~m}, 1 \mathrm{H}), 4.27(\mathrm{~m}, 1 \mathrm{H}), 4.27-4.13(\mathrm{~m}, 1 \mathrm{H})$, $3.79-3.66(\mathrm{~m}, 2 \mathrm{H}), 2.95(\mathrm{~s}, 1 \mathrm{H}), 2.28-2.09(\mathrm{~m}, 3 \mathrm{H}), 2.02-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{td}$, $J=7.0,1.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.57(\mathrm{~m}, 1 \mathrm{H}), 0.46(\mathrm{~m}, 1 \mathrm{H}), 0.0(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $169.63,158.37,152.59,129.38,125.65,120.79,115.36,75.71,60.94,59.69,37.73,21.99,15.88$, 15.52, 14.24, -0.31, -2.04.; ATR-FTIR (neat) 2954, 2361, 2338, 1701, 1495, 1240, $1098 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{NaSi}(\mathrm{M}+\mathrm{Na})^{+}: 387.1968$, found 387.1982.

methyl (S)-4-(3-hydroxy-1-phenoxypropyl)-6,7-dihydrobenzofuran-5-carboxylate (5k)

Compound $\mathbf{5 k}$ was prepared according to general procedure \mathbf{C} using alkenyl triflate $\mathbf{1 k}$ (160 mg , $0.50 \mathrm{mmol}, 1.0$ equiv) and reacting with alkenol substrate $\mathbf{2 c}(86 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.0$ equiv $)$ and purified using silica gel flash chromatography (gradient elution: $0 \rightarrow 5 \%$ acetone/hexane) to afford product $\mathbf{5 k}$ as a light yellow oil $(74 \mathrm{mg}, 45 \%$ yield $) \mathbf{R}_{\boldsymbol{f}}=0.22\left(10 \%\right.$ acetone in hexane) $[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}=+$
$35^{\circ}\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25-7.16(\mathrm{~m}, 3 \mathrm{H}), 6.92-6.81(\mathrm{~m}, 4 \mathrm{H})$, $6.32(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.80-3.69(\mathrm{~m}, 2 \mathrm{H}), 3.07(\mathrm{~s}, 1 \mathrm{H}), 2.90-2.80(\mathrm{~m}, 2 \mathrm{H}), 2.77$ $-2.70(\mathrm{~m}, 2 \mathrm{H}), 2.41-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.08-2.00(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.91$, $157.60,156.18,145.39,141.29,129.39,120.99,119.68,115.84,115.30,110.12,73.43,59.46$, 52.08, 37.54, 26.05, 21.38. ATR-FTIR 3447, 2950, 2361, 2339, 1696, 1598, 1559, 1439, 1273, $1238 \mathrm{~cm}^{-1}$; HRMS (ESI_TOF) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{5} \mathrm{Na}(\mathrm{M}+\mathrm{H})^{+}: 329.1389$, found 329.1381.
methyl (S)-2-(3-hydroxy-1-(4-methoxyphenoxy)propyl)cyclopent-1-ene-1-carboxylate (51)

The general procedure \mathbf{C} was followed using (E)-3-(4-methoxyphenoxy)prop-2-en-1-ol (72 mg, $0.4 \mathrm{mmol}, 1.0$ equiv), methyl 2-(((trifluoromethyl)sulfonyl)oxy)cyclopent-1-ene-1-carboxylate ($110 \mathrm{mg}, 0.4 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}_{2} \mathrm{dba}_{3}{ }^{\circ} \mathrm{CHCl}_{3}(21 \mathrm{mg}, 0.02 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathbf{L} 1(12 \mathrm{mg}, 0.05$ $\mathrm{mmol}, 12 \mathrm{~mol} \%), 3 \AA$ MS ($120 \mathrm{mg}, 300 \mathrm{mg} / \mathrm{mmol}$) in DMF (4 mL) for 18 hours. Following workup, the residue underwent NaBH_{4} reduction and was successively purified by silica gel chromatography ($0-18 \% \mathrm{EtOAc}$ in hexanes) to yield $\mathbf{5 l}$ as a clear oil ($98 \mathrm{mg}, 80 \%$ yield) $[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}=$ $+50^{\circ}\left(\mathrm{c}=0.2, \mathrm{CHCl}_{3}\right) . \mathbf{R}_{f}=0.14\left(30 \%\right.$ EtOAc in Hexanes) ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3} \delta 6.75(\mathrm{~s}\right.$, $4 \mathrm{H}), 5.89(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.69(\mathrm{~m}, 1 \mathrm{H}) 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.69-3.58(\mathrm{~m}, 1 \mathrm{H})$, $2.82(\mathrm{~s}, 1 \mathrm{H}) 2.65-2.39(\mathrm{~m}, 4 \mathrm{H}), 2.23-2.12(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.70(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.50,160.08,153.84,151.84,129.79,115.86,114.58,73.02$, $59.50,55.58,51.56,36.77,33.51,32.88,21.33$. ATR-FTIR (neat) 3446, 2951, 2361, 2340, 1701, 1653, 1506, 1437, 1226, 1119, $1037 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NaO}_{5}(\mathrm{M}+\mathrm{Na})^{+}$: 329.1365, found 329.1381.
ethyl (S,Z)-6-hydroxy-2,3-dimethyl-4-(o-tolyloxy)hex-2-enoate (5m)

The general Procedure \mathbf{C} was followed using (E)-3-(2-methylphenoxy)prop-2-en-1-ol ($66 \mathrm{mg}, 0.4$ mmol, 1.0 equiv), ethyl (Z)-2-methyl-3-(((trifluoromethyl)sulfonyl)oxy)but-2-enoate ($170 \mathrm{mg}, 0.6$ mmol, 1.5 equiv), $\mathrm{Pd}_{2} \mathrm{dba}_{3}{ }^{\circ} \mathrm{CHCl}_{3}(21 \mathrm{mg}, 0.02 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathbf{L 1}(12 \mathrm{mg}, 0.05 \mathrm{mmol}, 12 \mathrm{~mol} \%)$, $3 \AA$ MS ($120 \mathrm{mg}, 300 \mathrm{mg} / \mathrm{mmol}$) in DMF (4 mL) for 18 hours. Following work-up, the residue underwent NaBH_{4} reduction and was purified by silica gel chromatography ($0-18 \% \mathrm{EtOAc}$ in hexanes) to yield $\mathbf{5 m}$ as a clear oil ($70 \mathrm{mg}, \mathbf{6 3 \%}$ yield). $\mathbf{R}_{f}=0.33$ ($30 \% \mathrm{EtOAc}$ in Hexanes); $[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}$ $=+63^{\circ}\left(\mathrm{c}=0.2, \mathrm{CHCl}_{3}\right)^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.13-7.09(\mathrm{~m}, 1 \mathrm{H}), 7.07-7.01(\mathrm{~m}, 1 \mathrm{H})$, $6.82(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.31-4.22(\mathrm{~m}, 2 \mathrm{H})$, $3.81-3.67(\mathrm{~m}, 2 \mathrm{H}), 2.95(\mathrm{~s}, 1 \mathrm{H}), 2.26-2.16(\mathrm{~m}, 5 \mathrm{H}), 1.97-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~s}$, $3 \mathrm{H}), 1.59(\mathrm{~s}, 1 \mathrm{H}), 1.33(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.25,155.71,146.56$, $130.72,126.71,126.08,120.43,111.92,74.91,60.97,59.69,36.86,16.45,15.90,14.25,13.44$. ATR-FTIR (neat) 3426, 2926, 1704, 1601, 1492, 1464, 1383, 1278, 1239, 1192, 1119, $1098 \mathrm{~cm}^{-}$ ${ }^{1}$. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NaO}_{5}(\mathrm{M}+\mathrm{Na})^{+} 315.1572$, found 315.1569

(S, E)-2-(8-hydroxy-4,5-dimethyl-6-(m-tolyloxy)oct-4-en-1-yl)isoindoline-1,3-dione (5n)

The general procedure \mathbf{C} was followed using (E)-3-(3-methylphenoxy)prop-2-en-1-ol (41 mg , 0.25 mmol , 1.0 equiv), ethyl (Z)-5-(1,3-dioxoisoindolin-2-yl)-2-(1(((trifluoromethyl)sulfonyl)oxy)ethylidene)pentanoate ($110 \mathrm{mg}, 0.25 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}_{2} \mathrm{dba}_{3}{ }^{\circ} \mathrm{CHCl}_{3}(13 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathbf{L 1}(7.5 \mathrm{mg}, 0.03 \mathrm{mmol}, 12 \mathrm{~mol} \%), 3 \AA \mathrm{MS}(75 \mathrm{mg}$, $300 \mathrm{mg} / \mathrm{mmol}$) in DMF (2.5 mL) for 18 hours. Following work-up, the residue underwent NaBH_{4} reduction and was purified by silica gel chromatography ($0-18 \%$ EtOAc in hexanes) to yield $\mathbf{5 n}$ as a clear oil ($40 \mathrm{mg}, 34 \%$ yield). $\mathbf{R}_{f}=0.12$ ($30 \% \mathrm{EtOAc}$ in Hexanes); $[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}=+6^{\circ}\left(\mathrm{c}=0.2, \mathrm{CHCl}_{3}\right.$). ${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.73-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.70(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.65-6.56(\mathrm{~m}, 2 \mathrm{H}), 5.63(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.12(\mathrm{~m}, 3 \mathrm{H}), 3.76-$ $3.63(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(\mathrm{~s}, 1 \mathrm{H}), 2.47-2.27(\mathrm{~m}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.22-2.09$ $(\mathrm{m}, 1 \mathrm{H}), 1.95-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.74(\mathrm{~m}, 1 \mathrm{H}) 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.32-1.21(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.82,168.25,157.61,146.47,139.35,133.93,131.99,130.06,129.12$,
123.17, 121.82, 116.32, 112.15, 75.47, 61.05, 59.55, 37.66, 36.81, 27.46, 27.23, 21.42, 14.12, 12.93. ATR-FTIR (neat) 3468, 2929, 2360, 1772, 1706, 1601, 1489, 1436, 1395, 1219. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{NO}_{6} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+} 488.2049$, found 488.2057.

methyl (S)-2-(3-hydroxy-1-((5,6,7,8-tetrahydronaphthalen-2-yl)oxy)propyl)cyclopent-1-ene-

 1-carboxylate (50)

The general procedure \mathbf{C} was followed using (E)-3-((5,6,7,8-tetrahydronaphthalen-2-yl)oxy)prop-2-en-1-ol ($87 \mathrm{mg}, 0.4 \mathrm{mmol}, 1.0$ equiv), ethyl (Z)-2-methyl-3-(((trifluoromethyl)sulfonyl)oxy)but-2-enoate ($110 \mathrm{mg}, 0.4 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}_{2} \mathrm{dba}_{3}{ }^{\circ} \mathrm{CHCl}_{3}(21 \mathrm{mg}, 0.02 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{L} 1(12 \mathrm{mg}$, $0.05 \mathrm{mmol}, 12 \mathrm{~mol} \%), 3 \AA \mathrm{MS}(120 \mathrm{mg}, 300 \mathrm{mg} / \mathrm{mmol})$ in DMF (4 mL) for 18 hours. Following work-up the residue underwent NaBH_{4} reduction and was purified by silica gel chromatography ($0-15 \% \mathrm{EtOAc}$ in hexanes) to yield 50 as a clear oil ($120 \mathrm{mg}, 90 \%$ yield). $\mathbf{R}_{f}=0.17$ ($30 \% \mathrm{EtOAc}$ in Hexanes); $[\boldsymbol{\alpha}]^{\mathbf{2 0} \mathbf{D}}=+38.0^{\circ}\left(\mathrm{c}=0.2, \mathrm{CHCl}_{3}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.91(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.58(\mathrm{dd}, J=8.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$, $3.78-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.73-3.69(\mathrm{~m}, 1 \mathrm{H}), 2.73(\mathrm{~s}, 1 \mathrm{H}) 2.71-2.44(\mathrm{~m}, 8 \mathrm{H}), 2.24-2.16(\mathrm{~m}, 1 \mathrm{H})$, $1.92-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.73(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.54,160.12,155.61$, $138.21,129.88$, 129.61, 129.56, 115.25, 112.32, 72.62, 59.67, 51.55, 36.85, 33.56, 32.97, 29.63, 28.53, 23.36, 23.09, 21.34. ATR-FTIR (neat) 3431, 2925, 2360, 2341, 1706, 1636, 1609, 1499, 1434, 1249, $1228 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+} 353.1729$, found 353.1739 .

ethyl (S, Z)-6-hydroxy-2,3-dimethyl-4-(naphthalen-2-yloxy)hex-2-enoate (5p)

The general procedure \mathbf{C} was followed using (E)-3-(naphthalen-2-yloxy)prop-2-en-1-ol (80 mg ,
$0.4 \mathrm{mmol}, 1.0$ equiv), ethyl (Z)-2-methyl-3-(((trifluoromethyl)sulfonyl)oxy)but-2-enoate (110 mg, 0.4 mmol , 1.0 equiv), $\mathrm{Pd}_{2} \mathrm{dbaa}_{3}{ }^{\circ} \mathrm{CHCl}_{3}(21 \mathrm{mg}, 0.02 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathbf{L} 1(12 \mathrm{mg}, 0.05 \mathrm{mmol}, 12$ $\mathrm{mol} \%), 3 \AA \mathrm{MS}(120 \mathrm{mg}, 300 \mathrm{mg} / \mathrm{mmol})$ in DMF (4 mL) for 18 hours.Following work-up, the residue underwent NaBH_{4} reduction and was purified by silica gel chromatography ($0-5 \% \mathrm{EtOAc}$ in hexanes) to yield 5p as a clear oil ($89 \mathrm{mg}, 71 \%$ yield). $\mathbf{R}_{f}=0.26$ ($10 \% \mathrm{EtOAc}$ in Hexanes); $[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}=+1.2^{\circ}\left(\mathrm{c}=0.4, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.75-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.62(\mathrm{dd} J=$ 8.3, 2.4 Hz, 1H), $7.42-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.08(\mathrm{~m}, 1 \mathrm{H}), 7.08-7.05(\mathrm{~m}$, $1 \mathrm{H}), 5.93-5.88(\mathrm{~m}, 1 \mathrm{H}), 4.37-4.29(\mathrm{~m}, 2 \mathrm{H}), 3.84-3.70(\mathrm{~m}, 2 \mathrm{H}), 2.95(\mathrm{bs}, 1 \mathrm{H}), 2.30-2.21(\mathrm{~m}$, $1 \mathrm{H}), 2.01-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.41-1.36(\mathrm{~m}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 169.47,155.58,145.73,134.46,129.36,129.06,127.56,126.80,126.24,123.68,119.07$, 108.66, 75.41, 61.10, 59.53, 36.88, 15.93, 14.34, 13.35. ATR-FTIR (neat) 3396, 2926, 2361, 2339, 1706, 1629, 1600, 1510, 1466, 1389, $1277 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{Na}$ $(\mathrm{M}+\mathrm{Na})^{+} 351.1572$, found 351.1580 .

ethyl (S,Z)-6-hydroxy-2,3-dimethyl-4-(3-(trifluoromethyl)phenoxy)hex-2-enoate (5q)

The general procedure \mathbf{C} was followed using (E)-3-(3-(trifluoromethyl)phenoxy)prop-2-en-1-ol ($87 \mathrm{mg}, 0.4 \mathrm{mmol}, 1.0$ equiv), ethyl (Z)-2-methyl-3-(((trifluoromethyl)sulfonyl)oxy)but-2-enoate ($110 \mathrm{mg}, 0.4 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}_{2} \mathrm{dba}_{3}{ }^{\circ} \mathrm{CHCl}_{3}(21 \mathrm{mg}, 0.02 \mathrm{mmol}, 5 \mathrm{~mol} \%$), $\mathbf{L} 1(12 \mathrm{mg}, 0.05$ $\mathrm{mmol}, 12 \mathrm{~mol} \%), 3 \AA \mathrm{MS}(120 \mathrm{mg}, 300 \mathrm{mg} / \mathrm{mmol})$ in DMF (4 mL) for 18 hours. Following workup, the residue underwent NaBH_{4} reduction and was purified by silica gel chromatography (0-5\% EtOAc in hexanes) to yield $\mathbf{5 q}$ as a clear oil ($64 \mathrm{mg}, 46 \%$ yield). $\mathbf{R}_{\boldsymbol{f}}=0.28$ (30% EtOAc in Hexanes); $[\alpha]^{\mathbf{2 0}} \mathbf{D}=+69.0^{\circ}\left(\mathrm{c}=0.2, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}$, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{dd}, J=8.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{q}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.79-3.71(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{dt}, J=8.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~s}, 1 \mathrm{H}), 2.24-2.16(\mathrm{~m}, 1 \mathrm{H})$, $1.96-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 169.38,157.86,144.86,131.72(\mathrm{q}, J=32.2 \mathrm{~Hz}), 129.95,127.53,123.89(\mathrm{q}, J=272.5$ $\mathrm{Hz}), 117.59(\mathrm{q}, J=3.8 \mathrm{~Hz}), 112.21(\mathrm{q}, J=3.8 \mathrm{~Hz}), 75.21,61.30,59.07,36.66,15.91,14.41,13.32$.

ATR-FTIR (neat) $3447,2926,2360,2340,1701,1653,1592,1492,1326,1227,1166,1123 \mathrm{~cm}^{-1}$ HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{~F}_{3} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+} 369.1290$, found 369.1303 .
methyl (S)-2-(1-(4-bromophenoxy)-3-hydroxypropyl)cyclopent-1-ene-1-carboxylate (5r)

The general procedure \mathbf{C} was followed using (E)-3-(4-bromophenoxy)prop-2-en-1-ol ($92 \mathrm{mg}, 0.4$ mmol, 1.0 equiv), methyl 2-(((trifluoromethyl)sulfonyl)oxy)cyclopent-1-ene-1-carboxylate (110 $\mathrm{mg}, 0.4 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}_{2} \mathrm{dba}_{3}{ }^{\circ} \mathrm{CHCl}_{3}(21 \mathrm{mg}, 0.02 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathbf{L} 2(12 \mathrm{mg}, 0.05 \mathrm{mmol}$, $12 \mathrm{~mol} \%), 3 \AA \mathrm{MS}(120 \mathrm{mg}, 300 \mathrm{mg} / \mathrm{mmol})$ in DMF (4 mL) for 18 hours. Following work-up, the residue underwent NaBH_{4} reduction and was purified by silica gel chromatography ($0-15 \% \mathrm{EtOAc}$ in hexanes) to yield $\mathbf{5 r}$ as a clear oil ($85 \mathrm{mg}, 60 \%$ yield). $\mathbf{R}_{f}=0.28$ ($30 \% \mathrm{EtOAc}$ in Hexanes); $[\boldsymbol{\alpha}]^{\mathbf{2 0} \mathbf{D}}=+22.0^{\circ}\left(\mathrm{c}=0.2, \mathrm{CHCl}_{3}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.99(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~m}, 1 \mathrm{H}), 2.69-2.63(\mathrm{~m}$, $2 H), 2.62-2.53(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.19(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.76(\mathrm{~m}$, 2H). ${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.59,159.16,156.90,132.33,130.43,129.51,116.80$, 114.94, 113.09, 72.56, 59.21, 51.76, 36.70, 33.52, 32.79, 21.35. ATR-FTIR 3392, 2950, 2360, 2340, 1701, 1636, 1587, 1485, 1435, 1261, 1234, $1171 \mathrm{~cm}^{-1}$ HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}_{4} \mathrm{BrNa}(\mathrm{M}+\mathrm{Na})^{+} 377.0364$, found 377.0369 .
methyl
(S)-2-(3-hydroxy-1-(4-(methylsulfonyl)phenoxy)propyl)cyclopent-1-ene-1carboxylate (5s)

The general procedure \mathbf{C} was followed using (E)-3-(4-(methylsulfonyl)phenoxy)prop-2-en-1-ol ($91 \mathrm{mg}, 0.4 \mathrm{mmol}, 1.0$ equiv), methyl 2-(((trifluoromethyl)sulfonyl)oxy)cyclopent-1-ene-1carboxylate ($110 \mathrm{mg}, 0.4 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}_{2} \mathrm{dba}_{3}{ }^{\cdot} \mathrm{CHCl}_{3}(21 \mathrm{mg}, 0.02 \mathrm{mmol}, 5 \mathrm{~mol} \%$), $\mathbf{L 2}$ (12
$\mathrm{mg}, 0.05 \mathrm{mmol}, 12 \mathrm{~mol} \%), 3 \AA \mathrm{MS}(120 \mathrm{mg}, 300 \mathrm{mg} / \mathrm{mmol})$ in DMF (4 mL) for 18 hours. Following work-up, the residue underwent NaBH_{4} reduction and was purified by silica gel chromatography ($0-30 \%$ EtOAc in hexanes) to yield 5 s as a white solid ($75 \mathrm{mg}, 53 \%$ yield). $\mathbf{R}_{f}=$ $0.2\left(60 \%\right.$ EtOAc in Hexanes); $[\boldsymbol{\alpha}]^{\mathbf{2 0} \mathbf{D}}=+75^{\circ}\left(\mathrm{c}=0.4, \mathrm{CHCl}_{3}\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.15(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.82-3.74(\mathrm{~m}$, $1 \mathrm{H}), 3.72-3.64(\mathrm{~m}, 1 \mathrm{H}), 3.03(\mathrm{~s}, 3 \mathrm{H}), 2.74-2.64(\mathrm{~m}, 2 \mathrm{H}), 2.62-2.53(\mathrm{~m}, 2 \mathrm{H}), 2.44-2.34(\mathrm{~m}$, $1 \mathrm{H}), 2.31-2.22(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.58(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.58,162.05,157.94,132.48,131.07,129.62,115.45,72.69,58.81,51.88,44.78$, 36.64, 33.52, 32.68, 21.33. ATR-FTIR 3524, 2927, 2361, 2340, 1702, 1616, 1593, 1496, 1313, 1295, $1255 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{6} \mathrm{SNa}(\mathrm{M}+\mathrm{Na})^{+} 377.1035$, found 377.1035.

methyl (S)-2-(1-(4-chlorophenoxy)-3-hydroxypropyl)cyclopent-1-ene-1-carboxylate (5t)

The general procedure \mathbf{C} was followed using (E)-3-(4-chlorophenoxy)prop-2-en-1-ol ($74 \mathrm{mg}, 0.4$ mmol, 1.0 equiv), methyl 2-(((trifluoromethyl)sulfonyl)oxy)cyclopent-1-ene-1-carboxylate (110 $\mathrm{mg}, 0.4 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}_{2} \mathrm{dba}_{3}{ }^{\circ} \mathrm{CHCl}_{3}(21 \mathrm{mg}, 0.02 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathbf{L} 2(12 \mathrm{mg}, 0.05 \mathrm{mmol}$, $12 \mathrm{~mol} \%), 3 \AA \mathrm{MS}(120 \mathrm{mg}, 300 \mathrm{mg} / \mathrm{mmol})$ in DMF (4 mL) for 18 hours. Following work-up, the residue underwent NaBH_{4} reduction and was purified by silica gel chromatography ($0-15 \% \mathrm{EtOAc}$ in hexanes) to yield $\mathbf{5 t}$ as a clear oil ($76 \mathrm{mg}, 61 \%$ yield). $\mathbf{R}_{f}=0.16$ ($30 \% \mathrm{EtOAc}$ in Hexanes); $[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}$ $=+51.0^{\circ}\left(\mathrm{c}=0.2, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.20-7.15(\mathrm{~m}, 2 \mathrm{H}), 6.79-6.73(\mathrm{~m}$, $2 \mathrm{H}), 5.97(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.77-3.72(\mathrm{~m}, 2 \mathrm{H}), 3.70-3.63(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.61$ $(\mathrm{m}, 3 \mathrm{H}), 2.60-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.16(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.83$ $-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{bs}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.58,159.21,156.40,130.39$, $129.39,125.78,116.28,72.64,59.23,51.74,36.72,33.53,32.80,21.36$. ATR-FTIR (neat) 3395, 2951, 2361, 2340, 1706, 1636, 1489, 1436, 1239, $1119 \mathrm{~cm}^{-1} ;$ HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}_{4} \mathrm{ClNa}(\mathrm{M}+\mathrm{Na})^{+} 333.0870$, found 333.0875.

(S,Z)-4-(4-methoxyphenoxy)-5-(2-oxodihydrofuran-3(2H)-ylidene)hexanal (3u)

$3 u$
Compound 3u was prepared according to general procedure \mathbf{D} using alkenyl triflate $\mathbf{1 a}(65 \mathrm{mg}$, $0.25 \mathrm{mmol}, 1.0$ equiv) and reacting with alkenol substrate $\mathbf{2 u}(48.5 \mathrm{mg}, 0.25 \mathrm{mmol}, 1.0$ equiv) and purified using silica gel flash chromatography (gradient elution: $0 \rightarrow 35 \%$ ethyl acetate/hexane) to afford product $3 \mathbf{u}$ as a yellow oil ($62 \mathrm{mg}, 82 \%$ yield): $\mathbf{R}_{\boldsymbol{f}}=0.26$ (40% ethyl acetate in hexane); $[\boldsymbol{\alpha}]^{\mathbf{2 0} \mathbf{D}}=+36^{\circ}\left(\mathrm{c}=0.25, \mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.81(\mathrm{t}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.82-$ 6.73 (m, 4H), 6.28 (dd, $J=9.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.37$ (dd, $J=9.4,6.6,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.75$ (s, 3H), 2.92 - $2.83(\mathrm{~m}, 2 \mathrm{H}), 2.78-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.58(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.12(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.80$ (s, 3H); ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.62,169.69,154.00,153.33,151.56,121.74,115.98$, 114.69, 73.07, 65.02, 55.64, 40.46, 27.63, 27.04, 15.65; ATR-FTIR (neat) 3355, 2933, 2361, 1670, 1501, 1464, 1441, 1212, 1179, $1101 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{Na}$ $(\mathrm{M}+\mathrm{Na})^{+} 327.1208$, found 327.1219.

(S,Z)-4-(benzo[d][1,3]dioxol-5-yloxy)-5-(2-oxodihydrofuran-3(2H)-ylidene)hexanal (3v)

$3 v$
Compound 3v was prepared according to general procedure \mathbf{D} using alkenyl triflate $\mathbf{1 a}$ (65 mg , $0.25 \mathrm{mmol}, 1.0$ equiv) and reacting with alkenol substrate $2 \mathrm{v}(52 \mathrm{mg}, 0.25 \mathrm{mmol}, 1.0$ equiv) and purified using silica gel flash chromatography (gradient elution: $0 \rightarrow 40 \%$ ethyl acetate/hexane) to afford product $\mathbf{3 v}$ as a yellow oil ($63 \mathrm{mg}, 80 \%$ yield): $\mathbf{R}_{\boldsymbol{f}}=0.37$ (10% ether in hexane); $[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}=+$ $12^{\circ}\left(\mathrm{c}=0.2, \mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.80(\mathrm{t}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{dd}, J=8.5$, $0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.43$ (dd, $J=2.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.29-6.19(\mathrm{~m}, 2 \mathrm{H}), 5.88(\mathrm{~s}, 2 \mathrm{H}), 4.42-4.26$ (m, 2H), $2.92-2.79(\mathrm{~m}, 2 \mathrm{H}), 2.77-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.16(\mathrm{~m}, 1 \mathrm{H}), 1.91(\mathrm{~m}, 1 \mathrm{H}), 1.88-$
$1.71(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.57,169.66,153.06,152.86,148.24,141.84$, 122.75, 108.02, 106.36, 101.12, 98.40, 73.51, 65.04, 40.43, 27.60, 27.03, 15.64.; ATR-FTIR (neat) 2923, 2361, 2339, 1734, 1717, 1653, 1507, 1227, $1053 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{6} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+} 341.1001$, found 341.1009.

(S,Z)-5-(2-oxodihydrofuran-3(2H)-ylidene)-4-phenoxyhexanal (3w)

3w
Compound $\mathbf{3 w}$ was prepared according to general procedure \mathbf{D} using alkenyl triflate $\mathbf{1 a}(65 \mathrm{mg}$, $0.25 \mathrm{mmol}, 1.0$ equiv) and reacting with alkenol substrate $\mathbf{2 w}(41 \mathrm{mg}, 0.25 \mathrm{mmol}, 1.0$ equiv) and purified using silica gel flash chromatography (gradient elution: $0 \rightarrow 40 \%$ ethyl acetate/hexane) to afford product 3 w as a yellow oil ($54 \mathrm{mg}, 79 \%$ yield): $\mathbf{R}_{f}=0.37$ (10% ethyl acetate in hexane); $[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}=+79^{\circ}\left(\mathrm{c}=0.2, \mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.82(\mathrm{t}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.23$ (ddd, $J=13.9,5.8,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.96-6.89(\mathrm{~m}, 1 \mathrm{H}), 6.88-6.81(\mathrm{~m}, 2 \mathrm{H}), 6.36(\mathrm{dd}, J=9.2,4.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.44-4.33(\mathrm{~m}, 2 \mathrm{H}), 2.92-2.84(\mathrm{~m}, 2 \mathrm{H}), 2.74(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.01-$ $1.90(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.61,169.70,157.52$, 153.11, 129.57, $121.69,121.10,115.02,72.61,65.06,40.44,27.61,27.06,15.66$; ATR-FTIR (neat) 2923, 2361, $2339,1735,1506,1376,1227,1035 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$ 297.1103, found 297.1112.

(S,Z)-5-(4-methoxyphenoxy)-6-(2-oxodihydrofuran-3(2H)-ylidene)heptanal (3x)

Compound $\mathbf{3 x}$ was prepared according to general procedure \mathbf{D} using alkenyl triflate $\mathbf{1 a}$ (65 mg , $0.25 \mathrm{mmol}, 1.0$ equiv) and reacting with alkenol substrate $\mathbf{2 x}$ ($52 \mathrm{mg}, 0.25 \mathrm{mmol}, 1.0$ equiv) and purified using silica gel flash chromatography (gradient elution: $0 \rightarrow 40 \%$ ethyl acetate/hexane) to
afford product $\mathbf{3 x}$ as a yellow oil ($64 \mathrm{mg}, 80 \%$ yield): $\mathbf{R}_{\boldsymbol{f}}=0.37$ (10% ethyl acetate in hexane); $[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}=+33.7^{\circ}\left(\mathrm{c}=0.34, \mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.75(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.85$ $-6.72(\mathrm{~m}, 5 \mathrm{H}), 6.30(\mathrm{dd}, J=8.3,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.40-4.29(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.92-2.81(\mathrm{~m}$, $2 \mathrm{H}), 2.56-2.49(\mathrm{~m}, 2 \mathrm{H}), 1.94-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.69(\mathrm{~m}, 3 \mathrm{H}), 1.65-$ $1.53(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 202.27, 169.70, 153.82, 151.79, 121.27, 115.96, 114.61, 114.6, 73.03, 64.93, 55.58, 43.20, 33.60, 27.56, 18.14, 15.60; ATR-FTIR (neat) 3379, 2929, 2857, 1764, 1695, 1671, 1504, 1424, 1206, 1162, $1140 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+} 341.1365$, found 341.1376.

(S,Z)-5-(benzo[d][1,3]dioxol-5-yloxy)-6-(2-oxodihydrofuran-3(2H)-ylidene)heptanal (3y)

Compound $\mathbf{3 y}$ was prepared according to general procedure \mathbf{D} using alkenyl triflate $\mathbf{1 a}$ (65 mg , $0.25 \mathrm{mmol}, 1.0$ equiv) and reacting with alkenol substrate 2 y ($56 \mathrm{mg}, 0.25 \mathrm{mmol}, 1.0$ equiv) and purified using silica gel flash chromatography (gradient elution: $0 \rightarrow 40 \%$ ethyl acetate/hexane) to afford product $\mathbf{3 y}$ as a yellow oil ($63 \mathrm{mg}, 76 \%$ yield): $\mathbf{R}_{\boldsymbol{f}}=0.37$ (10% ether in hexane); $[\alpha]^{\mathbf{2 0}} \mathbf{D}=$ $+14^{\mathrm{o}}\left(\mathrm{c}=0.26, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.77(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~m}, 2 \mathrm{H}), 5.88(\mathrm{q}, J=1.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.37(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $2.91-2.83(\mathrm{~m}, 2 \mathrm{H}), 2.61-2.46(\mathrm{~m}, 2 \mathrm{H}), 1.93-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.69(\mathrm{~m}, 4 \mathrm{H}), 1.59(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.31,169.70,153.66,153.15,148.21,141.69,121.28,108.01$, 106.38, 101.07, 98.43, 73.52, 64.97, 43.21, 33.65, 27.58, 18.14, 15.66; ATR-FTIR (neat) 3379, 2929, 2857, 1764, 1695, 1671, 1504, 1424, 1206, $1162 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{6} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+} 355.1158$, found 355.1166 .

Other Alkenyl Triflates:

Note: The palladium catalyzed alkenylation of acyclic aryl enol ethers was unsuccessful when dior tri-substituted alkenyl triflates were used as coupling partners. The results are summarized below:

In all cases (see figure below), di- or tri- substituted alkenyl triflates did not yield the desired relay product. In fact, no significant conversion of either starting material was observed. The results were similar in other solvents such as THF, DMA, DCM and EtOH.

OTf

Derivatization of the generated products:

General reaction for the deprotection of the PMP group:

methyl (S)-2-(3-((tert-butyldiphenylsilyl)oxy)-1-(4-methoxyphenoxy)propyl)cyclopent-1-ene-1-carboxylate (6)

Compound 6 was prepared as follows: tert-butyl(chloro)diphenylsilane ($0.24 \mathrm{mmol}, 69 \mathrm{mg}, 1.2$ equiv) dissolved in 1 mL of DCM was added slowly to a 20 mL scintillation vial containing 31 (61 $\mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv) and imidazole ($0.24 \mathrm{mmol}, 20 \mathrm{mg}, 1.2$ equiv) dissolved in 5 mL of DCM, under stirring. The resulting mixture was stirred overnight. The crude reaction mixture was passed through a cotton plug and the resulting filtrate was concentrated in vacuum. The crude material obtained was purified with silica gel column chromatography eluting with hexanes to provide $\mathbf{6}$ as a white oil (92% yield, 100 mg). $\mathbf{R}_{f}=0.44$ (10% ether in hexane); $[\alpha]^{20}{ }_{\mathrm{D}}=+19.8^{\circ}$ ($\mathrm{c}=0.32$, CHCl_{3}); ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76-7.59(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.39-7.33(\mathrm{~m}$, 1H), $7.37-7.22(\mathrm{~m}, 2 \mathrm{H}), 6.91-6.73(\mathrm{~m}, 4 \mathrm{H}), 6.00(\mathrm{dd}, J=9.3,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~m}, 1 \mathrm{H}), 3.86$ $-3.77(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.64(\mathrm{tq}, J=8.4,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.59-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.13$ - $2.02(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{~s}, 1 \mathrm{H}), 1.15-0.99(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.74,159.31,153.61,152.33,135.55,135.53,133.88,133.67,129.48$, $129.45,129.12,127.56,127.53,115.87,114.52,71.52,60.19,55.64,51.28,37.17,33.86,33.11$, 26.78, 21.20, 19.16; ATR-FTIR (neat) 2929, 2856, 1710, 1506, 1472, 1429, 1229, $1111 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{O}_{5} \mathrm{SiNa}(\mathrm{M}+\mathrm{Na})^{+} 567.2543$, found 567.2459.

methyl (S)-2-(1,3-dihydroxypropyl)cyclopent-1-ene-1-carboxylate (6a)

Compound 6a was prepared as following: cerium ammonium nitrate ($100 \mathrm{mg}, 0.2 \mathrm{mmol}, 2.0$ equiv) was added to a solution of $6(54 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv $)$ in 2 mL of a mixture of acetonitrile/water (3:1) at $0^{\circ} \mathrm{C}$. The reaction was then allowed to warm to room temperature and stirred for 12 hours. The reaction mixture was quenched by the addition of $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$. The resulting mixture was diluted with 50 mL of ethyl acetate and washed with water and brine, respectively. The organic layer was dried over sodium sulfate, followed by concentration under vacuum. The resulting crude was purified using silica gel flash chromatography (gradient elution: $20 \rightarrow 30 \%$ ether/hexane, followed by eluting with 50% ethyl acetate in hexane) to afford product 36 as a white oil (16 mg , 80% yield): $\mathbf{R}_{\boldsymbol{f}}=0.37$ (60% ethyl acetate in hexane); $\left[\boldsymbol{\alpha} \boldsymbol{~}^{\mathbf{2 0}} \mathbf{D}=-2^{\mathrm{o}}\left(\mathrm{c}=0.24, \mathrm{CHCl}_{3}\right) ;{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\right.$ ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.02(\mathrm{dt}, J=9.4,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~m}, 2 \mathrm{H}), 3.74$ (s, 3 H) $2.92(\mathrm{~s}, 1 \mathrm{H}), 2.74-2.43(\mathrm{~m}, 4 \mathrm{H}), 2.00-1.71(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $167.38,162.41,128.19,69.03,61.10,51.76,37.28,35.26,33.85,21.52$; ATR-FTIR (neat) 3389 , 2952, 2926, 2361, 2339, 1701, 1685, 1636, 1436, 1264, $1117 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+} 223.0946$, found 223.0950.

Preparation of alkenylated flavone:

(S,Z)-2-(1-(2-oxodihydrofuran-3(2H)-ylidene)ethyl)chroman-4-one (7)

The general procedure \mathbf{C} was followed using (E)-3-phenoxyprop-2-en-1-ol ($75 \mathrm{mg}, 0.5 \mathrm{mmol}, 1.0$ equiv), (Z)-1-(2-oxodihydrofuran-3(2H)-ylidene)ethyl trifluoromethanesulfonate ($140 \mathrm{mg}, 0.5$
mmol, 1.0 equiv), $\mathrm{Pd}_{2} \mathrm{dba}_{3} \cdot \mathrm{CHCl}_{3}$ ($26 \mathrm{mg}, 0.025 \mathrm{mmol}, 5 \mathrm{~mol} \%$), L1 ($15 \mathrm{mg}, 0.05 \mathrm{mmol}, 12$ $\mathrm{mol} \%), 3 \AA \mathrm{MS}(150 \mathrm{mg}, 300 \mathrm{mg} / \mathrm{mmol})$ in DMF (5 mL) for 18 hours. The crude residue was dissolved in t - $\mathrm{BuOH}(1 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(0.4 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C} . \mathrm{NaH}_{2} \mathrm{PO}_{4}$ was added $(120 \mathrm{mg}$, $2 \mathrm{mmol}, 4$ equiv) followed by 2-methyl-2-butene ($140 \mathrm{mg}, 2 \mathrm{mmol}, 4$ equiv). The resulting mixture was stirred 5 minutes and then NaClO_{2} ($118 \mathrm{mg}, 2$ mmol, 4 equiv) was added. This solution was stirred vigorously for 45 minutes at $0^{\circ} \mathrm{C}$ then diluted with $5 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ and washed with EtOAc (2x 60 mL). The combined organic extracts were washed with brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The resulting residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, then trifluoroacetic acid (170 mg , $1.5 \mathrm{mmol}, 3$ equiv), and trifluoroacetic anhydride ($320 \mathrm{mg}, 1.5 \mathrm{mmol}, 3$ equiv) were added. The solution was stirred for 3 hours and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ and washed with water $(3 \times 15$ mL) and brine. The organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. Purification of the residue by silica gel chromatography ($0-15 \%$ EtOAc in Hexanes) afforded a white solid. Mp 182-184 ${ }^{\circ} \mathrm{C} .[\boldsymbol{\alpha}]^{\mathbf{2 0}} \mathbf{D}=-2^{\circ}\left(\mathrm{c}=0.24, \mathrm{CHCl}_{3}\right){ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, Chloroform- d) $\delta 7.89(\mathrm{dt}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{dt}, J=8.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-6.98(\mathrm{~m}, 1 \mathrm{H}), 6.95(\mathrm{dd}, J=$ $8.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{dd}, J=13.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.44-4.33(\mathrm{~m}, 2 \mathrm{H}), 3.08-2.93(\mathrm{~m}, 2 \mathrm{H}), 2.84$ $(\mathrm{m}, 1 \mathrm{H}), 2.64(\mathrm{dt}, J=16.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 191.45$, $169.18,161.61,148.29,136.21,127.26,122.24,121.80,121.28,118.08,74.53,65.24,41.10,27.90$, 16.44. ATR-FTIR (neat) 2920.22, 2360.64, 2339.95, 1740.24, 1690.42, 1605.58, 1472.65, 1463.76, 1303.41, 1200.38, $1028.5 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+}$ 281.0790; obsvd: 281.0787

Optimization of Pinnick Oxidation

Pinnick Oxidation	Friedel-Crafts	er
3 h	3 h	$86: 14$
2 h	3 h	$93: 7$
0.75 h	3 h	$94: 6$
0.5 h	3 h	$94: 6$
$10 \mathrm{~min}\left(22^{\circ} \mathrm{C}\right)$	3 h	$94: 6$

It was observed that upon varying the time given the Pinnick Oxidation to stir caused varying degrees of erosion of enantiomeric excess. At times beyond 2 hours, the erosion increases, but at times below 2 hours, the erosion is decreased.

Determination of absolute configuration:

 ethyl (S,Z)-6-hydroxy-4-(4-methoxyphenoxy)-2,3-dimethylhex-2-enoate (5z)

The general procedure \mathbf{C} was followed using (E)-3-(4-methoxyphenoxy)prop-2-en-1-ol (72 mg, 0.4 mmol , 1.0 equiv), ethyl (Z)-2-methyl-3-(((trifluoromethyl)sulfonyl)oxy)but-2-enoate (110 mg , $0.4 \mathrm{mmol}, 1.0$ equiv), $\mathrm{Pd}_{2} \mathrm{dba}_{3}{ }^{\circ} \mathrm{CHCl}_{3}(21 \mathrm{mg}, 0.02 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathbf{L 1}(12 \mathrm{mg}, 0.05 \mathrm{mmol}, 12$ $\mathrm{mol} \%), 3 \AA \mathrm{MS}(120 \mathrm{mg}, 300 \mathrm{mg} / \mathrm{mmol})$ in DMF (4 mL) for 18 hours. Following work-up, the residue underwent NaBH_{4} reduction and was successively purified by silica gel chromatography ($0-18 \%$ EtOAc in hexanes). $\mathbf{R}_{f}=0.15$ (30\% EtOAc in Hexanes); $[\boldsymbol{\alpha}]_{\boldsymbol{d}}^{23}=+50.0^{\circ}\left(\mathrm{c}=0.2, \mathrm{CHCl}_{3}\right)$ 71% yield. ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.74(\mathrm{~s}, 4 \mathrm{H}), 5.64(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.17(\mathrm{~m}$, 2H), $3.76-3.64(\mathrm{~m}, 2 \mathrm{H}) 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.92(\mathrm{~s}, 1 \mathrm{H}), 2.19-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.85$ (s, 3H) $1.72(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.29,153.98$, $151.82,146.20,126.32,116.60,114.54,76.21,60.87,59.66,55.61,36.79,15.84,14.22,13.41$. ATR-FTIR 3453, 2929, 2360, 2339, 1705, 1506, 1280, 1227, 1099 HRMS (ESI-TOF) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{Na}(\mathrm{M}+\mathrm{Na})^{+} 331.1521$, found 331.1511.

(S)-5-(2-hydroxyethyl)-3,4-dimethylfuran-2(5H)-one (8):

Ethyl (Z)-6-hydroxy-4-(4-methoxyphenoxy)-2,3-dimethylhex-2-enoate ($30 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) was dissolved in acetonitrile/water ($4: 1,2 \mathrm{~mL}$) and cooled to $0^{\circ} \mathrm{C}$. Ceric ammonium nitrate was added ($120 \mathrm{mg}, 0.22 \mathrm{mmol}, 2.2$ equiv) and the resulting mixture was allowed to warm to room temperature overnight. 100 mLEtOAc were added which was then washed with water ($3 \times 15 \mathrm{~mL}$), and brine. The organic layer was dried with sodium sulfate, filtered, and concentrated. The residue was purified by preparative thin layer chromatography according to the literature procedure. $\mathbf{R}_{\mathbf{f}}=$ 0.4 ($30 \% \mathrm{EtOAc} /$ hexanes). 11 mg residue obtained (74% yield). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $4.90(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.80(\mathrm{~m}, 2 \mathrm{H}), 2.19-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.59$
(ddt, $J=14.6,9.8,5.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 174.39, 159.61, 123.27, 80.76, 58.87, 35.16, 11.98, 8.44. $[\boldsymbol{\alpha}]_{d}^{23}-33.0^{\circ}\left(\mathrm{c}=0.2, \mathrm{CHCl}_{3}\right)$.

See literature for the remainder of the data. ${ }^{11}$

The optical rotation of $\mathbf{8}$ obtained via derivatization of $\mathbf{5 u}$ (which was synthesized as per the developed procedure described in this communication) was found to be as follows: $[\alpha]_{d}^{23}-33.0^{\circ}$ ($c=0.2, \mathrm{CHCl}_{3}$).

The optical rotation of 8 , as per the literature was $[\alpha]^{\mathbf{2 0}} \mathbf{D}=-51.6^{\circ}\left(\mathrm{c}=0.55, \mathrm{CHCl}_{3}\right)$, which is S in configuration.
Therefore, the products obtained in the alkenylative Heck reactions of acyclic aryl enol ethers are ' S ' in configuration.

Determination of Enantiomeric ratio

SFC Data and Traces:

Racemic 5a
Separation of enantiomers by SFC, Waters Trefoil AMY1 column, $40^{\circ} \mathrm{C}, i-\mathrm{PrOH}: \mathrm{CO}_{2}=8: 92(10$ min), $2 \mathrm{~mL} / \mathrm{min}, 140$ bar, major retention time: 6.7 min , minor retention time: 5.6 min .

Enantioenriched 5a

Racemic 5b
Separation of enantiomers by SFC, Waters Trefoil Cel2 column, $40{ }^{\circ} \mathrm{C}, i-\mathrm{PrOH}: \mathrm{CO}_{2}=5: 95$ $(15 \mathrm{~min}), 2 \mathrm{~mL} / \mathrm{min}, 140$ bar, major retention time: 3.3 min , minor retention time: 4.0 min .

Enantioenriched 5b

Racemic 5c

Separation of enantiomers by SFC, Waters Trefoil Cel2 column, $40{ }^{\circ} \mathrm{C}, i-\mathrm{PrOH}: \mathrm{CO}_{2}=5: 95$
$(15 \mathrm{~min}), 2 \mathrm{~mL} / \mathrm{min}, 140 \mathrm{bar}$, major retention time: 4.6 min , minor retention time: 5.3 min .

Enantioenriched 5c

Racemic 5d

Separation of enantiomers by SFC, Waters Trefoil Cell column, $40^{\circ} \mathrm{C}, i-\mathrm{PrOH}: \mathrm{CO}_{2}=2: 98$ $(5 \mathrm{~min}), 2 \mathrm{~mL} / \mathrm{min}, 140$ bar, major retention time: 2.7 min , minor retention time: 2.4 min .

Enantioenriched 5d

Racemic 5e

Separation of enantiomers by SFC, Waters Trefoil Cel1 column, $40{ }^{\circ} \mathrm{C}, i-\mathrm{PrOH}: \mathrm{CO}_{2}=5: 95$ $(15 \mathrm{~min}), 2 \mathrm{~mL} / \mathrm{min}, 140 \mathrm{bar}$, major retention time: 6.3 min , minor retention time: 8.0 min .

Enantioenriched 5e

Racemic $\mathbf{5 f}$

Separation of enantiomers by SFC, Waters Trefoil Cell column, $40{ }^{\circ} \mathrm{C}, i-\mathrm{PrOH}: \mathrm{CO}_{2}=2: 98$ $(15 \mathrm{~min}), 2 \mathrm{~mL} / \mathrm{min}$, 140 bar , major retention time: 7.5 min , minor retention time: 8.7 min .

Enantioenriched $\mathbf{5 f}$

Separation of enantiomers by SFC, Waters Trefoil Cell column, $40{ }^{\circ} \mathrm{C}, i-\mathrm{PrOH}: \mathrm{CO}_{2}=2: 98$ $(15 \mathrm{~min}), 2 \mathrm{~mL} / \mathrm{min}, 140$ bar, major retention time: 11.1 min , minor retention time: 10.1 min .

Enantioenriched 5g

Separation of enantiomers by SFC, Waters Trefoil Cel2 column, $40{ }^{\circ} \mathrm{C}, i-\mathrm{PrOH}: \mathrm{CO}_{2}=2: 98$
$(15 \mathrm{~min}), 2 \mathrm{~mL} / \mathrm{min}, 140$ bar, major retention time: 7.6 min , minor retention time: 8.7 min .

Enantioenriched 5h

Racemic 5i

Separation of enantiomers by SFC, Waters Trefoil Cel2 column, $40{ }^{\circ} \mathrm{C}, i-\mathrm{PrOH}: \mathrm{CO}_{2}=5: 95$ $(50 \mathrm{~min}), 2 \mathrm{~mL} / \mathrm{min}$, 140 bar, major retention time: 34.7 min , minor retention time: 40.5 min .

Enantioenriched 5i

Racemic 5j

Separation of enantiomers by SFC, Waters Trefoil AMY1 column, $40^{\circ} \mathrm{C}, i-\operatorname{PrOH}: \mathrm{CO}_{2}=10: 90$ $(10 \mathrm{~min}), 2 \mathrm{~mL} / \mathrm{min}, 140 \mathrm{bar}$, major retention time: 7.1 min , minor retention time: 6.4 min .

Enantioenriched 5j

Racemic 5k

Separation of enantiomers by SFC, Waters Trefoil AMY1 column, $40^{\circ} \mathrm{C}, i-\operatorname{PrOH}: \mathrm{CO}_{2}=5: 95$
$(10 \mathrm{~min}), 2 \mathrm{~mL} / \mathrm{min}, 140$ bar, major retention time: 5.7 min , minor retention time: 5.3 min .

Enantioenriched 5k

Racemic 5I
Separation of enantiomers by SFC, Waters Trefoil Cel2 column, $40{ }^{\circ} \mathrm{C}, i-\mathrm{PrOH}: \mathrm{CO}_{2}=10: 90$ $(5 \mathrm{~min}), 2 \mathrm{~mL} / \mathrm{min}, 140 \mathrm{bar}$, major retention time: 1.97 min , minor retention time: 2.48 min .

Enantioenriched 51

Separation of enantiomers by SFC, Waters Trefoil Cel2 column, $40^{\circ} \mathrm{C}, i-\mathrm{PrOH}: \mathrm{CO}_{2}=2: 98$
$(10 \mathrm{~min}), 2 \mathrm{~mL} / \mathrm{min}, 140 \mathrm{bar}$, major retention time: 6.56 min , minor retention time: 8.3 min .

Enantioenriched 5m

Separation of enantiomers by SFC, Waters Trefoil Cel2 column, $40^{\circ} \mathrm{C}, i-\mathrm{PrOH}: \mathrm{CO}_{2}=5: 95$
$(45 \mathrm{~min}), 2 \mathrm{~mL} / \mathrm{min}, 140$ bar, major retention time: 35.6 min , minor retention time: 39.2 min .

Enantioenriched 5n

Racemic 50
Separation of enantiomers by SFC, Waters Trefoil Cel2 column, $40^{\circ} \mathrm{C}, i$ - $\mathrm{PrOH}: \mathrm{CO}_{2}=10: 90$
$(5 \mathrm{~min}), 2 \mathrm{~mL} / \mathrm{min}, 140 \mathrm{bar}$, major retention time: 2.6 min , minor retention time: 3.2 min .

Enantioenriched 50

Racemic 5p
Separation of enantiomers by SFC, Waters Trefoil Cel2 column, $40{ }^{\circ} \mathrm{C}, i-\mathrm{PrOH}: \mathrm{CO}_{2}=2: 98$
$(30 \mathrm{~min}), 2 \mathrm{~mL} / \mathrm{min}, 140 \mathrm{bar}$, major retention time: 25 min , minor retention time: 27 min .

Enantioenriched 5p

Racemic 5q

Separation of enantiomers by SFC, Waters Trefoil Cel2 column, $40{ }^{\circ} \mathrm{C}, i-\mathrm{PrOH}: \mathrm{CO}_{2}=4: 96$ $(10 \mathrm{~min}), 2 \mathrm{~mL} / \mathrm{min}, 140 \mathrm{bar}$, major retention time: 5.7 min , minor retention time: 6.4 min .

Enantioenriched 5q

Separation of enantiomers by SFC, Waters Trefoil Cel2 column, $40{ }^{\circ} \mathrm{C}, i-\mathrm{PrOH}: \mathrm{CO}_{2}=5: 95$ $(10 \mathrm{~min}), 2 \mathrm{~mL} / \mathrm{min}, 140$ bar, major retention time: 5.3 min , minor retention time: 6.8 min .

Enantioenriched 5r

Separation of enantiomers by SFC, Waters Trefoil Cel2 column, $40^{\circ} \mathrm{C}, \mathrm{MeOH}: \mathrm{CO}_{2}=5: 98$ $(10 \mathrm{~min}), 2 \mathrm{~mL} / \mathrm{min}, 140 \mathrm{bar}$, major retention time: 8.2 min , minor retention time: 7.7 min .

Enantioenriched 5s

Racemic 5t

Separation of enantiomers by SFC, Waters Trefoil Cel2 column, $40^{\circ} \mathrm{C}, i-\mathrm{PrOH}: \mathrm{CO}_{2}=5: 95$ $(10 \mathrm{~min}), 2 \mathrm{~mL} / \mathrm{min}, 140 \mathrm{bar}$, major retention time: 4 min , minor retention time: 5 min .

Enantioenriched 5t

Racemic 3u

Separation of enantiomers by SFC, Waters Trefoil Cell column, $40{ }^{\circ} \mathrm{C}, i-\mathrm{PrOH}: \mathrm{CO}_{2}=8: 92$
$(15 \mathrm{~min}), 2 \mathrm{~mL} / \mathrm{min}, 140 \mathrm{bar}$, major retention time: 10.0 min , minor retention time: 9.3 min .

Enantioenriched 3u

Racemic 3v
Separation of enantiomers by SFC, Waters Trefoil Cel1 column, $40^{\circ} \mathrm{C}, i-\mathrm{PrOH}: \mathrm{CO}_{2}=5: 95$
$(15 \mathrm{~min}), 3 \mathrm{~mL} / \mathrm{min}$, 140 bar , major retention time: 10.0 min , minor retention time: 9.1 min .

Enantioenriched 3v

Racemic 3w

Separation of enantiomers by SFC, Waters Trefoil Cell column, $40^{\circ} \mathrm{C}, i-\mathrm{PrOH}: \mathrm{CO}_{2}=5: 95$ $(20 \mathrm{~min}), 3 \mathrm{~mL} / \mathrm{min}$, 140 bar, major retention time: 8.0 min , minor retention time: 8.8 min .

Enantioenriched 3w

Racemic 3x
Separation of enantiomers by SFC, Waters Trefoil AMY1 column, $40{ }^{\circ} \mathrm{C}, i-\mathrm{PrOH}: \mathrm{CO}_{2}=8: 92$ $(25 \mathrm{~min}), 2 \mathrm{~mL} / \mathrm{min}, 140$ bar, major retention time: 12.6 min , minor retention time: 11.5 min .

Racemic 3y

Separation of enantiomers by SFC, Waters Trefoil AMY1 column, $40{ }^{\circ} \mathrm{C}, i-\mathrm{PrOH}: \mathrm{CO}_{2}=5: 95$ $(25 \mathrm{~min}), 2 \mathrm{~mL} / \mathrm{min}, 140$ bar, major retention time: 9.9 min , minor retention time: 13.5 min .

Enantioenriched 3y

Separation of enantiomers by SFC, Waters Trefoil Cel2 column, $40{ }^{\circ} \mathrm{C}$, $i-\mathrm{PrOH}: \mathrm{CO}_{2}=5: 95$
$(10 \mathrm{~min}), 2 \mathrm{~mL} / \mathrm{min}, 140 \mathrm{bar}$, major retention time: 1.4 min , minor retention time: 1.6 min .

Enantioenriched 5u

Racemic 6a

Separation of enantiomers by SFC, Waters Trefoil Cel2 column, $40^{\circ} \mathrm{C}, \mathrm{MeOH}: \mathrm{CO}_{2}=10: 90$ $(5 \mathrm{~min}), 2 \mathrm{~mL} / \mathrm{min}, 140 \mathrm{bar}$, major retention time: 2.1 min , minor retention time: 1.9 min .

Enantioenriched 6a

Racemic 7

Separation of enantiomers by SFC, Waters Trefoil Cel2 column, $40^{\circ} \mathrm{C}, i-\mathrm{PrOH}: \mathrm{CO}_{2}=10: 90$
$(15 \mathrm{~min}), 2 \mathrm{~mL} / \mathrm{min}, 140 \mathrm{bar}$, major retention time: 11 min , minor retention time: 8 min .

Enantioenriched 7

References:

1) Zalesskiy, S. S.; Ananikov, V. P. Organometallics, 2012, 31, 2302.
2) (a) Werner, E. W.; Mei, T. S.; Burkle, A. J.; Sigman, M. S. Science, 2012, 338, 1455. (b) Patel, H. H.; Sigman, M. S. J. Am. Chem. Soc. 2016, 138, 14226.
3) Capuzzi, M. et al, Eur. J. Org. Chem. 2008, 22, 5076.
4) A.; Schrems, M. G.; Pfaltz, A. Chem. Eur. J. 2011, 17, 13502-13509.
5) Chen, K.; Driver, T.G. Org. Lett. 2015, 17, 802.
6) Campeau, L. C et al, Org. Proc. Res. Dev. 2011, 15, 1138.
7) Babinski, D.; Soltani, O.; Frantz, E. D.; Org. Lett. 2008, 13, 4026.
8) Saini, V.; O’Dair, M.; Sigman, M. S. J. Am. Chem. Soc., 2015, 137, 608-611.
9) Patel, H. H., Sigman, M. S. J. Am. Chem. Soc. 2015, 137, 3462.
10) Tellam, J. P.; Kociok-Köhn, G.; Carbery, D. R Org. Lett., 2008, 10, 5199-5202.
11) Kin-ichi, T.; Limura, Y.; Ohmori, T.; Ueno, Y.; Suami, T. J. Carbohydr. Chem. 1986, 5, 423435.

$2 m$

190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
190	180																		

$2 n$

20

$2 q$

$2 r$

190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

2s

苟若克
m
0
0
-
$\stackrel{\rightharpoonup}{i}$
I
$\stackrel{n}{\sim}$

$2 u$

$2 w$

2w

m
0
0
\circ
$\stackrel{\rightharpoonup}{x}$
i
~~
$\stackrel{\sim}{\infty}$

5a

5a

5b

5c

5e

$5 f$

$5 g$

$\stackrel{\text { ®. }}{\text { © }}$

5 g

180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
									ppm)									

5h

5h

$5 i$

$5 i$

$5 j$

5j

								1		1	10	1			1	1			
180	170	160	150	140	130	120	110	100	${ }^{90}$	80	70	60	50	40	30	20	10	0	10

5k

-

51

5n

200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{fy}(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0

(

200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f}(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0

$5 q$

$5 r$

5s

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
										f1 (ppm)										

$3 u$

	1	1	1	1	1	1	1	1			1	1	,		1	1	1				
210	200	190	180	170	160	150	140	130	120	$\begin{array}{r} 110 \\ \text { f1 } \end{array}$	$\begin{aligned} & 100 \\ & \mathrm{om}) \end{aligned}$	90	80	70	60	50	40	30	20	10	0

$3 v$

$3 w$

(

$3 y$

N:

6

6a

7

																									10
220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	-20	-30

8

