SUPPORTING INFORMATION

Phytoremediation Reduces Dust Emissions from Metal(loid)-Contaminated Mine Tailings

Juliana Gil-Loaiza^{*a*}, Jason P. Field^{*b*}, Scott A. White^{*a*}, Janae Csavina^{*c*}, Omar Felix^{*d*}, Eric A. Betterton^{*c*}, A. Eduardo Sáez^{*d*}, Raina M. Maier^{*a**}

^a University of Arizona, Department of Soil- Water and Environmental Science, Tucson, AZ

85721, USA

^b University of Arizona, School of Natural Resources and the Environment, Tucson- AZ 85721,

USA

^c University of Arizona, Department of Hydrology and Atmospheric Sciences, Tucson- AZ

85721, USA.

^d University of Arizona, Department of Chemical and Environmental Engineering, Tucson- AZ

85721, USA.

<u>*Corresponding author:</u> Raina M. Maier
Department of Soil, Water, and Environmental Science
1177 E. 4th Street
University of Arizona
Tucson, AZ 85721-0038
Email: <u>rmaier@ag.arizona.edu</u>
Phone: 520-621-7231
Fax: 520-626-6782

Present Addresses

Janae Csavina is now at the National Ecological Observatory Network- Inc. NEON, Calibration-Validation and Audit Laboratory, Boulder, CO 80301, USA. Omar Felix Villar is now at SRK consulting, Tucson- AZ 85741, USA.

LIST OF SUPPLEMENTARY INFORMATION

TABLES

TABLE S1	Weather data for the Modified Wilson & Cooke (MWAC)	
	samplers measurement period at IKMHSS	S 4
TABLE S2	\mathbf{R}^2 values for the exponential decay functions used to calculate	
	total average horizontal dust flux	S5
TABLE S3	Weather data for DustTrak TM Aerosol Monitors measurement	
	period at IKMHSS	S 6
TABLE S4	Total horizontal dust flux at IKMHSS field site averaged over the	
	three sampling periods	S7
TABLE S5	Horizontal dust flux at IKMHSS field site for each of the three	
	sampling periods	S 8
TABLE S6	Horizontal dust flux by height at IKMHSS field site for each	
	sampling periods	S9
TABLE S7	Total metal(loid)s collected in upwind and downwind MWAC	
	samplers (mg)	S10
	FIGURES	
FIGURE S1 A	Phytostabilization selected areas of study (9.6 m x 15 m per plot)	S12
FIGURE S1 B	Placement of a vertical PVC mast with five individual sediment	
	samplers and DustTraks TM	S12
FIGURE S2	Wind speed and wind direction at IKMHSS field site for each of	
	the three sampling periods using MWAC) samplers	S13
FIGURE S3	Details of Modified Wilson & Cooke (MWAC) samplers	S14

FIGURE S4	Exponential decay functions used to calculate average total	
	horizontal dust flux at the IKMHSS field site (May 2011 to May	
	2012).	S15
FIGURE S5	Meteorological data from weather station during the DustTrak [™]	
	measurement events, Percent relative humidity	S16

Collection	Season IK Met	Temperature	Soil Temperature	ET	Humidity	Precipitation + Irrigation	Average Spe	e Wind ed	
uate	station r nase 1	°C	°C	%	%	mm	m s ⁻¹		
9/7/2011	May - Sept 2011	22.7 ± 10.5	21.5 ± 1.1	$\begin{array}{c} 0.0029 \pm \\ 0.007 \end{array}$	33.8 ± 19.0	383.8	5.1 ± 4.6	Min 0 Max 24	
1/7/2012	Sept 2011 -Jan 2012	11.0 ± 8.8	11.4 ± 2.0	0.0014 ± 0.004	50.6 ± 24.5	232.3	3.3 ± 3.6	Min 0 Max 23	
5/16/2012	Jan - May 2012	9.5 ± 9.6	10.0 ± 1.1	0.0019 ± 0.005	38.5 ± 21.6	100.4	4.4 ± 4.5	Min 0 Max 27	

Table S1. Weather data for the Modified Wilson & Cooke (MWAC) samplers measurement period at IKMHSS.

Table S2. R^2 and p-values for the exponential functions used to calculate total average horizontal dust flux from May 2011 to May 2012.

R ² and p-Value from exponential decay function of horizontal dust flux from MWAC								
Treatment	May 2011 – May 2012							
	Flux IN							
Control	$0.78 (0.008)^{a}$							
Irrigation	0.86 (0.005)							
16% Canopy	0.78 (0.069)							
32% Canopy	0.78 (0.011)							
	Flux OUT							
Control	0.83 (0.015)							
Irrigation	0.82 (0.038)							
16% Canopy	0.77 (0.045)							
32% Canopy	0.69 (0.131)							

^a Values represent R^2 and (p-values).

Table S3. Weather data for the DustTrak TM Aerosol Monitors measurement period at I	KMHSS.
--	--------

Collection	Temperature	Soil Temperature	Soil ET Femperature		Precipitation + Irrigation	Averag Spe	Wind Direction ^a	
uate	°C	°C	%	%	mm	m s ⁻¹		
5/24/2011	22.4 ± 1.4	19.5 ± 1.9	0.029 ± 0.003	14.4 ± 2.4	0.2	5.0 ± 1.2	Min 2.2 Max 6.2	SW
6/6/2011	25.8 ± 0.4	20.1 ± 1.2	0.036 ± 0.002	13.9 ± 1.2	0.0	7.0 ± 0.7	Min 5.8 Max 8.5	S

	Horizontal Flux ^a (g m ⁻² y ⁻¹)								
Treatments	Flux IN (g m ⁻² y ⁻¹)	Flux OUT (g m ⁻² y ⁻¹)	^b NET Flux (g m ⁻² y ⁻¹)						
Control Unirrigated	3951.4	6274.9	2323.5						
Control Irrigated	3253.3	4765.3	1512.0						
16% Canopy	2672.7	2300.9	-371.8						
32% Canopy	2486.6	1880.5	-606.1						

Table S4 Total horizontal dust flux at the IKMHSS field site over the three sampling periods.

^a Measurements were performed using passive samplers. Each measurement period was approximately three months. Values represent the total amount of wind-blown dust for all sampling heights integrated from 0 to 1 m above the soil surface.

^b Net Flux values are the subtraction of the flux IN from the flux OUT (Eq. 4) to represent deposition or emission of dust as an effect of the vegetation cover.

	Horizontal Flux (g m ⁻² y ⁻¹) ^a								
Treatments	Flux IN (g m ⁻² y ⁻¹)	Flux OUT (g m ⁻² y ⁻¹)	^b NET Flux (g m ⁻² y ⁻¹)						
May – Sept. 2011 ^c									
Control Unirrigated	2540.9	4189.4	1648.46						
Control Irrigated	2881.0	3855.2	974.24						
16% Canopy	2144.1	2083.1	-60.97						
32% Canopy	1981.1	1717.4	-263.64						
Sept. 2011– Jan.2012 ^c									
Control Unirrigated	4819.8	6989.6	2169.84						
Control Irrigated	3770.5	4759.4	988.90						
16% Canopy	2677.5	2385.7	-291.80						
32% Canopy	3167.7	1988.1	-1179.55						
Jan. – May 2012 ^c									
Control Unirrigated	4493.7	7645.9	3152.22						
Control Irrigated	3108.4	5681.4	2572.96						
16% Canopy	3196.5	2434.0	-762.50						
32% Canopy	2311.2	1936.0	-375.19						

 Table S5. Total horizontal dust flux at IKMHSS field site for each of the three sampling periods.

^a Measurements were performed using passive samplers. Values represent the total amount of wind-blown dust or sediment for all sampling heights integrated from 0 to 1 m above the soil surface.

^b Net Flux values are the subtraction of the flux IN from the flux OUT (Eq. 4) to represent deposition or emission of sediment (dust) as an effect of the vegetation cover.

^c Three separate sampling events took place: May –September 2011 (109 days), September 2011 to January 2012 (123 days), and January – May 2012 (132 days).

Horizontal Flux		Flu	Flux IN (g m ⁻² y ⁻¹)				Flux OUT (g m ⁻² y ⁻¹)			^b NET Flux (g m ⁻² y ⁻¹)					
Height (m)	1.0	0.5	0.25	0.18	0.06	1.0	0.5	0.25	0.18	0.06	1.0	0.5	0.25	0.18	0.06
Treatments							Ma	ay – Sept. 2	011						
Control Unirrigated	1064.1	1771.0	3571.9	4494.6	4635.9	1480.8	4449.9	6652.6	4978.3	7835.8	416.7	2678.9	3080.7	483.7	3199.8
Control Irrigated	937.6	1904.9	3117.9	5008.0	8356.7	1012.0	3609.1	7300.0	5588.5	6823.7	74.4	1704.1	4182.1	580.4	-1532.9
16% Canopy	878.1	1510.6	2344.0	2961.7	6332.6	1391.5	1890.1	2076.1	2939.3	3251.9	513.5	379.5	-267.2	-22.3	-3080.7
32% Canopy	803.7	1220.4	2024.0	3050.9	6325.2	1086.4	1503.2	2031.5	1852.9	3289.1	282.8	282.8	7.4	-1198.0	-3036.1
Sept. 2011– Jan.2012															
Control Unirrigated	969.4	2380.6	5038.1	12450.2	14942.9	1134.2	6752.7	10616.9	13083.3	14309.8	164.9	4372.1	5578.9	633.0	-633.1
Control Irrigated	817.7	2703.7	4563.3	8605.7	8698.0	1839.8	2954.3	5730.5	7069.2	13835.0	1022.1	250.6	1167.2	-1536.5	5137.4
16% Canopy	1246.3	1773.9	4279.8	4563.3	4312.7	870.5	890.2	3943.4	4154.5	6910.9	-396.3	-1968.9	-1461.2	321.9	600.6
32% Canopy	751.8	1727.7	3620.3	5717.3	11190.7	692.4	2103.6	1912.4	3382.9	4279.8	-59.3	375.9	-1707.9	-2334.4	-6910.9
						Ja	an. – May	2012							
Control Unirrigated	1592.5	3646.3	5409.9	9160.3	8170.6	2232.4	6585.6	11162.1	13915.4	13930.3	639.9	2939.3	5752.2	4755.0	5759.6
Control Irrigated	1220.4	1637.1	2864.9	5156.9	11764.8	2403.6	6362.4	9138.0	7106.5	8170.6	1183.2	4725.3	6273.1	1949.6	-3594.2
16% Canopy	1591.3	3584.9	3801.7	3913.1	5392.9	1195.0	1616.0	2340.5	4235.1	5993.5	-396.3	-1968.9	-1461.2	321.9	600.6
32% Canopy	1003.0	1325.0	1894.7	5578.7	5987.4	1195.0	1671.8	2711.9	3046.3	2204.2	191.9	346.7	817.3	-2532.4	-3783.1

Table S6. Horizontal dust flux by height at IKMHSS field site for each sampling periods.

 Table S7. Total metal(loid)s collected in upwind and downwind MWAC samplers

T	Flux IN ^a	Flux OUT ^a	NET ^c	%
1 reatment	(mg)	(mg)	Elemental mass	Deposition ^d
		Al		
Control Unirrigated	23.389	67.859	44.470	67.0
Control Irrigated	20.761	58.852	38.091	60.9
16% Canopy	46.233	19.563	-26.670	-133.4
32% Canopy	26.801	26.825	0.024	30.4
		As		
Control Unirrigated	0.684	1.233	0.549	41.6
Control Irrigated	0.628	0.695	0.067	-1.9
16% Canopy	0.386	0.418	0.032	4.3
32% Canopy	0.470	0.206	-0.264	-133.7
		Cd		
Control Unirrigated	0.003	0.007	0.004	56.4
Control Irrigated	0.002	0.003	0.000	-17.2
16% Canopy	0.002	0.002	0.000	-3.0
32% Canopy	0.003	0.001	-0.002	-207.7
		Cu	l	
Control Unirrigated	0.028	0.058	0.030	52.0
Control Irrigated	0.023	0.037	0.013	33.9
16% Canopy	0.033	0.034	0.001	3.1
32% Canopy	0.038	0.024	-0.015	-66.8
		Cr		
Control Unirrigated	0.002	0.004	0.002	56.0
Control Irrigated	0.002	0.003	0.001	39.1
16% Canopy	0.003	0.002	-0.001	-29.4
32% Canopy	0.003	0.002	-0.001	-52.9
		Fe		
Control Unirrigated	21.607	40.758	19.151	48.0
Control Irrigated	25.272	30.782	5.510	10.2
16% Canopy	18.361	15.551	-2.810	-17.8
32% Canopy	20.873	11.635	-9.238	-79.1
		Mg	Ş	
Control Unirrigated	2.101	4.303	2.202	54.5
Control Irrigated	1.775	2.316	0.541	20.0
16% Canopy	1.263	2.283	1.020	34.84
32% Canopy	2.006	0.857	-1.149	-137.6
		Mn	1	
Control Unirrigated	0.052	0.112	0.061	56.2
Control Irrigated	0.046	0.065	0.019	28.5
16% Canopy	0.047	0.037	-0.010	-27.0
32% Canopy	0.058	0.027	-0.031	-52.9
~		Pb		• • •
Control Unirrigated	0.526	0.848	0.322	38.6
Control Irrigated	0.367	0.539	0.172	-29.5
16% Canopy	0.336	0.291	-0.045	-17.1
32% Canopy	0.382	0.202	-0.180	-89.9

^a Elemental mass collected in the MWAC samplers located at the upwind and downwind edges of each plot treatment.

^b Net elemental was estimated by elemental mass out – elemental mass in / elemental mass out. ^c When percent deposition was calculated, the result was multiplied by 100. Negative numbers indicate *Deposition* and positive numbers indicate *Emission*.

Figures

Figure S1. (A) Location of study areas for horizontal sediment flux measurements in relation to the phytoremediation field trial. Blue squares indicate the study area plots (9.6 m x 15 m per plot) selected as areas of study. Square (1) is 16% canopy cover study area, square (2) is the 32% canopy cover study area, square (3) is the irrigated control study area, and square (4) is the unirrigated control study area. (B) The rectangle in the upper left corner is a diagram of a study area plot to show the placement of samplers used in this study. The passive samplers are shown at the top left and bottom right of the plot with blue indicating the flux in and red indicating the flux out. The locations of the DustTrak[™] samplers are shown as rectangles above and below the plot. At the bottom is a windrose showing the predominant wind direction (wind rose) at the site.

Figure S2. Wind speed and wind direction at IKMHSS field site for each of the three sampling periods using Modified Wilson & Cooke (MWAC) samplers.

Figure S3. Diagram of the Modified Wilson & Cooke (MWAC) passive samplers. (**A**) Detail showing the high-density polyethylene (HDPE) samplers at 0.06, 0.18, 0.25, 0.5, and 1.0 m on the PVC mast. (**B**) Detail showing the design of the sampling bottle (Goossens et al., 2000). (**C**) Detail of the sampler showing the orientation of inlet and outlet tubes with an inside diameter of 7.5 mm and an outer diameter of 10 mm secured to each sampling bottle lid. The inlet tube is oriented to the predominant wind direction and outlet tube is oriented downwards to the soil surface.

Figure S4 Exponential decay functions used to calculate average total horizontal dust flux at the IKMHSS field site (May 2011 to May 2012).

Figure S5 Meteorological data from weather station during the DustTrakTM measurement events. Red square highlights the time frame at which sampling was conducted. (A) Percent relative humidity, (B) Wind speed (m s⁻¹).

