1	Supporting Information
2 3	Moving beyond the van Krevelen diagram: A new stoichiometric approach for compound classification in organisms.
4	
5	Albert Rivas-Ubach ^{1+*} , Yina Liu ^{1,2†} , Thomas S. Bianchi ³ , Nikola Tolic ¹ , Christer Jansson ¹ , Ljiljana Paša-Tolić ¹
6	1. Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, 99354, WA, USA.
7	2. Geochemical and Environmental Research Group, Texas A&M University, College Station, 77845, TX, USA.
8	3. Department of Geological Sciences, University of Florida, Gainesville, 32611-2120, FL, USA.
9	
10	[†] Authors contributed equally to this manuscript.
11	
12	* Author of correspondence:
13	Albert Rivas-Ubach
14	Environmental Molecular Sciences Division,
15	Pacific Northwest National Laboratory,
16	Richland, WA, USA, 99354
17	Tel: 971 319 5962
18	e-mail: <u>albert.rivas.ubach@gmail.com</u>
19	
20	Table of Contents
21	Supplementary text S2
าา	Considerations of the compound databases and for the datamainsticn of the NICCC C2

21	Supplementary text	
22	Considerations of the compound databases and for the determination of the MSCC	
23	Validation of MSCC threshold computation	S4
24	Additional validation of the MSCC performance	S5
25	Formula assignment error determination of Compound Identification Algorithm (CIA)	S6
26	R script for compound classification	S7
27	Supplementary Tables	S12
28	Table S-1	S12
29	Table S-2	S15
30	Table S-3	S18
31	Supplementary Figures	S19
32	Figure S-1	S19
33	Figure S-2	
34	Figure S-3	S21
35	Figure S-4	
36	Figure S-5	S23
37	Figure S-6	
38	Figure S-7	
39	Figure S-8	S26
40	Figure S-9	S27
41	Figure S-10	S28
42	References Supporting Information	S29

43 Supplementary text

44 Considerations of the compound databases and for the determination of the MSCC.

The stoichiometry and elements for different compound categories were examined to establish the MSCC thresholds with a minimum overlap between compound categories (Figure S-2). Below we describe some aspects of the databases that had to be considered before determining the MSCC thresholds.

49 Carbohydrates (amino sugars excluded) is a group of compounds containing only C, O and H.
50 Therefore, it was classified solely based on their H:C and O:C ratios, resembling the classic compound
51 classification by vK diagram. Phosphorylated sugars, with higher O:C ratios, and polysaccharides also
52 match the proposed MSCC defining Carbohydrates_c. Most polysaccharides (glycogen, cellulose, starch)
53 are composed of 6-carbon monosaccharides with a molecular formula of (C₆H₁₀O₅)_n and O:C and H:C
54 ratios of 0.83 and 1.66, respectively.

55 According to the classic definition, amino-sugars are monosaccharides with one hydroxyl group 56 (-OH) replaced by an amine group (-NH₂); however, a large variety of amino-sugar derivatives are still 57 commonly considered amino-sugars. The complexity and diversity of amino-sugar biochemistry makes it 58 challenging to accurately define amino-sugars' characteristics based on databases. The replacement of a 59 hydroxyl group by an amine shifts the O:C ratios to lower values, and thus some amino sugars could be 60 wrongly assigned as peptides or amino-lipids, when considering exclusively their O:C and H:C ratios. 61 Hence, the inclusion of the N:C ratio is necessary to separate amino-sugars from peptides and high O:C 62 amino-lipids. Furthermore, some amino-sugars can undergo multiple reactions to yield structural 63 derivatives that are substantially different from their original parent sugar, and this can largely shift their 64 original O:C, H:C and N:C molecular ratios. It is important to consider that some of these substantial 65 modifications can thus result in molecules that no longer resemble a "typical" sugar found in organisms. 66 For this reason, we excluded the amino-acid derivatives with O:C < 0.6 (typically highly dehydroxylated), 67 N:C > 0.2 (e.g. high degree of replacement of hydroxyl group by amino group for relatively small 68 molecules) and/or amino-acid derivatives containing long-carbon side chains. These excluded 69 compounds represented 14.3% of the molecules considered amino-sugars in databases and mainly 70 represent metabolites with antibiotic properties, specifically istamycins, fortimicins, and sannamycins. 71 The MSCC for A-Sugars_c is also suitable to properly classified poly-amino-sugars such as chitin and 72 amino-sugar-phosphates.

Nucleotide O:C and H:C ratios showed considerable overlap with other compound categories
(Figure 1 main text). However, nucleotides can be segregated from the other compound categories if

S2

N:C, C:P, N:P, N, P and S, and the mass range are considered. Yet, we found some nucleotides that,
within the classified Nucleotides_c, also fitted within the stoichiometric constraints of Protein_c and ASugars_c (Table 2 main text). Contrary, we did not find any peptide from the 93,245 or any amino-sugars
from the 142 included in the databases matching the proposed constraints of the Nucleotide_c indicating
that the probability of including a no-nucleotide compound as nucleotide is practically zero. For this
reason, any double match found in Nucleotide_c should be considered exclusively as a nucleotide.

81 Lipids, peptides, and phytochemical compounds showed a large overlap in O:C and H:C ratios 82 (Figure 1 main text). All peptides contain N, but most phytochemical compounds or lipids do not; 83 therefore the N:C ratio is a crucial discriminant variable between Peptides_c and Lipids_c and 84 Phytochemical_c (Figure S-9). On the other hand, H:C ratio is the stoichiometric ratio used to discriminate 85 between Lipids_c and Phytochemical_c (Figures S-1, S-2 and S-9). The overlap of O:C and H:C ratios 86 between lipids and phytochemical compounds is largely due to the fact that several secondary 87 metabolites, such as polyketides or prenol lipids, are lipid-related.¹ We also found that all glucosinolates 88 (phytochemical compounds), except those derived from phenylalanine, tyrosine and tryptophan, 89 matched in the A-Sugars_c (Table 2 main text). Glucosinolates are N and S containing compounds derived 90 from amino acids that cannot be differentiated from amino-sugars.

Alkaloids, found in plants but also isolated from animals, insect, microorganisms, and
invertebrates, are a very diverse group of secondary metabolites with large C:H:O:N variability.²
Contrary to flavonoids, most alkaloids are commonly species-specific,² with only a limited number of
those compounds present in a single organism.³ The presence of alkaloids in samples represents thus an
insignificant fraction of the total detected compounds; hence, alkaloids were not considered for the
determination of MSCC for the Phytochemical_c.

Isoprenoids (prenol lipids), also known as terpenoids or terpenes, belong to both lipids and
phytochemical compound categories,¹ and showed large overlap with Lipids_c and Phytochemical_c in vK
diagrams (Figure S-10). We found no stoichiometric variable that could efficiently discriminate
isoprenoids from lipids and phytochemical compounds. Although most isoprenoids would match into
the current vK stoichiometric constraints of Lipids_c (~80%), we decided to exclude them for the
determination of the MSCC for Lipids_c and Phytochemical_c. Thus, any isoprenoid compound present in
the analyzed samples would be ultimately "correctly" matched into Lipids_c or Phytochemical_c.

105

S3

106 Validation of MSCC threshold computation for Lipids_c, Phytochemical_c and Protein_c - the categories

107 showing the largest overlapping across their O:H:C:N:P stoichiometry.

108 To validate the robustness of the MSCC threshold, the most determinant stoichiometric thresholds 109 for Lipids_c, Phytochemical_c and Protein_c were determined with 50% of the data from the lipids, 110 phytochemical compounds and peptide databases, respectively. The 50% of compound from each 111 database were randomly selected. Due to the low number of carbohydrates (82), amino-sugars (142), 112 and nucleotides (37) included in the databases for MSCC determination, the validation of the 113 stoichiometric thresholds for those groups using only 50% of the data was not considered; because the 114 compound diversity on those categories (carbohydrates, amino-sugars, nucleotides) is relatively low in 115 databases and thus will not be able to generate robust test results. It should be noted, however, the 116 determination of stoichiometric thresholds for compound classification will be more accurate with more 117 compounds included considered to calculate it. 118 H:C ratio is the most determinant stoichiometric ratio to separate Lipids from phytochemical 119 compounds with minimum overlapping (Figs. S-2, S-10). We found that, using the 50% of compounds, 120 the H:C boundary with the minimum proportion of compounds from both databases (minimal relative

121 overlapping) was 1.32 (see file S-1). Therefore, the lowest H:C boundary for Lipids_c would be 1.32,

122 coinciding with the largest H:C boundary for Phytochemical.

N:C ratio is the most determinant stoichiometric ratio for discriminating peptides from lipids, and
peptides from phytochemical compounds. The N:C thresholds with the minimal relative overlapping
using the 50% of compounds for each group, were 0.126 for Protein_c vs. Lipids_c, and for Protein_c vs.
Phytochemical_c (see file S-1). Tehrefore, 0.126 was the minimum value for N:C for Protein_c, and the
maximum value for Lipids_c and Phytochemical_c.

128 Those results prove that H:C and N:C ratios, the most determinant stoichiometry to discriminate 129 Lipids_c, Phytochemical_c and Protein_c remained identical if using 50% or 100% of compounds from the 130 databases (see Table 1 of the main manuscript).

- 131
- 132
- 133
- 134
- 135
- 136
- 137

138 Additional validation of the MSCC performance for Lipids, Phytochemical, and Protein, - the

139 *categories showing the largest overlapping across their O:H:C:N:P stoichiometry.*

140 The performance of the established thresholds (Table 1 of the main manuscript) of Lipids_c, 141 Phytochemical_c and Protein_c, the compound categories with the largest number of compounds and the 142 largest overlapping across their elemental stoichiometry, were additionally tested by using the 143 elemental stoichiometry of compounds that were not included in the databases utilized for MSCC 144 determination. The performance for the stoichiometric thresholds for Lipids_c and Phytochemical_c (oxy-145 aromatic compounds) were tested by matching 764 and 330 compounds, respectively, from the HMDB 146 database (http://www.hmdb.ca/) that were not found in the databases used to determine the MSCC 147 (see Table S-1). The performance for Protein_c stoichiometric thresholds was tested by using 1,200 148 random peptides from Swiss-Prot database (http://www.uniprot.org/) that were not previously utilized 149 for MSCC determination. 150 We found that 96.99% of the lipids from HMDB database matched within the stoichiometric 151 constraints of Lipids_c (Table 1 main text) (0.26% matched into A-Sugar_c, 0.13% matched into 152 Carbohydrates_c, 0.79% matched into Phytochemical_c, 0.92% matched into Protein_c, and 0.92% did not 153 match any category) (see file S-2). For oxy-aromatic compounds (Phytochemical compounds), 97.27% of 154 the compounds from the HMDB database matched into the stoichiometric constraints of Phytochemical_c 155 of the MSCC (Table 1 main text) (1.8% matched into Lipids_c, 0.6% matched into Protein_c and 0.3% did not

156 match any category) (see file S-2). From the 1,200 random peptides *from Swiss-Prot* database that were 157 not utilized for the determination of the MSCC, we found that only 1 peptide did not match to any of the

compound categories making thus the 99.92% of peptides matching properly into the Protein_c of the

159 proposed MSCC (Table 1 main text) (see database S-2).

160 The performance of the Lipids_c, Phytochemical_c and Protein_c tested with the databases used for their

161 MSCC calculation (Table 2 main manuscript) was, therefore, very similar when using compounds not

162 included in the databases for MSCC determination (see file S-2):

163 · Lipids_c: **97.1%** (Table 2 main manuscript; 30,729 total compounds) vs. **96.99%** (with only

164 compounds not included for MSCC determination; 764 total compounds).

Phytochemical_c: 96.5% (Table 2 main manuscript; 7,774 total compounds) vs. 97.27% (with only
 compounds not included for MSCC determination; 330 total compounds).

167 • Protein_c: **99.9%** (Table 2 main manuscript; 93,245 total compounds) vs. **99.92%** (with only

168 compounds not included for MSCC determination; 1,200 total compounds).

169 Formula assignment error determination of Compound Identification Algorithm (CIA).

The MSCC applies to elemental formulas which are commonly assigned to metabolic features acquired from the samples. Correct elemental formula assignment to metabolic features is thus a critical prerequisite for accurate compound classification and subsequent data interpretation. To assess the final error of MSCC, we used the metabolite database described above to examine the performance of the automated CIA⁴ for assigning elemental formulas. All formulas from the database were converted into exact masses before applying the CIA for elemental formula assignment. The CIA results were then compared to the known formulas from the database to determine correct assignment.

Applying the automated compound assignment algorithm⁴ to all exact masses of compounds from the databases we found that 96.94% of the masses were correctly assigned, with only 0.21% of compounds not assigned and 2.84% incorrectly assigned. All carbohydrate formulas were correctly assigned, followed by lipids (98.08%), peptides (96.6%; including phosphorylated peptides), and phytochemical compounds (93.67%). An estimated 70.27% and 57.25% of nucleotides and amino sugars were correctly assigned to molecular formulas, respectively, while 21.62% and 34.78% were incorrectly assigned, and 8.11% and 7.97% not assigned (Table S3).

S6

199	R script for compound classification of stoichiometric ratios.
200	
201	Copy and paste the script below to "R-Studio", "Tinn-R", "RKward" or your favourite R
202	editor/interface:
203	
203	
204	############
205	### MSCC ###
200	
208	
209	# VARIABLES REQUIRED IN THE DATASET (make sure your dataset includes the following variables with the
210	names as described below; variables need to be in columns and the detected features need to be in rows):
211	# O.C <- O:C ratio column
212	# H.C <- H:C ratio column
213	# N.C <- N:C ratio column
214	# P.C <- P:C ratio column
215	# N.P <- N:P ratio column
216	# O <- O column
217	# N <- N column
218	# P <- P column
219	# S <- S column
220	# Mass <- exact mass column
221	
222	
223	
224	## THE FOLLOWING 3 SECTIONS HAVE TO BE USED BY THE USER ##
225	# In "R", directories Paths are written with two backslashes "\\".
226	# Example: C:\\DATA\\MSCC\\R\\MSCC_Test.csv
227	
228	# Read the DATASET in CSV format containing all the required variables.
229	# Example: C:\\DATA\\MSCC\\R\\MSCC_Test.csv
230	DATASET <- read.csv("Directory_of_the_dataset_in CSV_File", sep=",", header=T)
231 232	# Capaify the divertery of the vessiting metchin yesults summary
232	# Specify the directory of the resulting matchin results summary # Example: C:\\DATA\\MSCC\\R\\MSCC_Test_Summary_Table.csv
235 234	Destination.File.Dataset <- "Directory_of_the_generated_matching_results_in_CSV_Format"
234	Destination.rile.Dataset <- Directory_or_the_generated_matching_results_in_CSV_Pormat
236	# Specify the directory for generating a summary of the reults in proportions
237	# Example: C:\\DATA\\MSCC\\R\\MSCC_Test_Summary_Proportions_Table.csv
238	Destination.File.Proportions <- "Directory_of_the_summary_proportion_results_in_CSV_Format"
239	
240	
241	
242	## RUN THE FULL CODE BELOW ##
243	
244	## 1st. STEP – ASSIGNATION OF COMPOUNDS ##
245	# Create a list for each compound category to keep the compound matches
246	list() -> Matching.Lipids
247	list() -> Matching.Carbohydrates
248	list() -> Matching.AminoSugars
249	list() -> Matching.Phytochemical
250	list() -> Matching.Protein.1

```
251
       list() -> Matching.Protein.2
252
       list() -> Matching.Nucleotides
253
254
255
       # Loops for each compound category (we perform a single loop for each category to facilitate double matching
256
       detection)
257
       # LIPID CONSTRAINTS
258
       for (i in 1:nrow(DATASET)){
259
        if((DATASET[i,]$O.C <= 0.6) &&
260
          (DATASET[i,]$H.C >= 1.32) &&
261
          (DATASET[i,]$N.C <= 0.126) &&
262
          (DATASET[i,]$P.C < 0.35) &&
263
          (DATASET[i,]$N.P <= 5)){
264
         paste0("Lipid") -> Matching.Lipids[i]
265
        } else {
266
         paste0("") -> Matching.Lipids[i]
267
        }
268
       }
269
270
       # CARBOHYDRATE CONSTRAINTS
271
       for (i in 1:nrow(DATASET)){
272
        if((DATASET[i,]$O.C >= 0.8) &&
273
          (DATASET[i,]$H.C >= 1.65) &&
274
          (DATASET[i,]$H.C < 2.7) &&
275
          (DATASET[i,]$N == 0)){
276
         paste0("Carbohydrate") -> Matching.Carbohydrates[i]
277
        } else {
278
         paste0("") -> Matching.Carbohydrates[i]
279
        }
280
        }
281
282
       # AMINO-SUGAR CONSTRAINTS
283
       for (i in 1:nrow(DATASET)){
284
        if((DATASET[i,]$O.C >= 0.61) &&
285
          (DATASET[i,]$H.C >= 1.45) &&
286
          (DATASET[i,]$N.C <= 0.2) &&
287
          (DATASET[i,]$N.C > 0.07) &&
288
          (DATASET[i,]$P.C < 0.3) &&
289
          (DATASET[i,]$N.P <= 2) &&
290
          (DATASET[i,]$O >= 3) &&
291
          (DATASET[i,]$N >= 1)){
292
         paste0("Amino.Sugar") -> Matching.AminoSugars[i]
293
        } else {
294
         paste0("") -> Matching.AminoSugars[i]
295
        }
296
       }
297
298
       # PHYTOCHEMICAL/OXYAROMATIC COMPOUND CONSTRAINTS
299
       for (i in 1:nrow(DATASET)){
300
        if((DATASET[i,]$O.C <=1.15) &&
301
          (DATASET[i,]$H.C < 1.32) &&
302
          (DATASET[i,]$N.C < 0.126) &&
303
          (DATASET[i,]$P.C <= 0.2) &&
```

```
304
          (DATASET[i,]$N.P <= 3)){
305
         paste0("Phytochemical.Oxyaromatic.Compound") -> Matching.Phytochemical[i]
306
        } else {
307
         paste0("") -> Matching.Phytochemical[i]
308
        }
309
       }
310
311
       # PROTEIN (1) CONSTRAINTS
312
       for (i in 1:nrow(DATASET)){
313
        if((DATASET[i,]$O.C > 0.12) &&
314
          (DATASET[i,]$O.C <= 0.6) &&
315
          (DATASET[i,]$H.C > 0.9) &&
316
          (DATASET[i,]$H.C < 2.5) &&
317
          (DATASET[i,]$N.C >= 0.126) &&
318
          (DATASET[i,]$N.C <= 0.7) &&
319
          (DATASET[i,]$P.C < 0.17) &&
320
          (DATASET[i,]$N >= 1)){
321
         paste0("Protein") -> Matching.Protein.1[i]
322
        } else {
323
         paste0("") -> Matching.Protein.1[i]
324
        }
325
       }
326
327
       # PROTEIN (2) CONSTRAINTS
328
       for (i in 1:nrow(DATASET)){
329
        if((DATASET[i,]$O.C > 0.6) &&
330
          (DATASET[i,]$O.C <= 1) &&
331
          (DATASET[i,]$H.C > 1.2) &&
332
          (DATASET[i,]$H.C < 2.5) &&
333
          (DATASET[i,]$N.C > 0.2) &&
334
          (DATASET[i,]$N.C <= 0.7) &&
335
          (DATASET[i,]$P.C < 0.17) &&
336
          (DATASET[i,]$N >= 1)){
337
         paste0("Protein") -> Matching.Protein.2[i]
338
        } else {
339
         paste0("") -> Matching.Protein.2[i]
340
        }
341
       }
342
343
       # NUCLEOTIDE CONSTRAINTS
344
       for (i in 1:nrow(DATASET)){
345
        if((DATASET[i,]$O.C >= 0.5) &&
346
          (DATASET[i,]$O.C < 1.7) &&
347
          (DATASET[i,]$H.C > 1) &&
348
          (DATASET[i,]$H.C < 1.8) &&
349
          (DATASET[i,]$N.C >= 0.2) &&
350
          (DATASET[i,]$N.C <= 0.5) &&
351
          (DATASET[i,]$P.C >= 0.1) &&
352
          (DATASET[i,]$P.C <= 0.35) &&
353
          (DATASET[i,]$N.P > 0.6) &&
354
          (DATASET[i,]$N.P <= 5) &&
355
          (DATASET[i,]$N >= 2) &&
356
          (DATASET[i,]$P >= 1) &&
```

```
357
          (DATASET[i,]$S == 0) &&
358
          (DATASET[i,]$Mass > 305) &&
359
          (DATASET[i,]$Mass < 523)){
360
          paste0("Nucleotide") -> Matching.Nucleotides[i]
361
        } else {
362
          paste0("") -> Matching.Nucleotides[i]
363
        }
364
       }
365
366
       # Concatenate all lists into a single one
367
       Matchings.pasted.01 <- as.list(paste(Matching.Nucleotides, Matching.Carbohydrates, Matching.Lipids,
368
       Matching.AminoSugars, Matching.Phytochemical, Matching.Protein.1, Matching.Protein.2))
369
370
       # Trim each row of the list (delete "spaces")
       Matchings.pasted.02 <- as.list(gsub(" ", "", Matchings.pasted.01, fixed =TRUE))
371
372
373
       # Add "Not.Matched" to those cells that were not matched to any compound category
374
       Matchings.pasted.02[Matchings.pasted.02==""] <- "Not.Matched"
375
376
       # Mark the potential Double Matches
377
       # Create a new List
378
       Matchings.list <- list()
379
380
       # Loop on the generated list (double matchings will be marked by "Double.Matched")
381
       for (i in 1:length(Matchings.pasted.02)){
        if (Matchings.pasted.02[i] == "Lipid"){
382
383
          paste0("Lipid") -> Matchings.list[i]
384
        } else if (Matchings.pasted.02[i] == "Carbohydrate"){
385
          paste0("Carbohydrate") -> Matchings.list[i]
386
        } else if (Matchings.pasted.02[i] == "Amino.Sugar"){
387
          paste0("Amino.Sugar") -> Matchings.list[i]
388
        } else if (Matchings.pasted.02[i] == "Phytochemical.Oxyaromatic.Compound"){
389
          paste0("Phytochemical.Oxyaromatic.Compound") -> Matchings.list[i]
390
        } else if (Matchings.pasted.02[i] == "Protein"){
391
          paste0("Protein") -> Matchings.list[i]
392
        } else if (Matchings.pasted.02[i] == "Nucleotide"){
393
          paste0("Nucleotide") -> Matchings.list[i]
394
        } else if (Matchings.pasted.02[i] == "Not.Matched"){
395
          paste0("Not.Matched") -> Matchings.list[i]
396
        } else {
397
         paste0(paste("Double.Match_",Matchings.pasted.02[i])) -> Matchings.list[i]
398
        }
399
       }
400
401
       Matchings <- as.data.frame(do.call(rbind, Matchings.list))
402
403
       Matchings[Matchings == "Double.Match_NucleotideProtein"] <- "Nucleotide" # Double matches with
404
       nucleotides will be Nucleotides
405
       Matchings[Matchings == "Double.Match_NucleotideAmino.Sugar"] <- "Nucleotide" # Double matches with
406
       nucleotdies will be Nucleotides
407
       DATASET.MATCHED <- DATASET
408
       DATASET.MATCHED["Compound.Match"] <- Matchings # Add a new column called "Compound.Match" into the
409
       DATASET.
```

410 411 **# SAVE DATASET INTO A CSV FILE** 412 write.table(data.frame(DATASET.MATCHED), file= Destination.File.Dataset) 413 414 415 416 ## 2nd STEP - CALCULATE THE PROPORTIONS OF EACH COMPOUND CATEGORY ## 417 Protein.Proportion <- length(which(Matchings == "Protein"))/nrow(Matchings)*100 418 Phytochemical.Oxyaromatic.Compound.Proportion <- length(which(Matchings == 419 "Phytochemical.Oxyaromatic.Compound"))/nrow(Matchings)*100 420 Lipid.Proportion <- length(which(Matchings == "Lipid"))/nrow(Matchings)*100 421 Carbohydrate.Proportion <- length(which(Matchings == "Carbohydrate"))/nrow(Matchings)*100 422 Amino.Sugar.Proportion <- length(which(Matchings == "Amino.Sugar"))/nrow(Matchings)*100 423 Nucleotide.Proportion <- length(which(Matchings == "Nucleotide"))/nrow(Matchings)*100 424 Not.Matched.Proportion <- length(which(Matchings == "Not.Matched"))/nrow(Matchings)*100 425 Double.Matched.Proportion <- length(which(Matchings != "Protein" & Matchings != 426 "Phytochemical.Oxyaromatic.Compound" & Matchings != "Lipid" & Matchings != "Carbohydrate" & Matchings 427 != "Amino.Sugar" & Matchings != "Nucleotide" & Matchings != "Not.Matched"))/nrow(Matchings)*100 # 428 **Including double matches** 429 430 # Integrate all the proportions together into a single categorical vector 431 Compound.Proportions <- c(Carbohydrate.Proportion, Amino.Sugar.Proportion, Nucleotide.Proportion, 432 Lipid.Proportion, Protein.Proportion, Phytochemical.Oxyaromatic.Compound.Proportion, 433 Not.Matched.Proportion, Double.Matched.Proportion) 434 # Create a Data Frame with the proportions 435 436 Compound.Proportions.DF <- as.data.frame(Compound.Proportions) 437 438 # Create the Labels for each proportion (has to follow the same order as the integration of the proportions) Labels <- c("Carbohydrates", "Amino.Sugars", "Nucleotides", "Lipids", "Proteins", 439 440 "Phytochemical.Oxyaromatic.Compounds", "Not.Matched", "Double.Matched") 441 442 # Add a new column into the Data Frame with the name of the compounds 443 Compound.Proportions.DF["Compound"] <- Labels 444 445 **# SAVE DATASET INTO A CSV FILE** 446 write.table(data.frame(Compound.Proportions.DF), file= Destination.File.Proportions) 447 448 449 450 ## 3rd STEP - PIE CHART OF THE COMPOUND PROPORTIONS ## 451 # Constrain the number of decimals to 2 452 Pie.Proportions <- list() 453 for (i in 1:length(Compound.Proportions.DF\$Compound.Proportions)){ 454 format(round(Compound.Proportions.DF\$Compound.Proportions[i], 2), nsmall=2) -> Pie.Proportions[i] 455 } 456 457 **#** Create the labels for the Pie Chart 458 Labels.Plot <- paste (Labels, Pie.Proportions) # Add The percentage value to each label. 459 Labels.Plot.2 <- paste(Labels.Plot,"%", sep="") # Add "%" to each label. 460 461 **# Plot the Pie Chart** 462 pie(Compound.Proportions, labels = Labels.Plot.2, col= rainbow(length(Labels.Plot.2)))

463 Supplementary Tables

464 **Table S-1.** Compounds included in each of the online examined databases (lipids, amino sugars,

465 phytochemical compounds, carbohydratres and nucleotides) and the corresponding source.

Lipids (Source: LipidMA	2)
	Docosanoids [FA04]
	Eicosanoids [FA03]
	Acyltrehaloses [SL03]
	Fatty Acids and Conjugates [FA01]
	Fatty acyl glycosides [FA13]
	Fatty alcohols [FA05]
Fatty Acyls [FA]	Fatty aldehydes [FA06]
	Fatty amides [FA08]
	Fatty esters [FA07]
	Hydrocarbons [FA11]
	Octadecanoids [FA02]
	Oxygenated hydrocarbons [FA12]
	Diradylglycerols [GL02]
	Glycosyldiradylglycerols [GL05]
Glycerolipids [GL]	Glycosylmonoradylglycerols [GL04]
	Monoradylglycerols [GL01]
	Triradylglycerols [GL03]
	CDP-Glycerols [GP13]
	Glycerophosphates [GP10]
	Glycerophosphocholines [GP01]
	Glycerophosphoethanolamines [GP02]
	Glycerophosphoinositols [GP06]
	Glycerophosphoglycerols [GP04]
	Glycerophosphoglycerophosphoglycerols [GP12]
Glycerophospholipids [GP]	Glycerophosphoinositol bisphosphates [GP08]
	Glycerophosphoinositol monophosphates [GP07]
	Glycerophosphoinositol trisphosphates [GP09]
	Glycerophosphoinositolglycans [GP15]
	Glycosylglycerophospholipids [GP14]
	Glycerophosphosphospices [GP03]
	Glyceropyrophosphates [GP11]
	Oxidized glycerophospholipids [GP20]
	Quinones and hydroquinones [PR02]
Prenol Lipids [PR]	Polyprenols [PR03]
	Acylaminosugar glycans [SL02]
	Acylaminosugars [SL01]
Saccharolipids [SL]	Acyltrehaloses [SL03]
	Other acyl sugars [SL05]
	Ceramides [SP02]
	Neutral glycosphingolipids [SP05]
Sphingolipids [SP]	Phosphonosphingolipids [SP04]
Shungoubias [2]]	Phosphosphingolipids [SP03]
	Sphingoid bases [SP01]
Sterol Lipids [ST]	Bile acids and derivatives [ST04]
	שור מכועג מווע עבווימנויבג נגועאן

	Secosteroids [ST03]
	Steroid conjugates [ST05]
	Steroids [ST02]
	Sterols [ST01]
Phytochemical Compound	ds (Sources: LipidMAP and KEGG)
From LipidMAP	
	Linear polyketides [PK01]
	Halogenated acetogenins [PK02]
	Annonaceae acetogenins [PK03]
	Macrolides and lactone polyketides [PK04]
	Ansamycins and related polyketides [PK05]
Dabdatidas [DK]	Polyenes [PK06]
Polyketides [PK]	Linear tetracyclines [PK07]
	Polyether antibiotics [PK09]
	Aflatoxins and related substances [PK10]
	Cytochalasins [PK11]
	Flavonoids [PK12]
	Aromatic polyketides [PK13]
Prenol Lipids [PR]	Hopanoids [PR04]
From KEGG	
	Flavonoids
	Isoflavonoids
Flavonoids	Complex flavonoids
	Monolignols
	Lignans
	Coumarins
Skimate / acetate	malonate pathway derived compounds
	Anthraquinones
Polyketides	Pyrones
	Others
Fatty acids related compounds	Fatty acids
	Betalains
Amino acid related compounds	Cyanogenic glucosides
, anno acia relatea compounds	Glucosinolates
	Others
Others	Naphthoquinones
Others	Tannins and galloyl derivatives
	ן ימוווווא מווע במווטאו עבוואמנואבא
Amino-Sugars (Sources: K	
From KEGG	Amino sugars
	15993, 16062, 16173, 16702, 17122, 17274, 17316, 17411,
	17446, 17911, 18207, 18232, 21615, 21977, 24108, 25505,
	27438, 27459, 27465, 27503, 27625, 28000, 28132, 28207,
From ChEBI	28255, 28401, 28761, 28879, 28944, 28945, 28999, 29006, 29025, 29711, 31747, 31748, 32570, 32571, 32572, 35418,
	39610, 44230, 46991, 47966, 47968, 47987, 52079, 52426,
	57832, 59239, 59277, 59732, 59986, 61033, 61437, 62169,
	62325, 63120, 63153, 63287, 64888, 68682, 7125, 7203, 72626,
	,,,,,

	72725, 73783, 79970, 79971, 81450, 83930, 84560, 84569, 84941, 85106, 87176, 87177, 87178, 87179, 87180, 87313, 88130, 95151
Carbohydrates (Source: K	EGG)
	Aldoses
	Ketoses
Monosaccharides	Deoxy sugars
	Sugar acids
	Sugar alcohols
Oligosaccharides	Disaccharides
Chigosaccharacs	Tetrasaccharides
lucleotides (Source: KEG	
	Ribonucleotides
Nucleotides	Deoxyribonucleotides
	Cyclic nucleotides

480 **Table S-2.** Proportions of compounds from databases that correctly matched (CM), not matched (NM), incorrectly matched (IM), and double

481 matched (DM) with lipids, protein, amino sugar and carbohydrate categories delimited by our constraints (Table 1 of main text) or the O:C and

482 H:C constraints proposed for other 21 studies. Each of the 21 bibliographical studies is referenced with a different number and the citations are

483 placed as a footnote. The proportions of IM considering DM as incorrect match (IM_{+DM}), the CM without consider the NM and DM (CM_{-(NM+DM}))

484 and the CM/IM_{+DM} and CM/(IM_{+DM} + NM) ratios are also shown. The total proportions and ratios considering all categories together are shown

485 and are based on the absolute number of compounds in databases and on the relative number of compounds.

									Study n	umber (referen	ces as fo	otnote)									
	Present study	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	15.	16.	17.	18.	19.	20.	21.
Lipids																						
CM (%)	97.05	17.45	53.10	26.35	9.13	58.92	77.98	34.51	33.36	75.00	62.35	25.29	49.21	72.92	24.77	29.26	27.73	66.18	36.98	25.81	23.93	58.30
IM (%)	1.67	1.81	4.95	30.44	39.03	34.58	12.09	25.58	12.10	18.35	17.63	1.23	11.05	3.87	6.44	39.19	16.11	11.74	25.59	8.29	35.52	23.97
NM (%)	1.28	80.74	41.94	34.25	51.83	3.60	9.59	38.21	54.54	6.33	20.02	73.48	39.74	23.21	3.19	31.54	56.16	22.07	37.43	65.90	28.05	17.71
DM (%)	0.00	0.00	0.00	8.96	0.01	2.90	0.34	1.70	0.00	0.33	0.00	0.00	0.00	0.00	65.60	0.00	0.00	0.00	0.00	0.00	12.50	0.01
IM _{+DM} (%)	1.67	1.81	4.95	39.40	39.04	37.48	12.43	27.28	12.10	18.67	17.63	1.23	11.05	3.87	72.04	39.19	16.11	11.74	25.59	8.29	48.02	23.99
CM-(NM +DM) (%)	98.31	90.59	91.47	46.40	18.96	63.02	86.58	57.43	73.38	80.35	77.96	95.35	81.67	94.96	79.36	42.75	63.26	84.93	59.10	75.68	40.25	70.86
CM/IM _{+DM}	58.13	9.63	10.72	0.67	0.23	1.57	6.27	1.27	2.76	4.02	3.54	20.50	4.45	18.85	0.34	0.75	1.72	5.64	1.45	3.11	0.50	2.43
CM/(IM _{+DM} + NM)	32.92	0.21	1.13	0.36	0.10	1.43	3.54	0.53	0.50	3.00	1.66	0.34	0.97	2.69	0.33	0.41	0.38	1.96	0.59	0.35	0.31	1.40
																						I
Peptides																						ſ
CM (%)	99.89	13.74	17.90	72.44	68.03	65.25	37.53	56.00	43.59	55.69	45.50	17.29	24.70	14.21	32.02	31.39	16.76	19.34	61.13	15.70	66.11	64.49
IM (%)	0.01	0.29	7.24	3.30	2.55	7.14	26.19	2.95	0.82	22.36	10.26	5.36	1.49	30.79	0.97	10.45	1.44	10.71	2.40	4.24	0.63	6.59
NM (%)	0.10	85.98	74.86	23.00	29.34	26.80	35.58	40.57	55.59	20.94	44.24	77.36	73.81	55.00	0.02	58.15	81.79	69.95	36.47	80.06	32.99	28.81
DM (%)	0.00	0.00	0.00	1.25	0.08	0.82	0.70	0.49	0.00	1.01	0.00	0.00	0.00	0.00	66.99	0.00	0.00	0.00	0.00	0.00	0.27	0.11
IM _{+DM} (%)	0.01	0.29	7.24	4.55	2.63	7.95	26.89	3.43	0.82	23.37	10.26	5.36	1.49	30.79	67.96	10.45	1.44	10.71	2.40	4.24	0.90	6.70
CM-(NM +DM) (%)	99.99	97.94	71.20	95.64	96.39	90.14	58.90	95.00	98.16	71.35	81.61	76.35	94.32	31.58	97.05	75.02	92.07	64.37	96.22	78.74	99.05	90.73
CM/IM _{+DM}	7761.83	47.61	2.47	15.91	25.89	8.20	1.40	16.31	53.20	2.38	4.44	3.23	16.62	0.46	0.47	3.00	11.61	1.81	25.42	3.70	73.21	9.62
$CM/(IM_{+DM} + NM)$	904.29	0.16	0.22	2.63	2.13	1.88	0.60	1.27	0.77	1.26	0.83	0.21	0.33	0.17	0.47	0.46	0.20	0.24	1.57	0.19	1.95	1.82
Amino Sugars																						
CM (%)	98.59			9.15	6.34	11.97	4.93	6.34		22.54	4.93							16.20	6.34			4.93
IM (%)	0.00			35.21	42.25	50.00	55.63	0.00		0.00	46.48							13.38	38.73			0.00

	1													1				1				
NM (%)	1.41			48.59	51.41	38.03	39.44	93.66		77.46	48.59							70.42	54.93		<u> </u>	95.07
DM (%)	0.00			7.04	0.00	0.00	0.00	0.00		0.00	0.00							0.00	0.00			0.00
IM _{+DM} (%)	0.00			42.25	42.25	50.00	55.63	0.00		0.00	46.48							13.38	38.73			0.00
CM-(NM +DM) (%)	100.00			20.63	13.04	19.32	8.14	100.00		100.00	9.59							54.76	14.06			100.00
CM/IM _{+DM}	∞			0.22	0.15	0.24	0.09	8		8	0.11							1.21	0.16			∞
CM/(IM _{+DM} + NM)	70.00			0.10	0.07	0.14	0.05	0.07		0.29	0.05							0.19	0.07			0.05
Carbohydrates																						
CM (%)	98.78	6.10	6.10	82.93	82.93	86.59	93.90		4.88		82.93	28.05	39.02	4.88	97.56	1.22	35.37	34.15	82.93	39.02	37.80	
IM (%)	0.00	0.00	0.00	0.00	1.22	1.22	0.00		0.00		0.00	0.00	0.00	0.00	1.22	0.00	0.00	1.22	0.00	0.00	0.00	
NM (%)	1.22	93.90	93.90	17.07	15.85	12.20	6.10		95.12		17.07	71.95	60.98	95.12	1.22	98.78	64.63	64.63	17.07	60.98	62.20	
DM (%)	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
IM _{+DM} (%)	0.00	0.00	0.00	0.00	1.22	1.22	0.00		0.00		0.00	0.00	0.00	0.00	1.22	0.00	0.00	1.22	0.00	0.00	0.00	
CM-(NM +DM) (%)	100.00	100.00	100.00	100.00	98.55	98.61	100.00		100.00		100.00	100.00	100.00	100.00	98.77	100.00	100.00	96.55	100.00	100.00	100.00	
CM/IM _{+DM}	∞	∞	∞	8	68.00	71.00	8		8		8	8	8	8	80.00	8	8	28.00	8	8	∞	
CM/(IM _{+DM} + NM)	81.00	0.06	0.06	4.86	4.86	6.45	15.40		0.05		4.86	0.39	0.64	0.05	40.00	0.01	0.55	0.52	4.86	0.64	0.61	
Total Absolute (accordin			1	netaboli	tes)																	
	ng to the total absol	ute num	ber of m		•	es were	not con	sidered	for com	putatio	n of tota	als.										
Total Absolute (accordin For those studies with no CM (%)	ng to the total absol	ute num	ber of m	gory; th 60.98	ose clas 53.40	63.64	47.54	50.62	40.98	60.43	49.65	19.25	30.75	28.71	30.23	30.81	19.47	30.94	55.11	18.20	55.58	62.89
Total Absolute (accordin For those studies with no	ng to the total absolution of the sugar or ca	ute num rbohydr	ber of m ate cate	gory; th	ose clas	63.64 13.97	47.54 22.72		40.98 3.63	60.43 21.34	li i	1	30.75 3.91	24.09	30.23 2.40	30.81 17.57	19.47 5.10	10.96	8.18	5.28	55.58 9.31	10.89
Total Absolute (accordin For those studies with no CM (%)	ng to the total absolution amino sugar or ca	ute num rbohydr 14.63	ber of m ate cate 26.58	gory; th 60.98	ose clas 53.40	63.64	47.54	50.62	40.98	60.43 21.34 17.38	49.65	19.25						10.96 58.10				
Total Absolute (accordin For those studies with no CM (%) IM (%)	ng to the total absolution of amino sugar or ca 99.19 0.42	ute num rbohydr 14.63 0.70	ber of m ate cate 26.58 6.68	gory; th 60.98 10.05	ose clas 53.40 11.62	63.64 13.97	47.54 22.72	50.62 8.55	40.98 3.63	60.43 21.34	49.65 12.12	19.25 4.36	3.91	24.09	2.40	17.57	5.10	10.96	8.18	5.28	9.31	10.89
Total Absolute (accordin For those studies with no CM (%) IM (%) NM (%)	ng to the total absolution of amino sugar or ca 99.19 0.42 0.39	ute num rbohydr 14.63 0.70 84.67	ber of m ate cate 26.58 6.68 66.74	gory; th 60.98 10.05 25.81	ose clas 53.40 11.62 34.92	63.64 13.97 21.06	47.54 22.72 29.13	50.62 8.55 40.04	40.98 3.63 55.39	60.43 21.34 17.38	49.65 12.12 38.23	19.25 4.36 76.39	3.91 65.35	24.09 47.20	2.40 0.84	17.57 51.62	5.10 75.43	10.96 58.10	8.18 36.71	5.28 76.52	9.31 31.82	10.89 26.14
Total Absolute (accordin For those studies with no CM (%) IM (%) DM (%)	ng to the total absolution of amino sugar or ca 99.19 0.42 0.39 0.00	ute num rbohydr 14.63 0.70 84.67 0.00	ber of m ate cate 26.58 6.68 66.74 0.00	gory; th 60.98 10.05 25.81 3.16	ose clas 53.40 11.62 34.92 0.06	63.64 13.97 21.06 1.33	47.54 22.72 29.13 0.61	50.62 8.55 40.04 0.79	40.98 3.63 55.39 0.00	60.43 21.34 17.38 0.84	49.65 12.12 38.23 0.00	19.25 4.36 76.39 0.00	3.91 65.35 0.00	24.09 47.20 0.00	2.40 0.84 66.52	17.57 51.62 0.00	5.10 75.43 0.00	10.96 58.10 0.00	8.18 36.71 0.00	5.28 76.52 0.00	9.31 31.82 3.30	10.89 26.14 0.08
Total Absolute (accordin For those studies with no CM (%) IM (%) NM (%) DM (%) IM+DM (%)	ng to the total absolution of amino sugar or ca 99.19 0.42 0.39 0.00 0.42	ute num rbohydr 14.63 0.70 84.67 0.00 0.70	ber of m ate cate 26.58 6.68 66.74 0.00 6.68	gory; th 60.98 10.05 25.81 3.16 13.21	ose clas 53.40 11.62 34.92 0.06 11.68	63.64 13.97 21.06 1.33 15.30	47.54 22.72 29.13 0.61 23.33	50.62 8.55 40.04 0.79 9.33	40.98 3.63 55.39 0.00 3.63	60.43 21.34 17.38 0.84 22.18	49.65 12.12 38.23 0.00 12.12	19.25 4.36 76.39 0.00 4.36	3.91 65.35 0.00 3.91	24.09 47.20 0.00 24.09	2.40 0.84 66.52 68.93	17.57 51.62 0.00 17.57	5.10 75.43 0.00 5.10	10.96 58.10 0.00 10.96	8.18 36.71 0.00 8.18	5.28 76.52 0.00 5.28	9.31 31.82 3.30 12.60	10.89 26.14 0.08 10.97
Total Absolute (accordin For those studies with no CM (%) IM (%) DM (%) DM (%) IM _{+DM} (%) CM _{-(NM +DM)} (%)	ng to the total absolution of amino sugar or ca 99.19 0.42 0.39 0.00 0.42 99.58	ute num rbohydr 14.63 0.70 84.67 0.00 0.70 95.46	ber of m ate cate 26.58 6.68 66.74 0.00 6.68 79.92	gory; th 60.98 10.05 25.81 3.16 13.21 85.85	ose clas 53.40 11.62 34.92 0.06 11.68 82.13	63.64 13.97 21.06 1.33 15.30 82.00	47.54 22.72 29.13 0.61 23.33 67.66	50.62 8.55 40.04 0.79 9.33 85.46	40.98 3.63 55.39 0.00 3.63 91.86	60.43 21.34 17.38 0.84 22.18 73.84	49.65 12.12 38.23 0.00 12.12 80.38	19.254.3676.390.004.3681.54	3.91 65.35 0.00 3.91 88.73	24.09 47.20 0.00 24.09 54.38	2.40 0.84 66.52 68.93 92.64	17.57 51.62 0.00 17.57 63.68	5.10 75.43 0.00 5.10 79.26	10.96 58.10 0.00 10.96 73.84	8.18 36.71 0.00 8.18 87.07	5.28 76.52 0.00 5.28 77.52	9.31 31.82 3.30 12.60 85.66	10.89 26.14 0.08 10.97 85.16
Total Absolute (accordin For those studies with no CM (%) IM (%) DM (%) DM (%) IM+DM (%) CM-(NM +DM) (%) CM-(NM +DM) (%)	ng to the total absolution o amino sugar or ca 99.19 0.42 0.39 0.00 0.42 99.58 234.64 121.73 e same weight to ea	ute num rbohydr 14.63 0.70 84.67 0.00 0.70 95.46 21.01 0.17 ch datab	ber of m ate cate 26.58 6.68 66.74 0.00 6.68 79.92 3.98 0.36 0.36	gory; th 60.98 10.05 25.81 3.16 13.21 85.85 4.61 1.56 ependen	ose clas 53.40 11.62 34.92 0.06 11.68 82.13 4.57 1.15	63.64 13.97 21.06 1.33 15.30 82.00 4.16 1.75	47.54 22.72 29.13 0.61 23.33 67.66 2.04 0.91	50.62 8.55 40.04 0.79 9.33 85.46 5.42 1.03 etabolit	40.98 3.63 55.39 0.00 3.63 91.86 11.29 0.69	60.43 21.34 17.38 0.84 22.18 73.84 2.72 1.53 ded in e	49.65 12.12 38.23 0.00 12.12 80.38 4.10 0.99 ach one	19.25 4.36 76.39 0.00 4.36 81.54 4.42 0.24	3.91 65.35 0.00 3.91 88.73 7.87	24.09 47.20 0.00 24.09 54.38 1.19	2.40 0.84 66.52 68.93 92.64 0.44	17.57 51.62 0.00 17.57 63.68 1.75	5.10 75.43 0.00 5.10 79.26 3.82	10.96 58.10 0.00 10.96 73.84 2.82	8.18 36.71 0.00 8.18 87.07 6.74	5.28 76.52 0.00 5.28 77.52 3.45	9.31 31.82 3.30 12.60 85.66 4.41	10.89 26.14 0.08 10.97 85.16 5.73
Total Absolute (accordin For those studies with no CM (%) IM (%) DM (%) IM _{+DM} (%) CM _{-(NM +DM)} (%) CM _{-(IM+DM} (%) CM/(IM _{+DM} + NM) Total Relative (giving the	ng to the total absolution o amino sugar or ca 99.19 0.42 0.39 0.00 0.42 99.58 234.64 121.73 e same weight to ea	ute num rbohydr 14.63 0.70 84.67 0.00 0.70 95.46 21.01 0.17 ch datab	ber of m ate cate 26.58 6.68 66.74 0.00 6.68 79.92 3.98 0.36 0.36	gory; th 60.98 10.05 25.81 3.16 13.21 85.85 4.61 1.56 epender gory; th	ose clas 53.40 11.62 34.92 0.06 11.68 82.13 4.57 1.15	63.64 13.97 21.06 1.33 15.30 82.00 4.16 1.75	47.54 22.72 29.13 0.61 23.33 67.66 2.04 0.91	50.62 8.55 40.04 0.79 9.33 85.46 5.42 1.03 etabolit	40.98 3.63 55.39 0.00 3.63 91.86 11.29 0.69	60.43 21.34 17.38 0.84 22.18 73.84 2.72 1.53 ded in e	49.65 12.12 38.23 0.00 12.12 80.38 4.10 0.99 ach one	19.25 4.36 76.39 0.00 4.36 81.54 4.42 0.24	3.91 65.35 0.00 3.91 88.73 7.87	24.09 47.20 0.00 24.09 54.38 1.19	2.40 0.84 66.52 68.93 92.64 0.44	17.57 51.62 0.00 17.57 63.68 1.75	5.10 75.43 0.00 5.10 79.26 3.82	10.96 58.10 0.00 10.96 73.84 2.82	8.18 36.71 0.00 8.18 87.07 6.74	5.28 76.52 0.00 5.28 77.52 3.45	9.31 31.82 3.30 12.60 85.66 4.41	10.89 26.14 0.08 10.97 85.16 5.73
Total Absolute (accordin For those studies with no CM (%) IM (%) DM (%) DM (%) CM-(NM +DM) (%) CM-(NM +DM) (%) CM/IM+DM CM/(IM+DM + NM) Total Relative (giving the For those studies with no	ng to the total absolution of amino sugar or ca 99.19 0.42 0.39 0.00 0.42 99.58 234.64 121.73 e same weight to ea o amino sugar or ca	ute num rbohydr 14.63 0.70 84.67 0.00 0.70 95.46 21.01 0.17 ch datat rbohydr	ber of m ate cate 26.58 6.68 66.74 0.00 6.68 79.92 3.98 0.36 0.36	gory; th 60.98 10.05 25.81 3.16 13.21 85.85 4.61 1.56 epender gory; th	ose clas 53.40 11.62 34.92 0.06 11.68 82.13 4.57 1.15	63.64 13.97 21.06 1.33 15.30 82.00 4.16 1.75 he number of the number of	47.54 22.72 29.13 0.61 23.33 67.66 2.04 0.91 oer of m not con	50.62 8.55 40.04 0.79 9.33 85.46 5.42 1.03 etabolit sidered	40.98 3.63 55.39 0.00 3.63 91.86 11.29 0.69 es inclu for com	60.43 21.34 17.38 0.84 22.18 73.84 2.72 1.53 ded in e putatio	49.65 12.12 38.23 0.00 12.12 80.38 4.10 0.99 ach one n of tota	19.25 4.36 76.39 0.00 4.36 81.54 4.42 0.24	3.91 65.35 0.00 3.91 88.73 7.87 0.44	24.09 47.20 0.00 24.09 54.38 1.19 0.40	2.40 0.84 66.52 68.93 92.64 0.44 0.43	17.57 51.62 0.00 17.57 63.68 1.75 0.45	5.10 75.43 0.00 5.10 79.26 3.82 0.24	10.96 58.10 0.00 10.96 73.84 2.82 0.45	8.18 36.71 0.00 8.18 87.07 6.74 1.23	5.28 76.52 0.00 5.28 77.52 3.45 0.22	9.31 31.82 3.30 12.60 85.66 4.41 1.25	10.89 26.14 0.08 10.97 85.16 5.73 1.69
Total Absolute (accordin For those studies with no CM (%) IM (%) DM (%) DM (%) CM-(NM +DM) (%) CM-(NM +DM) (%) CM/IM+DM CM/(IM+DM + NM) Total Relative (giving the For those studies with no CM (%)	ng to the total absolution of amino sugar or ca 99.19 0.42 0.39 0.00 0.42 99.58 234.64 121.73 e same weight to ea to amino sugar or ca 98.58	ute num rbohydr 14.63 0.70 84.67 0.00 0.70 95.46 21.01 0.17 ch datak rbohydr 12.43	ber of m ate cate 26.58 6.68 66.74 0.00 6.68 79.92 3.98 0.36 0.36 0.36	gory; th 60.98 10.05 25.81 3.16 13.21 85.85 4.61 1.56 gory; th 47.72	ose clas 53.40 11.62 34.92 0.06 11.68 82.13 4.57 1.15 mtly of the second se	63.64 13.97 21.06 1.33 15.30 82.00 4.16 1.75 he number swere 55.68	47.54 22.72 29.13 0.61 23.33 67.66 2.04 0.91 0.91	50.62 8.55 40.04 0.79 9.33 85.46 5.42 1.03 etabolit sidered 32.28	40.98 3.63 55.39 0.00 3.63 91.86 11.29 0.69 cs includ for com 27.28	60.43 21.34 17.38 0.84 22.18 73.84 2.72 1.53 ded in e putatio 51.08	49.65 12.12 38.23 0.00 12.12 80.38 4.10 0.99 ach one n of tota 48.93	19.25 4.36 76.39 0.00 4.36 81.54 4.42 0.24 0.24	3.91 65.35 0.00 3.91 88.73 7.87 0.44 37.65	24.09 47.20 0.00 24.09 54.38 1.19 0.40 30.67	2.40 0.84 66.52 68.93 92.64 0.44 0.43	17.57 51.62 0.00 17.57 63.68 1.75 0.45 20.62	5.10 75.43 0.00 5.10 79.26 3.82 0.24 26.62	10.96 58.10 0.00 10.96 73.84 2.82 0.45	8.18 36.71 0.00 8.18 87.07 6.74 1.23	5.28 76.52 0.00 5.28 77.52 3.45 0.22 26.84	9.31 31.82 3.30 12.60 85.66 4.41 1.25 42.61	10.89 26.14 0.08 10.97 85.16 5.73 1.69 42.57
Total Absolute (accordin) For those studies with no CM (%) IM (%) DM (%) IM _{+DM} (%) CM _{-(NM +DM)} (%) CM _{-(IM+DM} (%) CM/(IM _{+DM} + NM) Total Relative (giving the For those studies with no CM (%)	ng to the total absolution amino sugar or ca 99.19 0.42 0.39 0.00 0.42 99.58 234.64 121.73 e same weight to ea o amino sugar or ca 98.58 0.42	ute num rbohydr 14.63 0.70 84.67 0.00 0.70 95.46 21.01 0.17 ch datat rbohydr 12.43 0.70	ber of m ate cate 26.58 6.68 66.74 0.00 6.68 79.92 3.98 0.36 0.36 0.36 0.36	gory; th 60.98 10.05 25.81 3.16 13.21 85.85 4.61 1.56 gory; th 47.72 17.24	ose clas 53.40 11.62 34.92 0.06 11.68 82.13 4.57 1.15 mtly of tl ose clas 41.61 21.26	63.64 13.97 21.06 1.33 15.30 82.00 4.16 1.75 he number swere 55.68 23.23	47.54 22.72 29.13 0.61 23.33 67.66 2.04 0.91 0.91 0.91 0.91 53.59 23.48	50.62 8.55 40.04 0.79 9.33 85.46 5.42 1.03 etabolit sidered 32.28 9.51	40.98 3.63 55.39 0.00 3.63 91.86 11.29 0.69 ces includ for com 27.28 4.31	60.43 21.34 17.38 0.84 22.18 73.84 2.72 1.53 ded in e putatio 51.08 13.57	49.65 12.12 38.23 0.00 12.12 80.38 4.10 0.99 ach one n of tota 48.93 18.59	19.25 4.36 76.39 0.00 4.36 81.54 4.42 0.24 0.24 0.24 23.54 2.20	3.91 65.35 0.00 3.91 88.73 7.87 0.44 37.65 4.18	24.09 47.20 0.00 24.09 54.38 1.19 0.40 30.67 11.55	2.40 0.84 66.52 68.93 92.64 0.44 0.43 51.45 2.88	17.57 51.62 0.00 17.57 63.68 1.75 0.45 20.62 16.55	5.10 75.43 0.00 5.10 79.26 3.82 0.24 26.62 5.85	10.96 58.10 0.00 10.96 73.84 2.82 0.45 33.97 9.26	8.18 36.71 0.00 8.18 87.07 6.74 1.23 46.84 16.68	5.28 76.52 0.00 5.28 77.52 3.45 0.22 26.84 4.18	9.31 31.82 3.30 12.60 85.66 4.41 1.25 42.61 12.05	10.89 26.14 0.08 10.97 85.16 5.73 1.69 42.57 10.19
Total Absolute (accordin For those studies with no CM (%) IM (%) DM (%) IM _{+DM} (%) CM _{-(NM +DM)} (%) CM _{-(IM+DM} + NM) CM/(IM _{+DM} + NM) Total Relative (giving the For those studies with no CM (%) IM (%)	o amino sugar or ca 99.19 0.42 0.39 0.00 0.42 10.39 0.42 99.58 234.64 121.73 e same weight to ea 0 amino sugar or ca 98.58 0.42 0.42	ute num rbohydr 14.63 0.70 84.67 0.00 0.70 95.46 21.01 0.17 ch datat rbohydr 12.43 0.70 86.87	ber of m ate cate 26.58 66.74 0.00 6.68 79.92 3.98 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36	gory; th 60.98 10.05 25.81 3.16 13.21 85.85 4.61 1.56 ependen gory; th 47.72 17.24 30.73	ose clas 53.40 11.62 34.92 0.06 11.68 82.13 4.57 1.15	63.64 13.97 21.06 1.33 15.30 82.00 4.16 1.75 he number swere 55.68 23.23 20.15	47.54 22.72 29.13 0.61 23.33 67.66 2.04 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91	50.62 8.55 40.04 0.79 9.33 85.46 5.42 1.03 etabolit sidered 32.28 9.51 57.48	40.98 3.63 55.39 0.00 3.63 91.86 11.29 0.69 ces inclut for com 27.28 4.31 68.42	60.43 21.34 17.38 0.84 22.18 73.84 2.72 1.53 ded in e putatio 51.08 13.57 34.91	49.65 12.12 38.23 0.00 12.12 80.38 4.10 0.99 ach one n of tota 48.93 18.59 32.48	19.25 4.36 76.39 0.00 4.36 81.54 4.42 0.24 0.24) als. 23.54 2.20 74.26	3.91 65.35 0.00 3.91 88.73 7.87 0.44 37.65 4.18 58.18	24.09 47.20 0.00 24.09 54.38 1.19 0.40 30.67 11.55 57.78	2.40 0.84 66.52 68.93 92.64 0.44 0.43 51.45 2.88 1.48	17.57 51.62 0.00 17.57 63.68 1.75 0.45 20.62 16.55 62.83	5.10 75.43 0.00 5.10 79.26 3.82 0.24 26.62 5.85 67.53	10.96 58.10 0.00 10.96 73.84 2.82 0.45 33.97 9.26 56.77	8.18 36.71 0.00 8.18 87.07 6.74 1.23 46.84 16.68 36.48	5.28 76.52 0.00 5.28 77.52 3.45 0.22 26.84 4.18 68.98	9.31 31.82 3.30 12.60 85.66 4.41 1.25 42.61 12.05 41.08	10.89 26.14 0.08 10.97 85.16 5.73 1.69 42.57 10.19 47.20

		0	0		n				·		1			n	0	n .	n	1	0	1			
CN	1/IM+DM	234.39	17.74	6.32	2.21	1.95	2.30	2.26	3.15	6.33	3.64	2.63	10.72	9.01	2.65	1.09	1.25	4.55	3.67	2.81	6.43	2.61	4.16
CN	1/(IM _{+DM} + NM)	272.05	0.15	0.47	1.99	1.79	2.48	4.90	0.62	0.44	1.52	1.85	0.31	0.65	0.97	13.60	0.29	0.38	0.73	1.77	0.39	0.96	1.09
486	1. (Kim, Kramer, & Hate	cher, 2003)⁵																					
487	2. (Mopper, Stubbins, F	Ritchie, Bialk, &	Hatcher	, 2007) ⁶																			
488	 Podgorski et al., 201 	L2) ⁷																					
489	 4. (D'Andrilli, Foreman, 	, Marshall, & Mo	cKnight,	2013) ⁸																			
490	5. (Minor, Swenson, M		, 2014) ⁹																				
491	 6. (Tfaily et al., 2015)¹⁰ 																						
492	Schmidt, Elvert, Koc	h, Witt, & Hinri	chs, 200	9)11																			
493	8. (Bhatia, Das, Longne		& Kujaw	inski, 20)10) ¹²																		
494	9. (Lusk & Toor, 2016) ¹	3																					
495	10. (Xu et al., 2013) ¹⁴																						
496	 Saenger, Cécillon, 	Sebag, & Brun, I	2013) ¹⁵																				
497	Liu, Sleighter, Zhor	ng, & Hatcher, 2	011) ¹⁶																				
498	13. (Wang, Goual, & Coual)	olberg, 2012) ¹⁷																					
499	Hockaday, Purcell,		ock, & Ha	atcher, 2	2009) ¹⁸																		
500	15. (Nebbioso & Piccol																						
501	16. (Thevenot et al., 20	,																					
502	 Grannas, Hockada 		mpson, 8	& Mosle	y-Thomp	oson, 200	D6) ²¹																
503	18. (Mann et al., 2015)																						
504	19. (Stubbins et al., 201	,																					
505	20. (Osborne et al., 201	L3) ²⁴																					
506	21. (Hodgkins et al., 20	14) ²⁵																					

- assigned to the corresponding molecular formula by applying compound identification algorithm (CIA)⁴.
- 509 The absolute number of is shown in brackets. Correctly assigned formulas excluding the not assigned,
- and the ratios correctly-assigned/incorrectly-assigned and the correctly-assigned/(incorrectly-assigned +
- not-assigned) are also shown. The total proportions are shown on the calculations based on the
- absolute number of compounds in databases and on the relative number of compounds.

		Correctly Assigned	Incorrectly Assigned	Not Assigned	Correctly Assigned excluding Not-Assigned	Correctly Assigned / Incorrectly Assigned ratio	Correctly Assigned / (Incorrectly Assigned + Not Assigned) ratio
Lip	bids	98.08%	1.14%	0.78%	98.08%	86.03	51.08
Pe	ptides	96.6%	3.01%	0.03%	96.6%	32.09	31.78
	Non-phosphorilated Peptides	98.39%	1.58%	0.03%	98.39%	62.27	61.11
	Phosphopeptides	89.4%	10.59%	0.01%	89.4%	8.44	8.43
Ar	nino sugars	57.25%	34.78%	7.97%	57.25%	1.64	1.34
Ca	rbohydrates	100%	0%	0%	100%	8	8
Νι	ıcleotides	70.27%	21.62%	8.11%	70.27%	3.25	2.36
Ph	ytochemical compounds	93.67%	5.98%	0.35%	93.67%	15.66	14.8
тс	DTAL	96.94%	2.84%	0.21%	96.94%	34.13	31.78

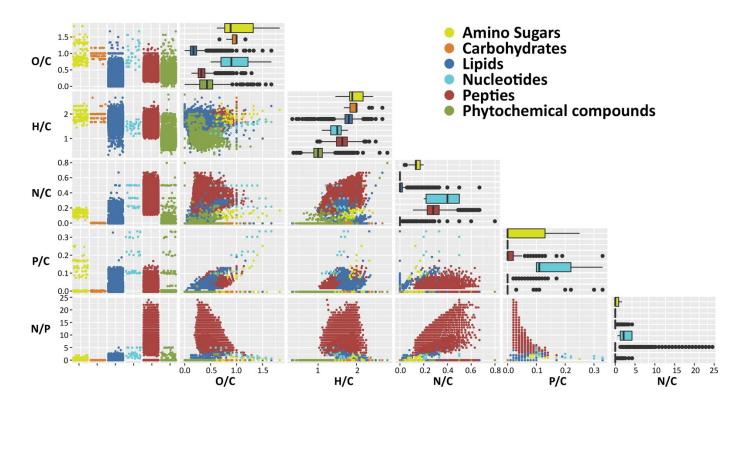
514

515

516

517

518


519

520

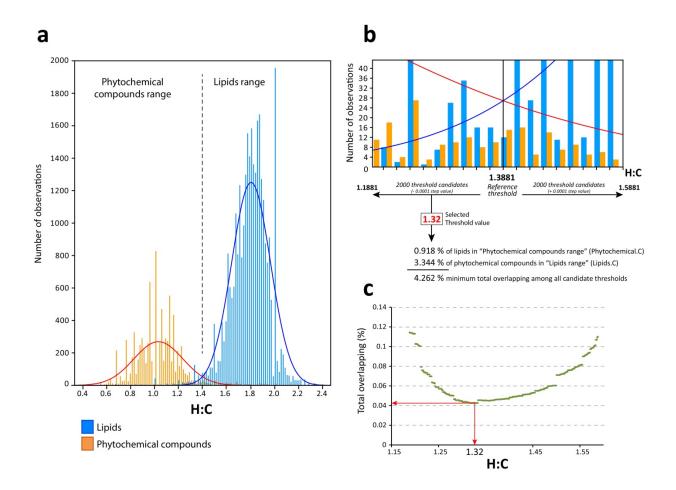
521

522

- 525 Figure S-1. Correlation plots of stoichiometric variables (O:C, H:C, N:C, P:C and N:P) for all compound
- 526 databases (Amino sugars, yellow; Carbohydrates, orange; Lipids, blue; Nucleotides, cyan; Peptides, red;
- 527 Phytochemical compounds, green;). Box plots showing the distribution of compounds of each database
- 528 for each variable are shown, extreme values are shown by dots. Left panels represent the distribution of
- 529 each of the compounds of each database along the specified stoichiometric variable.

533

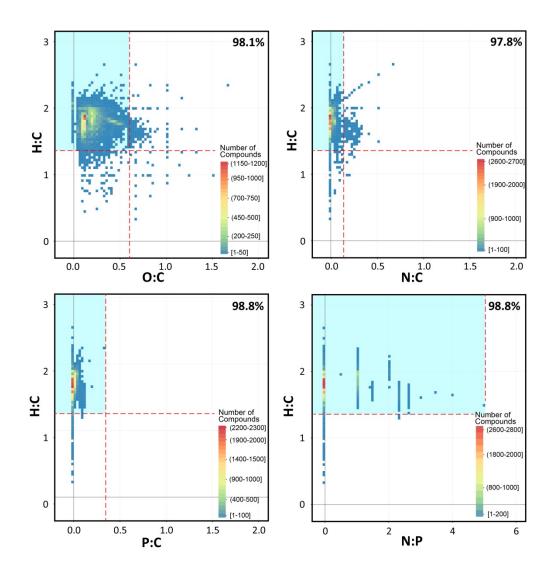
531


- 534
- 535
- 536
- 537
- 538
- 539
- 540

S20

541 Figure S-2. Figure example showing the implemented criteria to determine the threshold value to separate two 542 categories (Lipids and Phytochemical compounds in this example) that showed overlapping in all stoichiometric 543 variables. The stoichiometric variable that showed better separation between the two compound categories was 544 the one considered to discriminate them; H:C ratio in this case. First, a normal distribution fitting was created for each compound category along the selected variable (a). The intersection value between both distribution fittings 545 546 was considered as a reference threshold (b). We created 2000 numbers at 0.0001 step value (threshold 547 candidates) above and below the reference threshold value. Each threshold candidate value determines thus a 548 distribution range for each compound category along the variable (H:C); in this example, the variable range below 549 the candidate value corresponds to phytochemical compounds and above corresponds to lipids. For each of the 550 4,000 threshold candidate values we calculated the proportion of features of each compound category outside 551 their alleged distribution range. Total overlapping distribution along the 4000 threshold candidates for H:C (c). The 552 candidate value that separated the two categories with the minimum proportional number of total overlapped 553 compounds (Lipids + Phytochemical compounds) was considered as the cut-off for those compound categories and

554 variable (H:C): 1.32 in this example.

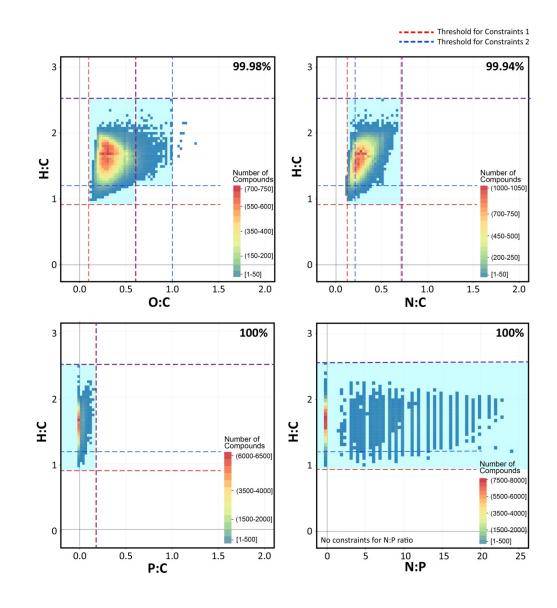


- 556
- 557
- 558
- 559

Figure S-3. Bidimensional (2D) density plots of H:C vs. O:C, N:C, P:C, and N:P ratios for lipids database
(including 30,729 elemental formulas). Color gradient indicates distinct number of features included in
each squared area (red squares indicate the areas with higher density of lipids; blue squares indicate the
areas with lower density of lipids). Stoichiometric thresholds for each variable (H:C, O:C, N:C, P:C, and

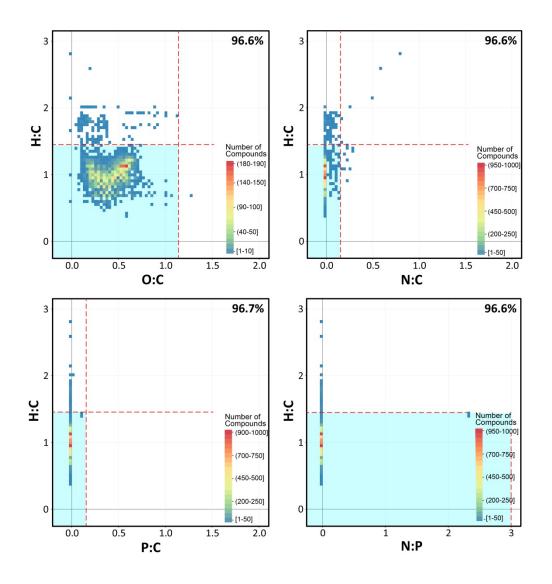
- 564 N:P) are represented by red dashed lines (see Table 1 of the main text for exact stoichiometric
- thresholds). Light-blue area indicates the area included in the stoichiometric constraints. The percentage
- on the top-right corner of the plots indicate the proportion of compounds within the light-blue area
- 567 (within the MSCC thresholds).

568

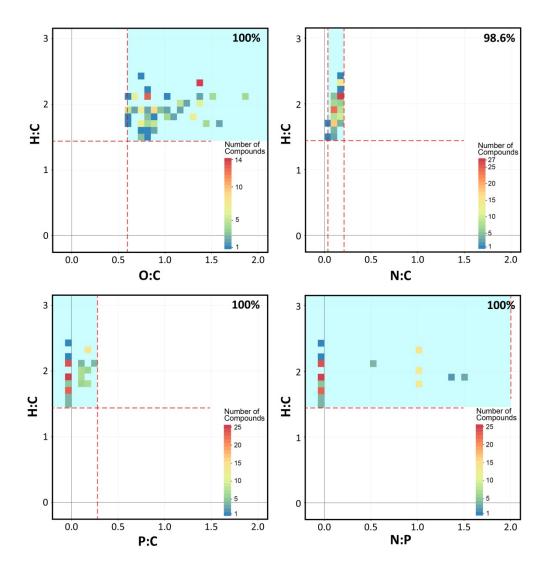


569

570


571

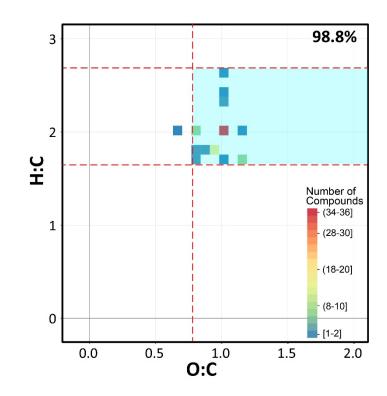
- **Figure S-4.** Bidimensional (2D) density plots of H:C vs. O:C, N:C, P:C, and N:P ratios for peptide database
- 574 (including 93,245 elemental formulas). Color gradient indicates distinct number of features included in
- each squared area (red squares indicate the areas with higher density of peptides; blue squares indicate
 the areas with lower density of peptides). Stoichiometric thresholds for each variable (H:C, O:C, N:C, P:C,
- 576 the areas with lower density of peptides). Stoichiometric thresholds for each variable (H:C, O:C, N:C, P: 577 and N:P) are represented by red dashed lines (constraints 1) and blue dashed lines (constraints 2) (see
- 578 Table 1 of the main text for exact stoichiometric thresholds). Stoichiometric constraints for Protein
- 579 category (Protein_c) is composed by constraints 1 and constraints 2 together. Light-blue area indicates
- the area included in the stoichiometric constraints. The percentages on the top-right corner of the plots
- 581 indicate the proportion of compounds within the light-blue area (within the MSCC thresholds).
- 582



- 586 Figure S-5. Bidimensional (2D) density plots of H:C vs. O:C, N:C, P:C, and N:P ratios for the phytochemical
- 587 compounds database (including 7,774 elemental formulas). Color gradient indicates distinct number of
- 588 features included in each squared area (red squares indicate the areas with higher density of
- 589 phytochemical compounds; blue squares indicate the areas with lower density of phytochemical
- 590 compounds). Stoichiometric thresholds for each variable (H:C, O:C, N:C, P:C, and N:P) are represented by
- red dashed lines (see Table 1 of the main text for exact stoichiometric thresholds). Light-blue area
 indicates the area included in the stoichiometric constraints. The percentages on the top-right corner of
- the plots indicate the proportion of compounds within the light-blue area (within the MSCC thresholds).
- 594

- 595
- 596
- 597
- 598

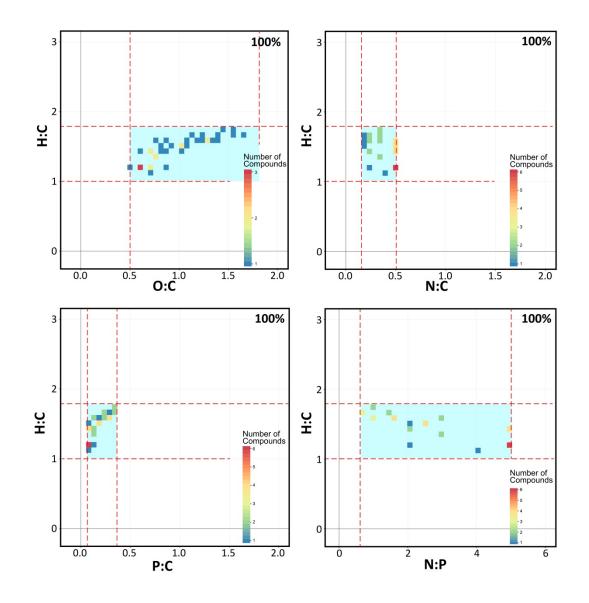
- **Figure S-6.** Bidimensional (2D) density plots of H:C vs. O:C, N:C, P:C, and N:P ratios for amino-sugar
- database (including 142 elemental formulas). Color gradient indicates distinct number of features
- included in each squared area (red squares indicate the areas with higher density of amino-sugar; blue
- squares indicate the areas with lower density of amino-sugar). Stoichiometric thresholds for each
 variable (H:C, O:C, N:C, P:C, and N:P) are represented by red dashed lines (see Table 1 of the main text
- for exact stoichiometric thresholds). Light-blue area indicates the area included in the stoichiometric
- 605 constraints. The percentages on the top-right corner of the plots indicate the proportion of compounds
- 606 within the light-blue area (within the MSCC thresholds).



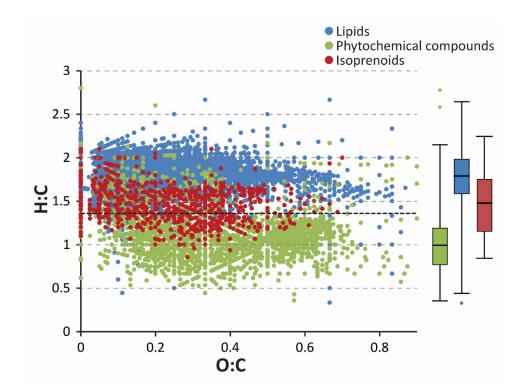
608

609

610

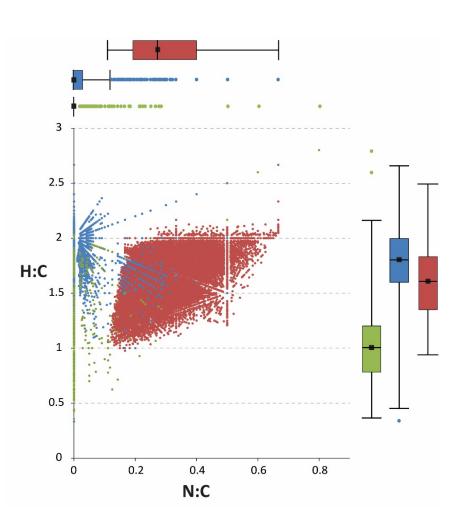

- **Figure S-7.** Bidimensional (2D) density plots of H:C vs. O:C ratio for carbohydrate database (including 82
- elemental formulas). Color gradient indicates distinct number of features included in each squared area
- 614 (red squares indicate the areas with higher density of carbohydrates; blue squares indicate the areas
- 615 with lower density of carbohydrates). Stoichiometric thresholds for each variable (H:C and O:C) are 616 represented by red dashed lines (see Table 1 of the main text for exact stoichiometric thresholds). Light-
- 617 blue area indicates the area included in the stoichiometric constraints. The percentage on the top-right
- corner of the plot indicates the proportion of compounds within the light-blue area (within the MSCC
- 619 thresholds).

- 622
- _ _ _
- 623
- 624
- 625
- 626
- 627
- 628


- 629 Figure S-8. Bidimensional (2D) density plots of H:C vs. O:C, N:C, P:C, and N:P ratios for nucleotide
- 630 database (including 37 elemental formulas). Color gradient indicates distinct number of features
- 631 included in each squared area (red squares indicate the areas with higher density of nucleotides; blue
- 632 squares indicate the areas with lower density of nucleotides). Stoichiometric thresholds for each
- variable (H:C, O:C, N:C, P:C, and N:P) are represented by red dashed lines (see Table 1 of the main text
 for exact stoichiometric thresholds). Light-blue area indicates the area included in the stoichiometric
- 635 constraints. The percentages on the top-right corner of the plots indicate the proportion of compounds
- 636 within the light-blue area (within the MSCC thresholds).
- 637

639

640


- databases. The threshold value separating lipids and phytochemical compounds along H:C is shown by a
- dashed black line at H:C =1.32. Box plots for each category compound is shown for H:C variable. First
- and third percentiles of box plots represent the 10% and 90% of the databases. Dots outside percentilesare considered as outliers.

- 658 Figure S-10. H:C vs. N:C molecular ratios of all peptide (red), lipid (blue) and phytochemical compound
- (green) databases. Box plots for of each category compound is shown for the stoichiometric variables.
- First and third percentiles of box plots represent the 10% and 90% of the data. Squares represent themedian values and the dots outside the quartiles are outlier compounds for each of the axis. Outliers
- 662 were determined as the compounds presenting threefold higher values than the third quartile or
- threefold values lower than the first quartile. In this case we used H:C ratio as the discriminant variable
- discern lipids from phytochemical compounds while N:C ratio was the discriminant between peptides
- and the two other categories, especially lipids.

- 668
- 669
- 670
- 671
- 672

673 References Supporting Information

- Fahy, E.; Subramaniam, S.; Murphy, R. C.; Nishijima, M.; Raetz, C. R. H.; Shimizu, T.; Spener, F.;
 van Meer, G.; Wakelam, M. J. O.; Dennis, E. A. J. Lipid Res. 2009, 50 Suppl (Supplement), S9-14.
- Roberts, M. F.; Wink, M. *Alkaloids: Biochemistry, Ecology, and Medicinal Applications*, 1st ed.;
 Roberts, M. F., Wink, M., Eds.; Springer Science+Business Media, LLC: New Yor, 1998.
- 679 (3) Cimanga, K.; De Bruyne, T.; Pieters, L.; Claeys, M.; Vlietinck, A. *Tetrahedron Lett.* **1996**, *37* (10),
 680 1703–1706.
- 681 (4) Kujawinski, E. B.; Behn, M. D. Anal. Chem. **2006**, 78 (13), 4363–4373.
- 682 (5) Kim, S.; Kramer, R. W.; Hatcher, P. G. Anal. Chem. 2003, 75 (20), 5336–5344.
- 683 (6) Mopper, K.; Stubbins, A.; Ritchie, J. D.; Bialk, H. M.; Hatcher, P. G. *Chem. Rev.* 2007, 107 (2), 419–
 684 442.
- 685 (7) Podgorski, D. C.; Hamdan, R.; McKenna, A. M.; Nyadong, L.; Rodgers, R. P.; Marshall, A. G.;
 686 Cooper, W. T. Anal. Chem. 2012, 84 (3), 1281–1287.
- 687 (8) D'Andrilli, J.; Foreman, C. M.; Marshall, A. G.; McKnight, D. M. Org. Geochem. 2013, 65, 19–28.
- 688 (9) Minor, E. C.; Swenson, M. M.; Mattson, B. M.; Oyler, A. R. *Environ. Sci. Process. Impacts* 2014, *16*689 (9), 2064–2079.
- (10) Tfaily, M. M.; Chu, R. K.; Tolić, N.; Roscioli, K. M.; Anderton, C. R.; Paša-Tolić, L.; Robinson, E. W.;
 Hess, N. J. Anal. Chem. 2015, 87 (10), 5206–5215.
- 692 (11) Schmidt, F.; Elvert, M.; Koch, B. P.; Witt, M.; Hinrichs, K.-U. *Geochim. Cosmochim. Acta* 2009, *73*,
 693 3337–3358.
- 694 (12) Bhatia, M. P.; Das, S. B.; Longnecker, K.; Charette, M. A.; Kujawinski, E. B. *Geochim. Cosmochim.* 695 Acta 2010, 74, 3768–3784.
- 696 (13) Lusk, M. G.; Toor, G. S. Water Res. 2016, 96, 225–235.
- Ku, C.; Chen, H.; Sugiyama, Y.; Zhang, S.; Li, H.-P.; Ho, Y.-F.; Chuang, C.-Y.; Schwehr, K. A.; Kaplan,
 D. I.; Yeager, C.; Roberts, K. A.; Hatcher, P. G.; Santschi, P. H. *Sci. Total Environ.* 2013, 449, 244–
 252.
- 700 (15) Saenger, A.; Cécillon, L.; Sebag, D.; Brun, J.-J. Org. Geochem. 2013, 54, 101–114.
- 701 (16) Liu, Z.; Sleighter, R. L.; Zhong, J.; Hatcher, P. G. *Estuar. Coast. Shelf Sci.* **2011**, *92*, 205–216.
- 702 (17) Wang, X.; Goual, L.; Colberg, P. J. S. J. Hazard. Mater. **2012**, 217–218 (218), 164–170.
- (18) Hockaday, W. C.; Purcell, J. M.; Marshall, A. G.; Baldock, J. A.; Hatcher, P. G. *Limnol. Oceanogr. Methods* 2009, 7 (1), 81–95.
- 705 (19) Nebbioso, A.; Piccolo, A. Anal. Bioanal. Chem. **2013**, 405 (1), 109–124.

- 706 (20) Thevenot, M.; Dignac, M.-F.; Mendez-Millan, M.; Bahri, H.; Hatté, C.; Bardoux, G.; Rumpel, C. *Biol.* 707 *Fertil. Soils* 2013, *49* (5), 517–526.
- Grannas, A. M.; Hockaday, W. C.; Hatcher, P. G.; Thompson, L. G.; Mosley-Thompson, E. J.
 Geophys. Res. 2006, 111 (D4), D04304.
- Mann, B. F.; Chen, H.; Herndon, E. M.; Chu, R. K.; Tolic, N.; Portier, E. F.; Roy Chowdhury, T.;
 Robinson, E. W.; Callister, S. J.; Wullschleger, S. D.; Graham, D. E.; Liang, L.; Gu, B. *PLoS One* 2015, 10 (6), e0130557.
- (23) Stubbins, A.; Spencer, R. G. M.; Chen, H.; Hatcher, P. G.; Mopper, K.; Hernes, P. J.; Mwamba, V. L.;
 Mangangu, A. M.; Wabakanghanzi, J. N.; Six, J. *Limnol. Oceanogr.* 2010, *55* (4), 1467–1477.
- (24) Osborne, D. M.; Podgorski, D. C.; Bronk, D. A.; Roberts, Q.; Sipler, R. E.; Austin, D.; Bays, J. S.;
 Cooper, W. T. *Rapid Commun. Mass Spectrom.* **2013**, *27* (8), 851–858.
- (25) Hodgkins, S. B.; Tfaily, M. M.; McCalley, C. K.; Logan, T. A.; Crill, P. M.; Saleska, S. R.; Rich, V. I.;
 Chanton, J. P. *Proc. Natl. Acad. Sci. U. S. A.* **2014**, *111* (16), 5819–5824.