Supplementary text

22 Considerations of the compound databases and for the determination of the MSCC

S223 Validation of MSCC threshold computation S4
24 Additional validation of the MSCC performance S5
25 Formula assignment error determination of Compound Identification Algorithm (CIA) S6
26 R script for compound classification S7
27 Supplementary Tables S12
28 Table S-1 S12
29 Table S-2 S15
30 Table S-3 S18
31 Supplementary Figures S19
32 Figure S-1 S19
33 Figure S-2 S20
34 Figure S-3 S21
35 Figure S-4 S22
36 Figure S-5 S23
37 Figure S-6 S24
38 Figure S-7 S25
39 Figure S-8 S26
40 Figure S-9 S27
41 Figure S-10 S28
42 References Supporting Information S29

Supplementary text

Considerations of the compound databases and for the determination of the MSCC.

The stoichiometry and elements for different compound categories were examined to establish the MSCC thresholds with a minimum overlap between compound categories (Figure S-2). Below we describe some aspects of the databases that had to be considered before determining the MSCC thresholds.

Carbohydrates (amino sugars excluded) is a group of compounds containing only C, O and H . Therefore, it was classified solely based on their H:C and O:C ratios, resembling the classic compound classification by vK diagram. Phosphorylated sugars, with higher O:C ratios, and polysaccharides also match the proposed MSCC defining Carbohydratesc. Most polysaccharides (glycogen, cellulose, starch) are composed of 6-carbon monosaccharides with a molecular formula of $\left(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}\right)_{n}$ and $\mathrm{O}: \mathrm{C}$ and $\mathrm{H}: \mathrm{C}$ ratios of 0.83 and 1.66 , respectively.

According to the classic definition, amino-sugars are monosaccharides with one hydroxyl group (-OH) replaced by an amine group ($-\mathrm{NH}_{2}$); however, a large variety of amino-sugar derivatives are still commonly considered amino-sugars. The complexity and diversity of amino-sugar biochemistry makes it challenging to accurately define amino-sugars' characteristics based on databases. The replacement of a hydroxyl group by an amine shifts the 0:C ratios to lower values, and thus some amino sugars could be wrongly assigned as peptides or amino-lipids, when considering exclusively their $\mathrm{O}: \mathrm{C}$ and $\mathrm{H}: \mathrm{C}$ ratios. Hence, the inclusion of the $\mathrm{N}: \mathrm{C}$ ratio is necessary to separate amino-sugars from peptides and high O:C amino-lipids. Furthermore, some amino-sugars can undergo multiple reactions to yield structural derivatives that are substantially different from their original parent sugar, and this can largely shift their original $\mathrm{O}: \mathrm{C}, \mathrm{H}: \mathrm{C}$ and $\mathrm{N}: \mathrm{C}$ molecular ratios. It is important to consider that some of these substantial modifications can thus result in molecules that no longer resemble a "typical" sugar found in organisms. For this reason, we excluded the amino-acid derivatives with $\mathrm{O}: \mathrm{C}<0.6$ (typically highly dehydroxylated), $\mathrm{N}: \mathrm{C}>0.2$ (e.g. high degree of replacement of hydroxyl group by amino group for relatively small molecules) and/or amino-acid derivatives containing long-carbon side chains. These excluded compounds represented 14.3% of the molecules considered amino-sugars in databases and mainly represent metabolites with antibiotic properties, specifically istamycins, fortimicins, and sannamycins. The MSCC for A-Sugarsc is also suitable to properly classified poly-amino-sugars such as chitin and amino-sugar-phosphates.

Nucleotide $\mathrm{O}: \mathrm{C}$ and $\mathrm{H}: \mathrm{C}$ ratios showed considerable overlap with other compound categories (Figure 1 main text). However, nucleotides can be segregated from the other compound categories if
$N: C, C: P, N: P, N, P$ and S, and the mass range are considered. Yet, we found some nucleotides that, within the classified Nucleotides ${ }_{c}$, also fitted within the stoichiometric constraints of Protein ${ }_{c}$ and ASugarsc (Table 2 main text). Contrary, we did not find any peptide from the 93,245 or any amino-sugars from the 142 included in the databases matching the proposed constraints of the Nucleotide ${ }_{c}$ indicating that the probability of including a no-nucleotide compound as nucleotide is practically zero. For this reason, any double match found in Nucleotide $_{c}$ should be considered exclusively as a nucleotide.

Lipids, peptides, and phytochemical compounds showed a large overlap in O:C and $\mathrm{H}: \mathrm{C}$ ratios (Figure 1 main text). All peptides contain N, but most phytochemical compounds or lipids do not; therefore the $\mathrm{N}: \mathrm{C}$ ratio is a crucial discriminant variable between Peptides ${ }_{c}$ and Lipids ${ }_{c}$ and Phytochemical $_{c}$ (Figure $\mathrm{S}-9$). On the other hand, $\mathrm{H}: \mathrm{C}$ ratio is the stoichiometric ratio used to discriminate between Lipids ${ }_{c}$ and Phytochemical ${ }_{c}$ (Figures S-1, S-2 and S-9). The overlap of O:C and H:C ratios between lipids and phytochemical compounds is largely due to the fact that several secondary metabolites, such as polyketides or prenol lipids, are lipid-related. ${ }^{1}$ We also found that all glucosinolates (phytochemical compounds), except those derived from phenylalanine, tyrosine and tryptophan, matched in the A-Sugars (Table 2 main text). Glucosinolates are N and S containing compounds derived from amino acids that cannot be differentiated from amino-sugars.

Alkaloids, found in plants but also isolated from animals, insect, microorganisms, and invertebrates, are a very diverse group of secondary metabolites with large $\mathrm{C}: \mathrm{H}: \mathrm{O}: \mathrm{N}$ variability. ${ }^{2}$ Contrary to flavonoids, most alkaloids are commonly species-specific, ${ }^{2}$ with only a limited number of those compounds present in a single organism. ${ }^{3}$ The presence of alkaloids in samples represents thus an insignificant fraction of the total detected compounds; hence, alkaloids were not considered for the determination of MSCC for the Phytochemical.

Isoprenoids (prenol lipids), also known as terpenoids or terpenes, belong to both lipids and phytochemical compound categories, ${ }^{1}$ and showed large overlap with Lipids ${ }_{c}$ and Phytochemical ${ }_{c}$ in vK diagrams (Figure S-10). We found no stoichiometric variable that could efficiently discriminate isoprenoids from lipids and phytochemical compounds. Although most isoprenoids would match into the current vK stoichiometric constraints of Lipids ${ }_{c}$ ($\sim 80 \%$), we decided to exclude them for the determination of the MSCC for Lipids ${ }_{c}$ and Phytochemical ${ }_{c}$. Thus, any isoprenoid compound present in the analyzed samples would be ultimately "correctly" matched into Lipidsc or Phytochemical ${ }_{c}$.

Validation of MSCC threshold computation for Lipids ${ }_{c}$, Phytochemical $_{c}$ and Protein ${ }_{c}$ - the categories showing the largest overlapping across their $\mathrm{O}: \mathrm{H}: \mathrm{C}: \mathrm{N}: P$ stoichiometry.

To validate the robustness of the MSCC threshold, the most determinant stoichiometric thresholds for Lipidsc, Phytochemical ${ }_{c}$ and Protein ${ }_{c}$ were determined with 50% of the data from the lipids, phytochemical compounds and peptide databases, respectively. The 50\% of compound from each database were randomly selected. Due to the low number of carbohydrates (82), amino-sugars (142), and nucleotides (37) included in the databases for MSCC determination, the validation of the stoichiometric thresholds for those groups using only 50% of the data was not considered; because the compound diversity on those categories (carbohydrates, amino-sugars, nucleotides) is relatively low in databases and thus will not be able to generate robust test results. It should be noted, however, the determination of stoichiometric thresholds for compound classification will be more accurate with more compounds included considered to calculate it.
$\mathrm{H}: \mathrm{C}$ ratio is the most determinant stoichiometric ratio to separate Lipids from phytochemical compounds with minimum overlapping (Figs. S-2, S-10). We found that, using the 50% of compounds, the $\mathrm{H}: \mathrm{C}$ boundary with the minimum proportion of compounds from both databases (minimal relative overlapping) was 1.32 (see file $\mathrm{S}-1$). Therefore, the lowest $\mathrm{H}: \mathrm{C}$ boundary for Lipids ${ }_{c}$ would be 1.32, coinciding with the largest $\mathrm{H}: \mathrm{C}$ boundary for Phytochemical ${ }_{\mathrm{c}}$.
$\mathrm{N}: \mathrm{C}$ ratio is the most determinant stoichiometric ratio for discriminating peptides from lipids, and peptides from phytochemical compounds. The $\mathrm{N}: \mathrm{C}$ thresholds with the minimal relative overlapping using the 50% of compounds for each group, were 0.126 for Protein ${ }_{c}$ vs. Lipids ${ }_{c}$, and for Protein ${ }_{c}$ vs. Phytochemical $_{c}$ (see file S-1). Tehrefore, 0.126 was the minimum value for N:C for Protein ${ }_{c}$, and the maximum value for Lipids ${ }_{c}$ and Phytochemical ${ }_{c}$.

Those results prove that $\mathrm{H}: \mathrm{C}$ and $\mathrm{N}: \mathrm{C}$ ratios, the most determinant stoichiometry to discriminate Lipids $_{c}$, Phytochemical ${ }_{c}$ and Protein ${ }_{c}$ remained identical if using 50\% or 100% of compounds from the databases (see Table 1 of the main manuscript).

Additional validation of the MSCC performance for Lipids $_{c}$, Phytochemical $_{c}$ and Protein $_{c}$ - the categories showing the largest overlapping across their $\mathrm{O}: \mathrm{H}: \mathrm{C}: \mathrm{N}: P$ stoichiometry.

The performance of the established thresholds (Table 1 of the main manuscript) of Lipids ${ }_{c}$, Phytochemical ${ }_{c}$ and Protein $_{c}$, the compound categories with the largest number of compounds and the largest overlapping across their elemental stoichiometry, were additionally tested by using the elemental stoichiometry of compounds that were not included in the databases utilized for MSCC determination. The performance for the stoichiometric thresholds for Lipids ${ }_{c}$ and Phytochemical (oxyaromatic compounds) were tested by matching 764 and 330 compounds, respectively, from the HMDB database (http://www.hmdb.ca/) that were not found in the databases used to determine the MSCC (see Table S-1). The performance for Protein ${ }_{c}$ stoichiometric thresholds was tested by using 1,200 random peptides from Swiss-Prot database (http://www.uniprot.org/) that were not previously utilized for MSCC determination.

We found that 96.99\% of the lipids from HMDB database matched within the stoichiometric constraints of Lipids ${ }_{c}$ (Table 1 main text) (0.26% matched into A-Sugar ${ }_{c}$, 0.13% matched into Carbohydrates $_{c}, 0.79 \%$ matched into Phytochemical ${ }_{c}, 0.92 \%$ matched into Protein ${ }_{c}$, and 0.92% did not match any category) (see file S-2). For oxy-aromatic compounds (Phytochemical compounds), 97.27\% of the compounds from the HMDB database matched into the stoichiometric constraints of Phytochemical ${ }_{c}$ of the MSCC (Table 1 main text) (1.8\% matched into Lipids ${ }_{c}, 0.6 \%$ matched into Protein ${ }_{c}$ and 0.3% did not match any category) (see file S-2). From the 1,200 random peptides from Swiss-Prot database that were not utilized for the determination of the MSCC, we found that only 1 peptide did not match to any of the compound categories making thus the 99.92% of peptides matching properly into the $\operatorname{Protein}_{c}$ of the proposed MSCC (Table 1 main text) (see database S-2).

The performance of the Lipids ${ }_{c}$, Phytochemical ${ }_{c}$ and Protein ${ }_{c}$ tested with the databases used for their MSCC calculation (Table 2 main manuscript) was, therefore, very similar when using compounds not included in the databases for MSCC determination (see file S-2):

- Lipidsc: 97.1\% (Table 2 main manuscript; 30,729 total compounds) vs. 96.99\% (with only compounds not included for MSCC determination; 764 total compounds).
- Phytochemical ${ }_{c}$: 96.5\% (Table 2 main manuscript; 7,774 total compounds) vs. 97.27\% (with only compounds not included for MSCC determination; 330 total compounds).
. Protein ${ }_{c}$: 99.9\% (Table 2 main manuscript; 93,245 total compounds) vs. 99.92\% (with only compounds not included for MSCC determination; 1,200 total compounds).

Formula assignment error determination of Compound Identification Algorithm (CIA).

The MSCC applies to elemental formulas which are commonly assigned to metabolic features acquired from the samples. Correct elemental formula assignment to metabolic features is thus a critical prerequisite for accurate compound classification and subsequent data interpretation. To assess the final error of MSCC, we used the metabolite database described above to examine the performance of the automated CIA^{4} for assigning elemental formulas. All formulas from the database were converted into exact masses before applying the CIA for elemental formula assignment. The CIA results were then compared to the known formulas from the database to determine correct assignment.

Applying the automated compound assignment algorithm ${ }^{4}$ to all exact masses of compounds from the databases we found that 96.94% of the masses were correctly assigned, with only 0.21% of compounds not assigned and 2.84% incorrectly assigned. All carbohydrate formulas were correctly assigned, followed by lipids (98.08\%), peptides (96.6\%; including phosphorylated peptides), and phytochemical compounds (93.67\%). An estimated 70.27% and 57.25% of nucleotides and amino sugars were correctly assigned to molecular formulas, respectively, while 21.62% and 34.78% were incorrectly assigned, and 8.11% and 7.97% not assigned (Table S3).

R script for compound classification of stoichiometric ratios.

Copy and paste the script below to "R-Studio", "Tinn-R", "RKward" or your favourite R editor/interface:

```
#############
### MSCC ###
############
# VARIABLES REQUIRED IN THE DATASET (make sure your dataset includes the following variables with the
names as described below; variables need to be in columns and the detected features need to be in rows):
# O.C <- O:C ratio column
# H.C <- H:C ratio column
# N.C <- N:C ratio column
# P.C <- P:C ratio column
# N.P <- N:P ratio column
# O <- O column
# N <- N column
# P <- P column
# S <- S column
# Mass <- exact mass column
## THE FOLLOWING 3 SECTIONS HAVE TO BE USED BY THE USER ##
# In "R", directories Paths are written with two backslashes "\\".
# Example: C:\\DATA\\MSCC\\R\\MSCC_Test.csv
# Read the DATASET in CSV format containing all the required variables.
# Example: C:\\DATA\\MSCC\\R\\MSCC_Test.csv
DATASET <- read.csv("Directory_of_the_dataset_in CSV_File", sep=",", header=T)
# Specify the directory of the resulting matchin results summary
# Example: C:\\DATA\\MSCC\\R\\MSCC_Test_Summary_Table.csv
Destination.File.Dataset <- "Directory_of_the_generated_matching_results_in_CSV_Format"
# Specify the directory for generating a summary of the reults in proportions
# Example: C:\\DATA\\MSCC\\R\\MSCC_Test_Summary_Proportions_Table.csv
Destination.File.Proportions <- "Directory_of_the_summary_proportion_results_in_CSV_Format"
## RUN THE FULL CODE BELOW ##
## 1st. STEP - ASSIGNATION OF COMPOUNDS ##
# Create a list for each compound category to keep the compound matches
list() -> Matching.Lipids
list() -> Matching.Carbohydrates
list() -> Matching.AmminoSugars
list() -> Matching.Phytochemical
list() -> Matching.Protein.1
```

```
list() -> Matching.Protein.2
list() -> Matching.Nucleotides
# Loops for each compound category (we perform a single loop for each category to facilitate double matching
detection)
# LIPID CONSTRAINTS
for (i in 1:nrow(DATASET)){
    if((DATASET[i,]$O.C <= 0.6) &&
        (DATASET[i,]$H.C >= 1.32) &&
        (DATASET[i,]$N.C <= 0.126) &&
        (DATASET[i,]$P.C < 0.35) &&
        (DATASET[i,]$N.P <= 5)){
    paste0("Lipid") -> Matching.Lipids[i]
    } else {
    paste0("") -> Matching.Lipids[i]
    }
}
# CARBOHYDRATE CONSTRAINTS
for (i in 1:nrow(DATASET)){
    if((DATASET[i,]$O.C >= 0.8) &&
        (DATASET[i,]$H.C >= 1.65) &&
        (DATASET[i,]$H.C < 2.7) &&
        (DATASET[i,]$N == 0)){
        paste0("Carbohydrate") -> Matching.Carbohydrates[i]
    } else {
        paste0("") -> Matching.Carbohydrates[i]
    }
    }
# AMINO-SUGAR CONSTRAINTS
for (i in 1:nrow(DATASET)){
    if((DATASET[i,]$O.C >= 0.61) &&
        (DATASET[i,]$H.C >= 1.45) &&
        (DATASET[i,]$N.C <= 0.2) &&
        (DATASET[i,]$N.C > 0.07) &&
        (DATASET[i,]$P.C < 0.3) &&
        (DATASET[i,]$N.P <= 2) &&
        (DATASET[i,]$O >= 3) &&
        (DATASET[i,]$N >= 1)){
        paste0("Amino.Sugar") -> Matching.AminoSugars[i]
    } else {
        paste0("") -> Matching.AminoSugars[i]
    }
}
# PHYTOCHEMICAL/OXYAROMATIC COMPOUND CONSTRAINTS
for (i in 1:nrow(DATASET)){
    if((DATASET[i,]$O.C <=1.15) &&
        (DATASET[i,]$H.C < 1.32) &&
        (DATASET[i,]$N.C < 0.126) &&
        (DATASET[i,]$P.C <= 0.2) &&
```

```
    (DATASET[i,]$N.P <= 3)){
    paste0("Phytochemical.Oxyaromatic.Compound") -> Matching.Phytochemical[i]
} else {
    paste0("") -> Matching.Phytochemical[i]
    }
}
# PROTEIN (1) CONSTRAINTS
for (i in 1:nrow(DATASET)){
    if((DATASET[i,]$O.C > 0.12) &&
        (DATASET[i,]$O.C <= 0.6) &&
        (DATASET[i,]$H.C > 0.9) &&
        (DATASET[i,]$H.C < 2.5) &&
        (DATASET[i,]$N.C >= 0.126) &&
        (DATASET[i,]$N.C <= 0.7) &&
        (DATASET[i,]$P.C < 0.17) &&
        (DATASET[i,]$N >= 1)){
        paste0("Protein") -> Matching.Protein.1[i]
    } else {
        paste0("") -> Matching.Protein.1[i]
    }
}
# PROTEIN (2) CONSTRAINTS
for (i in 1:nrow(DATASET)){
    if((DATASET[i,]$O.C > 0.6) &&
        (DATASET[i,]$O.C <= 1) &&
        (DATASET[i,]$H.C > 1.2) &&
        (DATASET[i,]$H.C < 2.5) &&
        (DATASET[i,]$N.C > 0.2) &&
        (DATASET[i,]$N.C <= 0.7) &&
        (DATASET[i,]$P.C < 0.17) &&
        (DATASET[i,]$N >= 1)){
        paste0("Protein") -> Matching.Protein.2[i]
        } else {
        paste0("") -> Matching.Protein.2[i]
    }
}
# NUCLEOTIDE CONSTRAINTS
for (i in 1:nrow(DATASET)){
    if((DATASET[i,]$O.C >= 0.5) &&
        (DATASET[i,]$O.C < 1.7) &&
        (DATASET[i,]$H.C > 1) &&
    (DATASET[i,]$H.C < 1.8) &&
    (DATASET[i,]$N.C >= 0.2) &&
    (DATASET[i,]$N.C <= 0.5) &&
    (DATASET[i,]$P.C >= 0.1) &&
    (DATASET[i,]$P.C <= 0.35) &&
    (DATASET[i,]$N.P > 0.6) &&
    (DATASET[i,]$N.P <= 5) &&
    (DATASET[i,]$N >= 2) &&
    (DATASET[i,]$P >= 1) &&
```

```
    (DATASET[i,]$S == 0) &&
    (DATASET[i,]$Mass > 305) &&
    (DATASET[i,]$Mass < 523)){
        pasteO("Nucleotide") -> Matching.Nucleotides[i]
        } else {
        paste0("") -> Matching.Nucleotides[i]
    }
}
# Concatenate all lists into a single one
Matchings.pasted. }01\mathrm{ <- as.list(paste(Matching.Nucleotides, Matching.Carbohydrates, Matching.Lipids,
Matching.AminoSugars, Matching.Phytochemical, Matching.Protein.1, Matching.Protein.2))
# Trim each row of the list (delete "spaces")
Matchings.pasted.02 <- as.list(gsub(" ", "", Matchings.pasted.01, fixed =TRUE))
# Add "Not.Matched" to those cells that were not matched to any compound category
Matchings.pasted.02[Matchings.pasted.02==""] <- "Not.Matched"
# Mark the potential Double Matches
# Create a new List
Matchings.list <- list()
# Loop on the generated list (double matchings will be marked by "Double.Matched")
for (i in 1:length(Matchings.pasted.02)){
    if (Matchings.pasted.02[i] == "Lipid"){
        paste0("Lipid") -> Matchings.list[i]
    } else if (Matchings.pasted.02[i] == "Carbohydrate"){
        paste0("Carbohydrate") -> Matchings.list[i]
    } else if (Matchings.pasted.02[i] == "Amino.Sugar"){
        paste0("Amino.Sugar") -> Matchings.list[i]
    } else if (Matchings.pasted.02[i] == "Phytochemical.Oxyaromatic.Compound"){
        paste0("Phytochemical.Oxyaromatic.Compound") -> Matchings.list[i]
    } else if (Matchings.pasted.02[i] == "Protein"){
        paste0("Protein") -> Matchings.list[i]
    } else if (Matchings.pasted.02[i] == "Nucleotide"){
        paste0("Nucleotide") -> Matchings.list[i]
    } else if (Matchings.pasted.02[i] == "Not.Matched"){
        paste0("Not.Matched") -> Matchings.list[i]
    } else {
        paste0(paste("Double.Match_",Matchings.pasted.02[i])) -> Matchings.list[i]
    }
}
Matchings <- as.data.frame(do.call(rbind, Matchings.list))
Matchings[Matchings == "Double.Match_NucleotideProtein"] <- "Nucleotide" # Double matches with
nucleotides will be Nucleotides
Matchings[Matchings == "Double.Match_NucleotideAmino.Sugar"] <- "Nucleotide" # Double matches with
nucleotdies will be Nucleotides
DATASET.MATCHED <- DATASET
DATASET.MATCHED["Compound.Match"] <- Matchings # Add a new column called "Compound.Match" into the
DATASET.
```

```
# SAVE DATASET INTO A CSV FILE
write.table(data.frame(DATASET.MATCHED), file= Destination.File.Dataset)
```

\#\# 2nd STEP - CALCULATE THE PROPORTIONS OF EACH COMPOUND CATEGORY \#\#
Protein.Proportion <- length(which(Matchings == "Protein"))/nrow(Matchings)*100
Phytochemical.Oxyaromatic.Compound.Proportion <- length(which(Matchings ==
"Phytochemical.Oxyaromatic.Compound"))/nrow(Matchings)*100
Lipid.Proportion <- length(which(Matchings == "Lipid"))/nrow(Matchings)*100
Carbohydrate.Proportion <- length(which(Matchings == "Carbohydrate"))/nrow(Matchings)*100
Amino.Sugar.Proportion <- length(which(Matchings == "Amino.Sugar"))/nrow(Matchings)*100
Nucleotide.Proportion <- length(which(Matchings == "Nucleotide"))/nrow(Matchings)*100
Not.Matched.Proportion <- length(which(Matchings == "Not.Matched"))/nrow(Matchings)*100
Double.Matched.Proportion <- length(which(Matchings != "Protein" \& Matchings !=
"Phytochemical.Oxyaromatic.Compound" \& Matchings != "Lipid" \& Matchings != "Carbohydrate" \& Matchings
!= "Amino.Sugar" \& Matchings != "Nucleotide" \& Matchings != "Not.Matched"))/nrow(Matchings)*100 \#
Including double matches
\# Integrate all the proportions together into a single categorical vector
Compound.Proportions <- c(Carbohydrate.Proportion, Amino.Sugar.Proportion, Nucleotide.Proportion,
Lipid.Proportion, Protein.Proportion, Phytochemical.Oxyaromatic.Compound.Proportion,
Not.Matched.Proportion, Double.Matched.Proportion)
\# Create a Data Frame with the proportions
Compound.Proportions.DF <- as.data.frame(Compound.Proportions)
\# Create the Labels for each proportion (has to follow the same order as the integration of the proportions)
Labels <- c("Carbohydrates", "Amino.Sugars", "Nucleotides", "Lipids", "Proteins",
"Phytochemical.Oxyaromatic.Compounds", "Not.Matched", "Double.Matched")
\# Add a new column into the Data Frame with the name of the compounds
Compound.Proportions.DF["Compound"] <- Labels
\# SAVE DATASET INTO A CSV FILE
write.table(data.frame(Compound.Proportions.DF), file= Destination.File.Proportions)
\#\# 3rd STEP - PIE CHART OF THE COMPOUND PROPORTIONS \#\#
\# Constrain the number of decimals to 2
Pie.Proportions <- list()
for (i in 1:length(Compound.Proportions.DF\$Compound.Proportions))\{
format(round(Compound.Proportions.DF\$Compound.Proportions[i], 2), nsmall=2) -> Pie.Proportions[i]
\}
\# Create the labels for the Pie Chart
Labels.Plot <- paste (Labels, Pie.Proportions) \# Add The percentage value to each label.
Labels.Plot. 2 <- paste(Labels.Plot,"\%", sep="") \# Add "\%" to each label.
\# Plot the Pie Chart
pie(Compound.Proportions, labels = Labels.Plot.2, col= rainbow(length(Labels.Plot.2)))

Supplementary Tables

Table S-1. Compounds included in each of the online examined databases (lipids, amino sugars, phytochemical compounds, carbohydratres and nucleotides) and the corresponding source.

Lipids (Source: LipidMAP)	
Fatty Acyls [FA]	Docosanoids [FA04]
	Eicosanoids [FA03]
	Acyltrehaloses [SLO3]
	Fatty Acids and Conjugates [FA01]
	Fatty acyl glycosides [FA13]
	Fatty alcohols [FA05]
	Fatty aldehydes [FA06]
	Fatty amides [FA08]
	Fatty esters [FA07]
	Hydrocarbons [FA11]
	Octadecanoids [FA02]
	Oxygenated hydrocarbons [FA12]
Glycerolipids [GL]	Diradylglycerols [GLO2]
	Glycosyldiradylglycerols [GL05]
	Glycosylmonoradylglycerols [GLO4]
	Monoradylglycerols [GL01]
	Triradylglycerols [GLO3]
Glycerophospholipids [GP]	CDP-Glycerols [GP13]
	Glycerophosphates [GP10]
	Glycerophosphocholines [GP01]
	Glycerophosphoethanolamines [GP02]
	Glycerophosphoinositols [GP06]
	Glycerophosphoglycerols [GP04]
	Glycerophosphoglycerophosphoglycerols [GP12]
	Glycerophosphoinositol bisphosphates [GP08]
	Glycerophosphoinositol monophosphates [GP07]
	Glycerophosphoinositol trisphosphates [GP09]
	Glycerophosphoinositolglycans [GP15]
	Glycosylglycerophospholipids [GP14]
	Glycerophosphoserines [GPO3]
	Glyceropyrophosphates [GP11]
	Oxidized glycerophospholipids [GP20]
Prenol Lipids [PR]	Quinones and hydroquinones [PRO2]
	Polyprenols [PRO3]
Saccharolipids [SL]	Acylaminosugar glycans [SLO2]
	Acylaminosugars [SLO1]
	Acyltrehaloses [SLO3]
	Other acyl sugars [SLO5]
Sphingolipids [SP]	Ceramides [SP02]
	Neutral glycosphingolipids [SP05]
	Phosphonosphingolipids [SP04]
	Phosphosphingolipids [SP03]
	Sphingoid bases [SP01]
Sterol Lipids [ST]	Bile acids and derivatives [STO4]

	Secosteroids [ST03]
	Steroid conjugates [ST05]
	Steroids [STO2]
	Sterols [STO1]
Phytochemical Compounds (Sources: LipidMAP and KEGG)	
From LipidMAP	
Polyketides [PK]	Linear polyketides [PK01]
	Halogenated acetogenins [PKO2]
	Annonaceae acetogenins [PKO3]
	Macrolides and lactone polyketides [PK04]
	Ansamycins and related polyketides [PK05]
	Polyenes [PK06]
	Linear tetracyclines [PK07]
	Polyether antibiotics [PK09]
	Aflatoxins and related substances [PK10]
	Cytochalasins [PK11]
	Flavonoids [PK12]
	Aromatic polyketides [PK13]
Prenol Lipids [PR]	Hopanoids [PR04]
From KEGG	
Flavonoids	Flavonoids
	Isoflavonoids
	Complex flavonoids
	Monolignols
	Lignans
	Coumarins
Skimate / acetate	malonate pathway derived compounds
Polyketides	Anthraquinones
	Pyrones
	Others
Fatty acids related compounds	Fatty acids
Amino acid related compounds	Betalains
	Cyanogenic glucosides
	Glucosinolates
	Others
Others	Naphthoquinones
	Tannins and galloyl derivatives
Amino-Sugars (Sources: KEGG and ChEBI)	
From KEGG	Amino sugars
From ChEBI	15993, 16062, 16173, 16702, 17122, 17274, 17316, 17411, 17446, 17911, 18207, 18232, 21615, 21977, 24108, 25505, 27438, 27459, 27465, 27503, 27625, 28000, 28132, 28207, 28255, 28401, 28761, 28879, 28944, 28945, 28999, 29006, 29025, 29711, 31747, 31748, 32570, 32571, 32572, 35418, 39610, 44230, 46991, 47966, 47968, 47987, 52079, 52426, 57832, 59239, 59277, 59732, 59986, 61033, 61437, 62169, $62325,63120,63153,63287,64888,68682,7125,7203,72626$,

	72725, 73783, 79970, 79971, 81450, 83930, 84560, 84569, 84941, 85106, 87176, 87177, 87178, 87179, 87180, 87313, 88130, 95151
Carbohydrates (Source: KEGG)	
Monosaccharides	Aldoses
	Ketoses
	Deoxy sugars
	Sugar acids
	Sugar alcohols
Oligosaccharides	Disaccharides
	Tetrasaccharides
Nucleotides (Source: KEGG)	
Nucleotides	Ribonucleotides
	Deoxyribonucleotides
	Cyclic nucleotides

Table S-2. Proportions of compounds from databases that correctly matched (CM), not matched (NM), incorrectly matched (IM), and double matched (DM) with lipids, protein, amino sugar and carbohydrate categories delimited by our constraints (Table 1 of main text) or the O:C and H:C constraints proposed for other 21 studies. Each of the 21 bibliographical studies is referenced with a different number and the citations are placed as a footnote. The proportions of IM considering DM as incorrect match (IM+DM), the CM without consider the NM and DM (CM-(NM+DM)) and the $\mathrm{CM} / \mathrm{IM}_{+\mathrm{DM}}$ and $\mathrm{CM} /\left(\mathrm{IM}_{+\mathrm{DM}}+\mathrm{NM}\right)$ ratios are also shown. The total proportions and ratios considering all categories together are shown

									Study n	umber	refere	es as	otnote)									
	Present study	1.	2.	3.	4.	5.	6.	7.	8.	9.	10.	11.	12.	13.	14.	15.	16.	17.	18.	19.	20.	21.
Lipids																						
CM (\%)	97.05	17.45	53.10	26.35	9.13	58.92	77.98	34.51	33.36	75.00	62.35	25.29	49.21	72.92	24.77	29.26	27.73	66.18	36.98	25.81	23.93	58.30
IM (\%)	1.67	1.81	4.95	30.44	39.03	34.58	12.09	25.58	12.10	18.35	17.63	1.23	11.05	3.87	6.44	39.19	16.11	11.74	25.59	8.29	35.52	23.97
NM (\%)	1.28	80.74	41.94	34.25	51.83	3.60	9.59	38.21	54.54	6.33	20.02	73.48	39.74	23.21	3.19	31.54	56.16	22.07	37.43	65.90	28.05	17.71
DM (\%)	0.00	0.00	0.00	8.96	0.01	2.90	0.34	1.70	0.00	0.33	0.00	0.00	0.00	0.00	65.60	0.00	0.00	0.00	0.00	0.00	12.50	0.01
IM +DO (\%)	1.67	1.81	4.95	39.40	39.04	37.48	12.43	27.28	12.10	18.67	17.63	1.23	11.05	3.87	72.04	39.19	16.11	11.74	25.59	8.29	48.02	23.99
CM - $\mathrm{NM}_{\text {+ }+\mathrm{DM} \text {) (\%) }}$	98.31	90.59	91.47	46.40	18.96	63.02	86.58	57.43	73.38	80.35	77.96	95.35	81.67	94.96	79.36	42.75	63.26	84.93	59.10	75.68	40.25	70.86
CM/IM + DM	58.13	9.63	10.72	0.67	0.23	1.57	6.27	1.27	2.76	4.02	3.54	20.50	4.45	18.85	0.34	0.75	1.72	5.64	1.45	3.11	0.50	2.43
CM/(IM+om + NM)	32.92	0.21	1.13	0.36	0.10	1.43	3.54	0.53	0.50	3.00	1.66	0.34	0.97	2.69	0.33	0.41	0.38	1.96	0.59	0.35	0.31	1.40
Peptides																						
CM (\%)	99.89	13.74	17.90	72.44	68.03	65.25	37.53	56.00	43.59	55.69	45.50	17.29	24.70	14.21	32.02	31.39	16.76	19.34	61.13	15.70	66.11	64.49
IM (\%)	0.01	0.29	7.24	3.30	2.55	7.14	26.19	2.95	0.82	22.36	10.26	5.36	1.49	30.79	0.97	10.45	1.44	10.71	2.40	4.24	0.63	6.59
NM (\%)	0.10	85.98	74.86	23.00	29.34	26.80	35.58	40.57	55.59	20.94	44.24	77.36	73.81	55.00	0.02	58.15	81.79	69.95	36.47	80.06	32.99	28.81
DM (\%)	0.00	0.00	0.00	1.25	0.08	0.82	0.70	0.49	0.00	1.01	0.00	0.00	0.00	0.00	66.99	0.00	0.00	0.00	0.00	0.00	0.27	0.11
$\underline{19+\text { +m (\%) }}$	0.01	0.29	7.24	4.55	2.63	7.95	26.89	3.43	0.82	23.37	10.26	5.36	1.49	30.79	67.96	10.45	1.44	10.71	2.40	4.24	0.90	6.70
CM -(NM + + ${ }^{\text {M }}$) (\%)	99.99	97.94	71.20	95.64	96.39	90.14	58.90	95.00	98.16	71.35	81.61	76.35	94.32	31.58	97.05	75.02	92.07	64.37	96.22	78.74	99.05	90.73
CM/IM+DM	7761.83	47.61	2.47	15.91	25.89	8.20	1.40	16.31	53.20	2.38	4.44	3.23	16.62	0.46	0.47	3.00	11.61	1.81	25.42	3.70	73.21	9.62
CM/(IM+DM + NM)	904.29	0.16	0.22	2.63	2.13	1.88	0.60	1.27	0.77	1.26	0.83	0.21	0.33	0.17	0.47	0.46	0.20	0.24	1.57	0.19	1.95	1.82
Amino Sugars																						
CM (\%)	98.59			9.15	6.34	11.97	4.93	6.34		22.54	4.93							16.20	6.34			4.93
IM (\%)	0.00			35.21	42.25	50.00	55.63	0.00		0.00	46.48							13.38	38.73			0.00

NM (\%)	1.41			48.59	51.41	38.03	39.44	93.66		77.46	48.59							70.42	54.93			95.07
DM (\%)	0.00			7.04	0.00	0.00	0.00	0.00		0.00	0.00							0.00	0.00			0.00
IM ${ }_{\text {+ }}$ (\%)	0.00			42.25	42.25	50.00	55.63	0.00		0.00	46.48							13.38	38.73			0.00
CM-(NM + + ${ }^{\text {M (}}$ (\%)	100.00			20.63	13.04	19.32	8.14	100.00		100.00	9.59							54.76	14.06			100.00
CM/IM + +	∞			0.22	0.15	0.24	0.09	∞		∞	0.11							1.21	0.16			∞
CM/ (IM+DM + NM)	70.00			0.10	0.07	0.14	0.05	0.07		0.29	0.05							0.19	0.07			0.05

Carbohydrates																			
CM (\%)	98.78	6.10	6.10	82.93	82.93	86.59	93.90	4.88	82.93	28.05	39.02	4.88	97.56	1.22	35.37	34.15	82.93	39.02	37.80
IM (\%)	0.00	0.00	0.00	0.00	1.22	1.22	0.00	0.00	0.00	0.00	0.00	0.00	1.22	0.00	0.00	1.22	0.00	0.00	0.00
NM (\%)	1.22	93.90	93.90	17.07	15.85	12.20	6.10	95.12	17.07	71.95	60.98	95.12	1.22	98.78	64.63	64.63	17.07	60.98	62.20
DM (\%)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
IM+DM (\%)	0.00	0.00	0.00	0.00	1.22	1.22	0.00	0.00	0.00	0.00	0.00	0.00	1.22	0.00	0.00	1.22	0.00	0.00	0.00
CM-(NM + DM) $(\%)$	100.00	100.00	100.00	100.00	98.55	98.61	100.00	100.00	100.00	100.00	100.00	100.00	98.77	100.00	100.00	96.55	100.00	100.00	100.00
CM/IM ${ }_{\text {+ }}$ M	∞	∞	∞	∞	68.00	71.00	∞	∞	∞	∞	∞	∞	80.00	∞	∞	28.00	∞	∞	∞
CM/(IM ${ }_{\text {+ }}$ + + NM $)$	81.00	0.06	0.06	4.86	4.86	6.45	15.40	0.05	4.86	0.39	0.64	0.05	40.00	0.01	0.55	0.52	4.86	0.64	0.61

Total Absolute (according to the total absolute number of metabolites)
For those studies with no amino sugar or carbohydrate category; those clases were not considered for computation of totals.

CM (\%)	99.19	14.63	26.58	60.98	53.40	63.64	47.54	50.62	40.98	60.43	49.65	19.25	30.75	28.71	30.23	30.81	19.47	30.94	55.11	18.20	55.58	62.89
IM (\%)	0.42	0.70	6.68	10.05	11.62	13.97	22.72	8.55	3.63	21.34	12.12	4.36	3.91	24.09	2.40	17.57	5.10	10.96	8.18	5.28	9.31	10.89
NM (\%)	0.39	84.67	66.74	25.81	34.92	21.06	29.13	40.04	55.39	17.38	38.23	76.39	65.35	47.20	0.84	51.62	75.43	58.10	36.71	76.52	31.82	26.14
DM (\%)	0.00	0.00	0.00	3.16	0.06	1.33	0.61	0.79	0.00	0.84	0.00	0.00	0.00	0.00	66.52	0.00	0.00	0.00	0.00	0.00	3.30	0.08
IM ${ }_{\text {+ }}$ (\%) $(\%)$	0.42	0.70	6.68	13.21	11.68	15.30	23.33	9.33	3.63	22.18	12.12	4.36	3.91	24.09	68.93	17.57	5.10	10.96	8.18	5.28	12.60	10.97
CM-(NM + DM) (\%)	99.58	95.46	79.92	85.85	82.13	82.00	67.66	85.46	91.86	73.84	80.38	81.54	88.73	54.38	92.64	63.68	79.26	73.84	87.07	77.52	85.66	85.16
CM/IM ${ }_{\text {+DM }}$	234.64	21.01	3.98	4.61	4.57	4.16	2.04	5.42	11.29	2.72	4.10	4.42	7.87	1.19	0.44	1.75	3.82	2.82	6.74	3.45	4.41	5.73
CM/($\mathrm{M}_{+}+\mathrm{DM}+\mathrm{NM}$)	121.73	0.17	0.36	1.56	1.15	1.75	0.91	1.03	0.69	1.53	0.99	0.24	0.44	0.40	0.43	0.45	0.24	0.45	1.23	0.22	1.25	1.69

Total Relative (giving the same weight to each database independently of the number of metabolites included in each one)

CM (\%)	98.58	12.43	25.70	47.72	41.61	55.68	53.59	32.28	27.28	51.08	48.93	23.54	37.65	30.67	51.45	20.62	26.62	33.97	46.84	26.84	42.61	42.57
IM (\%)	0.42	0.70	4.06	17.24	21.26	23.23	23.48	9.51	4.31	13.57	18.59	2.20	4.18	11.55	2.88	16.55	5.85	9.26	16.68	4.18	12.05	10.19
NM (\%)	0.88	86.87	70.23	30.73	37.11	20.15	22.68	57.48	68.42	34.91	32.48	74.26	58.18	57.78	1.48	62.83	67.53	56.77	36.48	68.98	41.08	47.20
DM (\%)	0.00	0.00	0.00	4.31	0.02	0.93	0.26	0.73	0.00	0.45	0.00	0.00	0.00	0.00	44.20	0.00	0.00	0.00	0.00	0.00	4.26	0.04
IM + DM (\%)	0.42	0.70	4.06	21.55	21.29	24.16	23.74	10.24	4.31	14.01	18.59	2.20	4.18	11.55	47.07	16.55	5.85	9.26	16.68	4.18	16.31	10.23
CM-($\mathrm{NM}+\mathrm{DM}$) $(\%)$	99.57	96.18	87.56	65.67	56.74	67.77	63.40	84.14	90.51	83.90	67.29	90.57	92.00	75.51	91.73	72.59	85.11	75.15	67.35	84.81	79.77	87.20

CM/IM + OM	234.39	17.74	6.32	2.21	1.95	2.30	2.26	3.15	6.33	3.64	2.63	10.72	9.01	2.65	1.09	1.25	4.55	3.67	2.81	6.43	2.61	4.16
CM/(IM+om + NM)	272.05	0.15	0.47	1.99	1.79	2.48	4.90	0.62	0.44	1.52	1.85	0.31	0.65	0.97	13.60	0.29	0.38	0.73	1.77	0.39	0.96	1.09

486 1. (Kim, Kramer, \& Hatcher, 2003) ${ }^{5}$ 2. (Mopper, Stubbins, Ritchie, Bialk, \& Hatcher, 2007) ${ }^{6}$
488 3. (Podgorski et al., 2012) ${ }^{7}$
489 4. (D'Andrilli, Foreman, Marshall, \& McKnight, 2013) ${ }^{8}$
490 5. (Minor, Swenson, Mattson, \& Oyler, 2014) ${ }^{9}$
491 6. (Tfaily et al., 2015) ${ }^{10}$
492 7. (Schmidt, Elvert, Koch, Witt, \& Hinrichs, 2009) ${ }^{11}$
493 8. (Bhatia, Das, Longnecker, Charette, \& Kujawinski, 2010) ${ }^{12}$
494 9. (Lusk \& Toor, 2016) ${ }^{13}$
495 10. (Xu et al., 2013) ${ }^{14}$
496 11. (Saenger, Cécillon, Sebag, \& Brun, 2013) ${ }^{15}$
497 12. (Liu, Sleighter, Zhong, \& Hatcher, 2011) ${ }^{16}$
498 13. (Wang, Goual, \& Colberg, 2012) ${ }^{17}$
499 14. (Hockaday, Purcell, Marshall, Baldock, \& Hatcher, 2009) ${ }^{18}$
500 15. (Nebbioso \& Piccolo, 2013) ${ }^{19}$
501 16. (Thevenot et al., 2013) ${ }^{20}$
502 17. (Grannas, Hockaday, Hatcher, Thompson, \& Mosley-Thompson, 2006) ${ }^{21}$
503 18. (Mann et al., 2015) ${ }^{22}$
504 19. (Stubbins et al., 2010 ${ }^{23}$
505 20. (Osborne et al., 2013) ${ }^{24}$
506 21. (Hodgkins et al., 2014) ${ }^{25}$

	Correctly Assigned	Incorrectly Assigned	Not Assigned	Correctly Assigned excluding Not-Assigned	Correctly Assigned / Incorrectly Assigned ratio	Correctly Assigned / (Incorrectly Assigned + Not Assigned) ratio
Lipids	98.08\%	1.14\%	0.78\%	98.08\%	86.03	51.08
Peptides	96.6\%	3.01\%	0.03\%	96.6\%	32.09	31.78
Non-phosphorilated Peptides	98.39\%	1.58\%	0.03\%	98.39\%	62.27	61.11
Phosphopeptides	89.4\%	10.59\%	0.01\%	89.4\%	8.44	8.43
Amino sugars	57.25\%	34.78\%	7.97\%	57.25\%	1.64	1.34
Carbohydrates	100\%	0\%	0\%	100\%	∞	∞
Nucleotides	70.27\%	21.62\%	8.11\%	70.27\%	3.25	2.36
Phytochemical compounds	93.67\%	5.98\%	0.35\%	93.67\%	15.66	14.8
TOTAL	96.94\%	2.84\%	0.21\%	96.94\%	34.13	31.78

Table S-3. Percentage of database compound exact masses that were correctly, incorrectly and not assigned to the corresponding molecular formula by applying compound identification algorithm (CIA) ${ }^{4}$. The absolute number of is shown in brackets. Correctly assigned formulas excluding the not assigned, and the ratios correctly-assigned/incorrectly-assigned and the correctly-assigned/(incorrectly-assigned + not-assigned) are also shown. The total proportions are shown on the calculations based on the absolute number of compounds in databases and on the relative number of compounds.

Supplementary Figures

Figure S-1. Correlation plots of stoichiometric variables ($\mathrm{O}: \mathrm{C}, \mathrm{H}: \mathrm{C}, \mathrm{N}: \mathrm{C}, \mathrm{P}: \mathrm{C}$ and $\mathrm{N}: \mathrm{P}$) for all compound databases (Amino sugars, yellow; Carbohydrates, orange; Lipids, blue; Nucleotides, cyan; Peptides, red; Phytochemical compounds, green;). Box plots showing the distribution of compounds of each database for each variable are shown, extreme values are shown by dots. Left panels represent the distribution of each of the compounds of each database along the specified stoichiometric variable.
 variable ($\mathrm{H}: \mathrm{C}$): 1.32 in this example.

Figure S-2. Figure example showing the implemented criteria to determine the threshold value to separate two categories (Lipids and Phytochemical compounds in this example) that showed overlapping in all stoichiometric variables. The stoichiometric variable that showed better separation between the two compound categories was the one considered to discriminate them; $\mathrm{H}: \mathrm{C}$ ratio in this case. First, a normal distribution fitting was created for each compound category along the selected variable (a). The intersection value between both distribution fittings was considered as a reference threshold (b). We created 2000 numbers at 0.0001 step value (threshold candidates) above and below the reference threshold value. Each threshold candidate value determines thus a distribution range for each compound category along the variable $(\mathrm{H}: \mathrm{C})$; in this example, the variable range below the candidate value corresponds to phytochemical compounds and above corresponds to lipids. For each of the 4,000 threshold candidate values we calculated the proportion of features of each compound category outside their alleged distribution range. Total overlapping distribution along the 4000 threshold candidates for $\mathrm{H}: \mathrm{C}$ (c). The candidate value that separated the two categories with the minimum proportional number of total overlapped compounds (Lipids + Phytochemical compounds) was considered as the cut-off for those compound categories and

Figure S-3. Bidimensional (2D) density plots of H:C vs. O:C, N:C, P:C, and N:P ratios for lipids database (including 30,729 elemental formulas). Color gradient indicates distinct number of features included in each squared area (red squares indicate the areas with higher density of lipids; blue squares indicate the areas with lower density of lipids). Stoichiometric thresholds for each variable (H:C, O:C, N:C, P:C, and $\mathrm{N}: \mathrm{P}$) are represented by red dashed lines (see Table 1 of the main text for exact stoichiometric thresholds). Light-blue area indicates the area included in the stoichiometric constraints. The percentage on the top-right corner of the plots indicate the proportion of compounds within the light-blue area (within the MSCC thresholds).

Figure S－4．Bidimensional（2D）density plots of $\mathrm{H}: \mathrm{C}$ vs． $\mathrm{O}: \mathrm{C}, \mathrm{N}: \mathrm{C}, \mathrm{P}: \mathrm{C}$ ，and $\mathrm{N}: \mathrm{P}$ ratios for peptide database （including 93，245 elemental formulas）．Color gradient indicates distinct number of features included in each squared area（red squares indicate the areas with higher density of peptides；blue squares indicate the areas with lower density of peptides）．Stoichiometric thresholds for each variable（ $\mathrm{H}: \mathrm{C}, \mathrm{O}: \mathrm{C}, \mathrm{N}: \mathrm{C}, \mathrm{P}: \mathrm{C}$ ， and $N: P$ ）are represented by red dashed lines（constraints 1）and blue dashed lines（constraints 2）（see Table 1 of the main text for exact stoichiometric thresholds）．Stoichiometric constraints for Protein category $\left(\right.$ Protein $\left._{c}\right)$ is composed by constraints 1 and constraints 2 together．Light－blue area indicates the area included in the stoichiometric constraints．The percentages on the top－right corner of the plots indicate the proportion of compounds within the light－blue area（within the MSCC thresholds）．

－ーニーーシ Threshold for Constraints 1 －ェーーー－Threshold for Constraints 2

Figure S-5. Bidimensional (2D) density plots of $\mathrm{H}: \mathrm{C}$ vs. $\mathrm{O}: \mathrm{C}, \mathrm{N}: \mathrm{C}, \mathrm{P}: \mathrm{C}$, and $\mathrm{N}: \mathrm{P}$ ratios for the phytochemical compounds database (including 7,774 elemental formulas). Color gradient indicates distinct number of features included in each squared area (red squares indicate the areas with higher density of phytochemical compounds; blue squares indicate the areas with lower density of phytochemical compounds). Stoichiometric thresholds for each variable ($\mathrm{H}: \mathrm{C}, \mathrm{O}: \mathrm{C}, \mathrm{N}: \mathrm{C}, \mathrm{P}: \mathrm{C}$, and $\mathrm{N}: \mathrm{P}$) are represented by red dashed lines (see Table 1 of the main text for exact stoichiometric thresholds). Light-blue area indicates the area included in the stoichiometric constraints. The percentages on the top-right corner of the plots indicate the proportion of compounds within the light-blue area (within the MSCC thresholds).

Figure S-6. Bidimensional (2D) density plots of H:C vs. O:C, N:C, P:C, and N:P ratios for amino-sugar database (including 142 elemental formulas). Color gradient indicates distinct number of features included in each squared area (red squares indicate the areas with higher density of amino-sugar; blue squares indicate the areas with lower density of amino-sugar). Stoichiometric thresholds for each variable (H:C, O:C, N:C, P:C, and N:P) are represented by red dashed lines (see Table 1 of the main text for exact stoichiometric thresholds). Light-blue area indicates the area included in the stoichiometric constraints. The percentages on the top-right corner of the plots indicate the proportion of compounds within the light-blue area (within the MSCC thresholds).

Figure S-7. Bidimensional (2D) density plots of H:C vs. O:C ratio for carbohydrate database (including 82 elemental formulas). Color gradient indicates distinct number of features included in each squared area (red squares indicate the areas with higher density of carbohydrates; blue squares indicate the areas with lower density of carbohydrates). Stoichiometric thresholds for each variable ($\mathrm{H}: \mathrm{C}$ and $\mathrm{O}: \mathrm{C}$) are represented by red dashed lines (see Table 1 of the main text for exact stoichiometric thresholds). Lightblue area indicates the area included in the stoichiometric constraints. The percentage on the top-right corner of the plot indicates the proportion of compounds within the light-blue area (within the MSCC thresholds).

Figure S-8. Bidimensional (2D) density plots of $\mathrm{H}: \mathrm{C}$ vs. $\mathrm{O}: \mathrm{C}, \mathrm{N}: \mathrm{C}, \mathrm{P}: \mathrm{C}$, and $\mathrm{N}: \mathrm{P}$ ratios for nucleotide database (including 37 elemental formulas). Color gradient indicates distinct number of features included in each squared area (red squares indicate the areas with higher density of nucleotides; blue squares indicate the areas with lower density of nucleotides). Stoichiometric thresholds for each variable ($H: C, O: C, N: C, P: C$, and $N: P$) are represented by red dashed lines (see Table 1 of the main text for exact stoichiometric thresholds). Light-blue area indicates the area included in the stoichiometric constraints. The percentages on the top-right corner of the plots indicate the proportion of compounds within the light-blue area (within the MSCC thresholds).

Figure S-9. vK diagram ($\mathrm{O}: \mathrm{C}$ vs $\mathrm{H}: \mathrm{C}$) representing the lipid, phytochemical compound and isoprenoid databases. The threshold value separating lipids and phytochemical compounds along $\mathrm{H}: \mathrm{C}$ is shown by a dashed black line at $\mathrm{H}: \mathrm{C}=1.32$. Box plots for each category compound is shown for $\mathrm{H}: \mathrm{C}$ variable. First and third percentiles of box plots represent the 10% and 90% of the databases. Dots outside percentiles are considered as outliers.

Figure S-10. H:C vs. N:C molecular ratios of all peptide (red), lipid (blue) and phytochemical compound (green) databases. Box plots for of each category compound is shown for the stoichiometric variables. First and third percentiles of box plots represent the 10% and 90% of the data. Squares represent the median values and the dots outside the quartiles are outlier compounds for each of the axis. Outliers were determined as the compounds presenting threefold higher values than the third quartile or threefold values lower than the first quartile. In this case we used $\mathrm{H}: \mathrm{C}$ ratio as the discriminant variable discern lipids from phytochemical compounds while N:C ratio was the discriminant between peptides and the two other categories, especially lipids.

References Supporting Information

(1) Fahy, E.; Subramaniam, S.; Murphy, R. C.; Nishijima, M.; Raetz, C. R. H.; Shimizu, T.; Spener, F.; van Meer, G.; Wakelam, M. J. O.; Dennis, E. A. J. Lipid Res. 2009, 50 Suppl (Supplement), S9-14.
(2) Roberts, M. F.; Wink, M. Alkaloids: Biochemistry, Ecology, and Medicinal Applications, 1st ed.; Roberts, M. F., Wink, M., Eds.; Springer Science+Business Media, LLC: New Yor, 1998.
(3) Cimanga, K.; De Bruyne, T.; Pieters, L.; Claeys, M.; Vlietinck, A. Tetrahedron Lett. 1996, 37 (10), 1703-1706.
(4) Kujawinski, E. B.; Behn, M. D. Anal. Chem. 2006, 78 (13), 4363-4373.
(5) Kim, S.; Kramer, R. W.; Hatcher, P. G. Anal. Chem. 2003, 75 (20), 5336-5344.
(6) Mopper, K.; Stubbins, A.; Ritchie, J. D.; Bialk, H. M.; Hatcher, P. G. Chem. Rev. 2007, 107 (2), 419442.
(7) Podgorski, D. C.; Hamdan, R.; McKenna, A. M.; Nyadong, L.; Rodgers, R. P.; Marshall, A. G.; Cooper, W. T. Anal. Chem. 2012, 84 (3), 1281-1287.
(8) D'Andrilli, J.; Foreman, C. M.; Marshall, A. G.; McKnight, D. M. Org. Geochem. 2013, 65, 19-28.
(9) Minor, E. C.; Swenson, M. M.; Mattson, B. M.; Oyler, A. R. Environ. Sci. Process. Impacts 2014, 16 (9), 2064-2079.
(10) Tfaily, M. M.; Chu, R. K.; Tolić, N.; Roscioli, K. M.; Anderton, C. R.; Paša-Tolić, L.; Robinson, E. W.; Hess, N. J. Anal. Chem. 2015, 87 (10), 5206-5215.
(11) Schmidt, F.; Elvert, M.; Koch, B. P.; Witt, M.; Hinrichs, K.-U. Geochim. Cosmochim. Acta 2009, 73, 3337-3358.
(12) Bhatia, M. P.; Das, S. B.; Longnecker, K.; Charette, M. A.; Kujawinski, E. B. Geochim. Cosmochim. Acta 2010, 74, 3768-3784.
(13) Lusk, M. G.; Toor, G. S. Water Res. 2016, 96, 225-235.
(14) Xu, C.; Chen, H.; Sugiyama, Y.; Zhang, S.; Li, H.-P.; Ho, Y.-F.; Chuang, C.-Y.; Schwehr, K. A.; Kaplan, D. I.; Yeager, C.; Roberts, K. A.; Hatcher, P. G.; Santschi, P. H. Sci. Total Environ. 2013, 449, 244252.
(15) Saenger, A.; Cécillon, L.; Sebag, D.; Brun, J.-J. Org. Geochem. 2013, 54, 101-114.
(16) Liu, Z.; Sleighter, R. L.; Zhong, J.; Hatcher, P. G. Estuar. Coast. Shelf Sci. 2011, 92, 205-216.
(17) Wang, X.; Goual, L.; Colberg, P. J. S. J. Hazard. Mater. 2012, 217-218 (218), 164-170.
(18) Hockaday, W. C.; Purcell, J. M.; Marshall, A. G.; Baldock, J. A.; Hatcher, P. G. Limnol. Oceanogr. Methods 2009, 7 (1), 81-95.
(19) Nebbioso, A.; Piccolo, A. Anal. Bioanal. Chem. 2013, 405 (1), 109-124.
(20) Thevenot, M.; Dignac, M.-F.; Mendez-Millan, M.; Bahri, H.; Hatté, C.; Bardoux, G.; Rumpel, C. Biol. Fertil. Soils 2013, 49 (5), 517-526.
(21) Grannas, A. M.; Hockaday, W. C.; Hatcher, P. G.; Thompson, L. G.; Mosley-Thompson, E. J. Geophys. Res. 2006, 111 (D4), D04304.
(22) Mann, B. F.; Chen, H.; Herndon, E. M.; Chu, R. K.; Tolic, N.; Portier, E. F.; Roy Chowdhury, T.; Robinson, E. W.; Callister, S. J.; Wullschleger, S. D.; Graham, D. E.; Liang, L.; Gu, B. PLoS One 2015, 10 (6), e0130557.
(23) Stubbins, A.; Spencer, R. G. M.; Chen, H.; Hatcher, P. G.; Mopper, K.; Hernes, P. J.; Mwamba, V. L.; Mangangu, A. M.; Wabakanghanzi, J. N.; Six, J. Limnol. Oceanogr. 2010, 55 (4), 1467-1477.
(24) Osborne, D. M.; Podgorski, D. C.; Bronk, D. A.; Roberts, Q.; Sipler, R. E.; Austin, D.; Bays, J. S.; Cooper, W. T. Rapid Commun. Mass Spectrom. 2013, 27 (8), 851-858.
(25) Hodgkins, S. B.; Tfaily, M. M.; McCalley, C. K.; Logan, T. A.; Crill, P. M.; Saleska, S. R.; Rich, V. I.; Chanton, J. P. Proc. Natl. Acad. Sci. U. S. A. 2014, 111 (16), 5819-5824.

