Rapid construction of imidazo[4,5-b]pyridine skeleton from 2-

chloro-3-nitropyridine via tandem reaction in H₂O-IPA medium

R D Padmaja,^{a\$} Vishnu Devi C,^{a\$} Narasimharao Mukku,^a Kaushik Chanda,^{a*} and Barnali Maiti^{a*}

^aDepartment of Chemistry, School of Advanced Sciences, Vellore Institute of Technology,

Vellore-632014, India

Email: <u>chandakaushik1@gmail.com</u> <u>barnalimaiti.m@gmail.com</u>

Table of Contents

Analytical data of Intermediate X	S2
¹ H, ¹³ C NMR, HR Mass, and IR spectra of Compounds 4 and X	S3-S36
Antibacterial assay of compounds 4	

3-(2-(Cyclohex-1-en-1-yl)ethyl)-2-(4-nitrophenyl)-2,3-dihydro-1*H***-imidazo[4,5-***b***]pyridine** (**X**). ¹H NMR (300 MHz, CdCl₃) δ 8.62 (s, 1H), 8.32 (d, *J* = 8.6 Hz, 2H), 8.09 (dd, *J* = 4.9, 1.5 Hz, 1H), 8.04 (d, *J* = 8.6 Hz, 2H), 7.25 (d, *J* = 1.5 Hz, 1H), 6.55 (dd, *J* = 7.7, 4.9 Hz, 1H), 5.67 (s, 1H), 5.60 (s, 1H), 3.55 (t, *J* = 6.5 Hz, 2H), 2.32 (t, *J* = 6.5 Hz, 2H), 2.03-2.01 (m, 4H), 1.66-1.53 (m, 4H); ¹³C NMR (75MHz, CdCl₃) δ 155.3, 155.1, 149.6, 148.4, 141.9, 135.7, 130.9, 129.5, 124.5, 124.1, 122.5, 112.2, 38.9, 38.2, 28.1, 25.8, 23.3, 22.8; IR (KBr, cm⁻¹): 3415, 2929, 2830, 1539, 1513, 1336 cm⁻¹; MS (ESI) m/z: 351 (MH⁺);

Figure S1: ¹H and ¹³C NMR spectrum of compound 4a in CDCl₃

Figure S2: HRMS and IR sectra of compound 4a

Figure S3: ¹H and ¹³CNMR spectrum of compound 4b in CDCl₃

Figure S4: HRMS and IR sectra of compound 4b

Figure S5:¹H and ¹³CNMR spectrum of compound 4c in CDCl₃

Figure S6: HR Mass and IR spectra of compound 4c

Figure S8: HR Mass and IR spectra of compound 4d

Figure S9:¹H and ¹³C NMR spectrum of compound 4e in CDCl₃

Figure S10:HR mass and IR spectra of Compound 4e

Figure S11:¹H and ¹³C NMR spectrum of compound 4f in CDCl₃

Figure S12:HR Mass and IR spectra of compound 4f

Figure S13:¹H and ¹³C NMR spectrum of compound 4g in CDCl₃

Figure S14: HR Mass and IR spectra of compound 4g

Figure S15:¹H and ¹³C NMR spectrum of compound 4h in CDCl₃

Figure S16: HR Mass and IR spectra of compound 4h

Figure S17:¹H and ¹³C NMR spectrum of compound 4i in CDCl₃

Figure S18: HR Mass and IR spectra of compound 4i

Figure S19:¹H and ¹³C NMR spectrum of compound 4j in CDCl₃

Figure S20: HR Mass and IR spectra of compound 4j

Figure S21:¹H and ¹³CNMR spectrum of compound 4k in CDCl₃

Figure S22: HR Mass and IR spectra of compound 4k

Figure S23:¹H and ¹³CNMR spectrum of compound 4l in CDCl₃

906.379

Figure S24: HR Mass and IR spectra of compound 41

Figure S25:¹H and ¹³CNMR spectrum of compound 4m in CDCl₃

Figure S26: HR Mass and IR spectra of compound 4m

Figure S27:¹H and ¹³CNMR spectrum of compound 4n in CDCl₃

Figure S28:HR Mass and IR spectra of compound 4n

Figure S29:¹H and ¹³CNMR spectrum of compound 40 in CDCl₃

Figure S30:HR Mass and IR spectra of compound 4o

Figure S32: HR Mass and IR spectra of compound 4p

Figure S33:¹H and ¹³CNMR spectrum of intermediate X in CDCl₃

Figure S34: Mass and IR spectrum of intermediate X

Anti-bacterial activity – EC_{50} values: Overnight culture of 3 different bacteria (E.coli, Staphylococcus and Klebsiella) were used at a concentration of 0.05 OD600 for the microbial inhibition reaction. Various concentration of samples dissolved in water were used and the cells were incubated at 37 °C in a shaker incubator for about 8 hours and the inhibition was monitored by the decrease in the cell density at OD600.

Table 1 for antibacterial assay

Entry	Compound	$MIC^{a}(\mu M)$		
		Staphylococcus	E.coli	Klebsiella
4a		118	84	80
4b		65	82	62
4c		67	76	51
4d		66	89	54

4e	Br N N N	122	99	85
4f		>200	133	>200
4g		120	95	71
4h	N F	125	89	99
4i		122	90	83
4j		98	244	>200
4k		>200	>200	>200

41		127	128	106
4m		91	105	46
4n		132	>200	101
40	N N N NO_2 NO_2 O	>200	>200	>200
4p		>200	>200	>200

where, within minute in the concentration (µiv	^{<i>a</i>} MIC; Minimum	inhibitory c	concentration	(µM
--	----------------------------------	--------------	---------------	-----