Supporting Information

An Effective Purification Process for the Nuclear Radiation Detector Tl₆SeI₄

Wenwen Lin,[†] Oleg Y. Kontsevoi,^{§,}

Zhifu Liu,[‡] Sanjib Das,[‡] Yihui He,[†] Yadong Xu,[†] Constantinos C. Stoumpos, [†] Kyle M. McCall, ^{†, ‡} Alexander JE Rettie,^{**} Duck Young Chung,^{**} Bruce W. Wessels,[‡] and Mercouri G. Kanatzidis^{†,*}

[†]Department of Chemistry, [§]Department of Physics and Astronomy, [⊥]Northwestern-Argonne Institute of Science and Engineering, [‡]Department of Materials Science and Engineering and Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States, ^{*}Materials Science Division, Argonne National Laboratory, Argonne, IL 60439

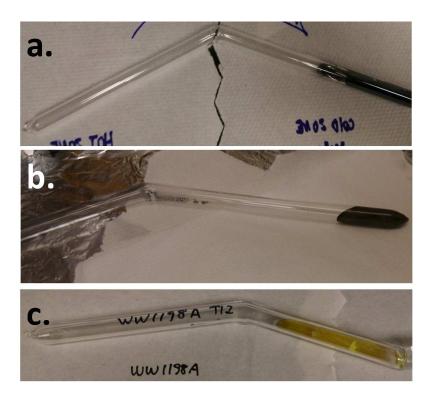
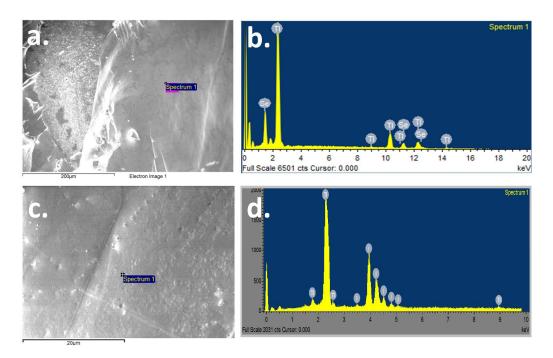



Figure S1. (a) Purified Se precursor. (b) Purified Tl₂Se precursor. (c) Purified Tll precursor.

Figure S2. (a) SEM image of purified Tl₂Se. (b) Compositional analysis on purified Tl₂Se by EDS (Tl atomic% is 67.13%, Se atomic% is 32.87%). (c) SEM image of purified TlI. (d) Compositional analysis on purified TlI by EDS (Tl atomic% is 49.94%, I atomic% is 50.06%).