Supporting information

AIE-active Polyamide Containing Diphenylamine-TPE Moiety with Superior Electrofluorochromic Performance

Ningwei Sun, [†] Kaixin Su, [†] Ziwei Zhou, [‡] Ye Yu, [§] Xuzhou Tian, [†] Daming Wang, ^{†*} Xiaogang Zhao, [†] Hongwei Zhou[†] and Chunhai Chen^{†*}

[†] Key Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, PR China

[‡] State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China

[§] Leibniz Institut für Polymerforschung Dresden e.V, Institute of Physical Chemistry and Polymer Physics, Hohe Str. 6, D-01069, Dresden, Germany

* Email: wangdaming@jlu.edu.cn; cch@jlu.edu.cn

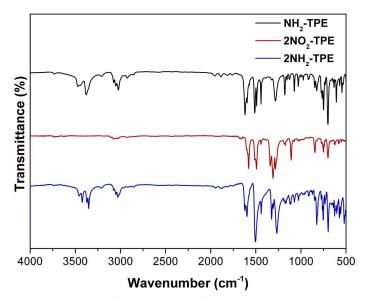


Figure S1 FTIR spectra of the synthesized monomers NH_2 -TPE, $2NO_2$ -TPE and $2NH_2$ -TPE.

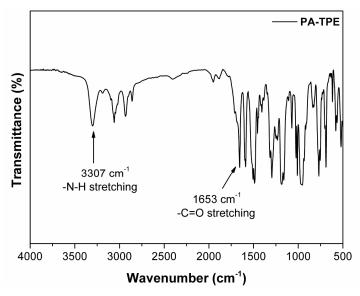


Figure S2 FTIR spectrum of the polyamide PA-TPE.

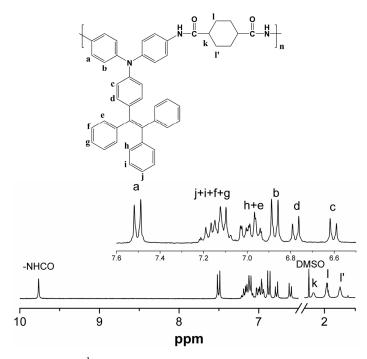


Figure S3 ¹H NMR spectrum of the polyamide PA-TPE.

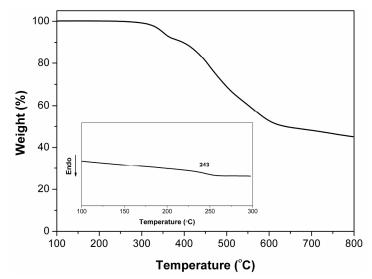


Figure S4 TGA and DSC (inset) curves of the polyamide PA-TPE.

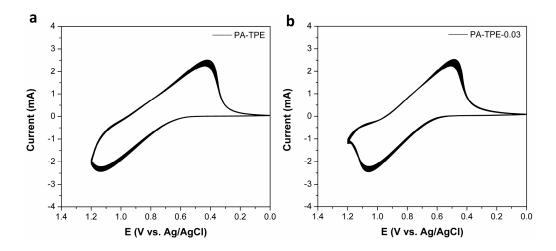
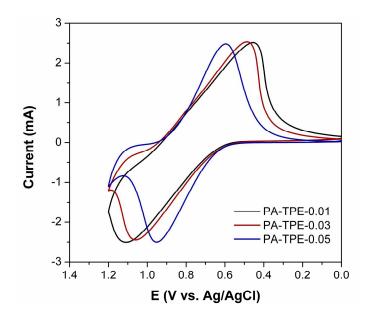



Figure S5 CV diagrams of PA-TPE (a) and PA-TPE-0.03 (b) at a scan rate of 100 mV/s for 100 cycles.

Figure S6 CV diagrams of PA-TPE-0.01, PA-TPE-0.03 and PA-TPE-0.05 containing TBAP at a scan rate of 100 mV/s.

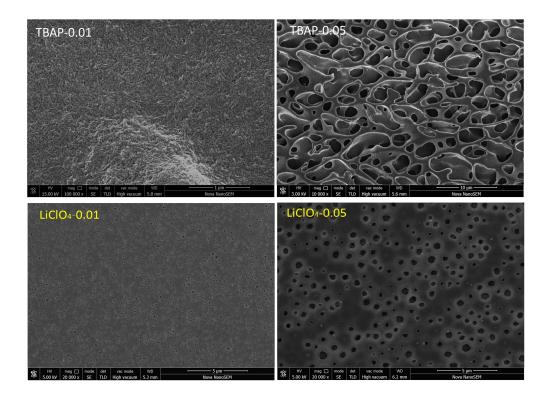
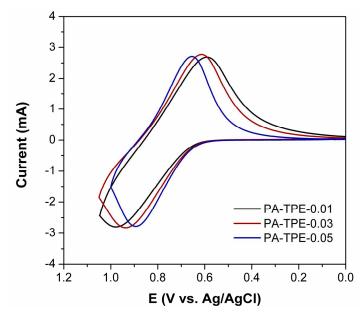
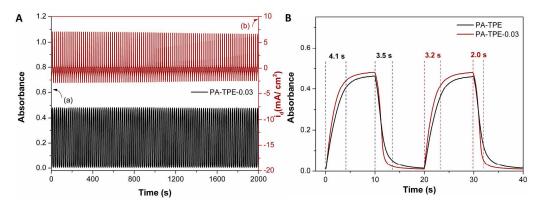
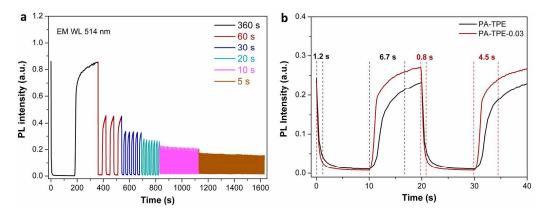


Figure S7 SEM images of PA-TPE-0.01 and PA-TPE-0.05 containing electrolyte salts

TBAP and LiClO₄, respectively.

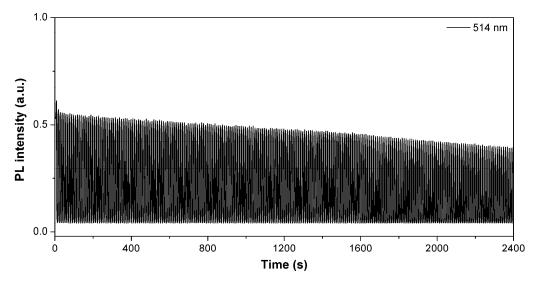

Figure S8 CV diagrams of PA-TPE-0.01', PA-TPE-0.03' and PA-TPE-0.05' containing $LiClO_4$ at a scan rate of 100 mV/s.

Figure S9 (A) EC switching of PA-TPE-0.03 thin film electrode between 0 V and 1 V: (a) absorbance changes and (b) current consumption at the monitored wavelength of 408 nm. (B) Switching time comparison of PA-TPE and PA-TPE-0.03.

Figure S10 (a) EFC switching of PA-TPE-0.03 thin film electrode under applied potentials between 0 V and 1 V with duration time set as 360 s, 60 s, 30 s, 20 s, 10 s, 5 s. (b) EFC switching time comparison of PA-TPE and PA-TPE-0.03.

Figure S11 EFC switching of PA-TPE-0.03 thin film electrode under applied potentials between 0 V and 1 V with duration time set as 10 s,

Table S1 Inherent Viscosities, Molecular Weights and Solubilities of the polymers.

	$\eta_{\rm inh}({\rm dL}/{\rm GPC}^{\rm b})$			Solvents ^c							
Sample	g) ^a	$M_{ m w}$	M _n	PDI	NMP	DMAc	DMF	DMSO	THF	CHCl ₃	CH ₃ CN
PA-TPE	1.27	63100	46000	1.37	++	++	++	++	+-		

^a Inherent viscosity was measured at a concentration of 0.5 g/ dL in DMAc at 25°C; ^b Relative to polystyrene standard, using DMF as the eluent; ^c Qualitative solubilities were tested with 10 mg of polymers in 1mL of solvent. ++, soluble at room temperature; +-, partially soluble; --, insoluble even on heating.

Table S2 Optical and electrochemical properties of the polyamide PA-TPE.											
	Sol	ution (n	m) ^a		Film	(nm)	Oxidation				
								Poter	ntial (V)		
polymer	Abs.	PL	$arPsi_{ m F}$	Abs.	Abs.	PL	$arPhi_{ m F}$	Eonset	$E_{1/2}^{d}$		
	max	max ^b	$(\%)^{c}$	onse	t max	max ^b	(%) ^c				
PA-TPE	315	511	1.77	441	314	514	69.1	0.61	0.77		

Table S2 Optical and electrochemical properties of the polyamide PA-TPE.

^a The polymer concentration was 10^{-5} mol/L in NMP. ^b They were excited at the Abs_{max} for the solution states. ^c The quantum yield was tested by using a calibrated integrating sphere . ^d $E_{1/2}$ (Average potential of the redox couple peaks).