Supporting Information ## **Up-Conversion Luminescence from Ln**³⁺(Ho³⁺, Pr³⁺) **Ions Doped BaCl₂ Particles via NIR Light of Sun Excitation** Hong Jia^{a,* b}, Zhongli Liu^a, Lamei Liao^a, Yanhong Gu^a, Chaoliang Ding^a, Jianguo Zhao^a, Weiying zhang^a, Xiaoke Hu^a, Xun Feng^a, Zhi Chen^{c*}, Xiaofeng Liu^b, and Jianrong Qiu^{b*, c} ^a College of Physics and Electronic Information & Henan Key Laboratory of Electromagnetic Transformation and Detection, Luoyang Normal University, Luoyang 471934, China. ^b State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China. ^c State Key Laboratory of Luminescent Materials and Devices, and Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou 510641, China. Figure S1: UC emission spectra of BaCl₂: Ho^{3+} under excitation by NIR part (990 nm>wavelength λ > 800 nm) of sunlight. Figure S2: Energy level diagrams of ${\rm Ho^{3^+}}$ ion involving possible UC process under excitation of incoherent NIR(990 nm>wavelength λ > 800 nm) from sunlight. Figure S3: UC emission spectra of BaCl₂: Ho^{3+} under excitation of incoherent NIR(wavelength $\lambda > 990$ nm) from sunlight. Figure S4: Energy level diagrams of ${\rm Ho^{3^+}}$ ion involving possible UC processes excitation of incoherent NIR(wavelength λ > 990 nm) from sunlight. Figure S5: UC emission intensity of $BaCl_2$: Pr^{3+} under excitation of incoherent NIR (wavelength $\lambda >$ 800 nm) from sunlight. Figure S6: Absorption spectrum of BaCl₂: Pr³⁺ phosphor. Figure S7: Energy level diagrams of Pr^{3+} ion involving possible UC processes excitation of incoherent NIR(wavelength $\lambda > 800$ nm) from sunlight. Figure S8: (a) SEM image of BaCl₂: 15%Ho³⁺, (b) SEM image of BaCl₂: 5%Pr³⁺.