Supporting Information

Biogenic synthesis of Pd-based nanoparticles with enhanced catalytic activity

Lu Xiong†, Xing Zhang†, Yu-Xi Huang, Wu-Jun Liu*, Ya-Li Chen, Sheng-Song Yu,

Xiao Hu, Lei Cheng, Dong-Feng Liu, Han-Qing Yu*

CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry,

University of Science & Technology of China, Hefei, 230026, China

	rate constant	activity parameter	Pd/S atomic	
	(s^{-1})	$(s^{-1} g_{Pd}^{-1})$	ratio	
Bio-Pd	3.7×10^{-4}	260	0.5	
Bio-Pd-300	1.4×10^{-3}	610	0.6	
Bio-Pd-400	5.0×10^{-3}	1200	1.2	
Bio-Pd-500	$7.8 imes 10^{-4}$	81	1.8	
commercial Pd/C	4.2×10^{-3}	1200	No S	

Table S1. Apparent Rate Constant k Values, Activity Parameter and Pd/SAtomic Ratios of Different Catalysts in the 4-NP Reduction Reaction

				_
catalyst	4-NP: NaBH ₄	time for 4-NP	ref.	
	(mol/mol)	total reduction		
Pd@MOF core-shell nanocomposite	1:200	5 min	1	-
Pd@Ni core-shell NPs	3:250	290 seconds	2	
dendrimer-templated Pd NPs	1:100	300 seconds	3	
Pd nanoparticles	1:50	20 min	4	
PdAu bimetallic NPs	1:50	16 min	4	
Bio-Pd	1:100	10 min	This work	

Table S2. Comparison of the Catalytic Activity among the State-of-Art Pd

 Based Catalysts and the Bio-Pd Synthesized in This Work

Wang, C.; Zhang, H.; Feng, C.; Gao, S.; Shang, N.; Wang, Z., Multifunctional Pd@MOF core-shell nanocomposite as highly active catalyst for p-nitrophenol reduction. *Catalysis Communications* 2015, *72*, 29-32.

 Dong, Z.; Le, X.; Dong, C.; Zhang, W.; Li, X.; Ma, J., Ni@Pd core-shell nanoparticles modified fibrous silica nanospheres as highly efficient and recoverable catalyst for reduction of 4-nitrophenol and hydrodechlorination of 4-chlorophenol. *Applied Catalysis B: Environmental* 2015, 162, 372-380.

3. Noh, J.-H.; Meijboom, R., Synthesis and catalytic evaluation of dendrimer-templated and reverse microemulsion Pd and Pt nanoparticles in the reduction of 4-nitrophenol: The effect of size and synthetic methodologies. *Applied Catalysis A: General* **2015**, *497*, 107-120.

 Liu, C.-H.; Liu, J.; Zhou, Y.-Y.; Cai, X.-L.; Lu, Y.; Gao, X.; Wang, S.-D., Small and uniform Pd monometallic/bimetallic nanoparticles decorated on multi-walled carbon nanotubes for efficient reduction of 4-nitrophenol. *Carbon* 2015, *94*, 295-300.

Figure S1 Images of (a) *Shewanella oneidensis*; (b) after NaPdCl₄ addition; and (c) after HAuCl₄ addition in the serum bottles

Figure S2. TEM image of the freezing-dried Bio-Pd.

Figure S3 (a) TEM image of the bio-supported Pd heated at 400 $^{\circ}$ C without KOH for 3 h; and (b) time-dependent UV-vis absorption spectra of the mixed 4-NP and NaBH₄ solution with the catalyst

Figure S4. Pore size distribution of the bio-Pd samples after different heat treatments

Figure S5. $\ln(A_t/A_0)$ versus time for the 4-NP reduction over the catalysts with different Pd loadings (A_t is the absorbance at wavelength of 400 nm at time t, and A_0 is absorbance at wavelength of 400 nm at initial time).