Supporting Information

Understanding Charge Transport in Endohedral Fullerene Single-Crystal Field-Effect Transistors

Xiaoming Zhao, ^{1‡} Tianjun Liu, ^{2‡} Wenda Shi, ¹ Xueyan Hou, ¹ Zilu Liu, ³ and T. John S. Dennis ¹*

¹ School of Physics and Astronomy and Materials Research Institute, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom

² School of Engineering and Materials Science and Materials Research Institute, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom

³ School of Biological and Chemical Sciences and Materials Research Institute, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom

^{*} Corresponding author: T. John S. Dennis (email: j.dennis@gmul.ac.uk)

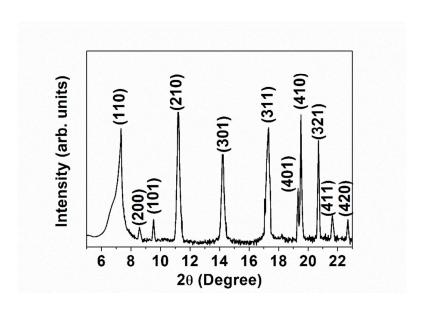


Figure S1 XRD pattern of as-prepared $N@C_{60}$ single crystals.

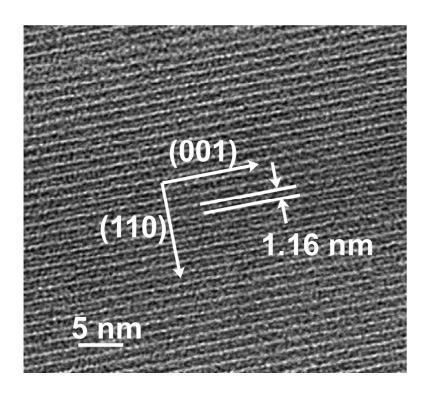


Figure S2 HRTEM image of as-prepared $N@C_{60}$ single crystal.

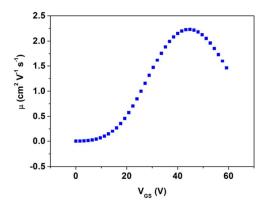


Figure S3 Typical gate-bias dependent mobility for devices based on $N@C_{60}$ needle crystals.

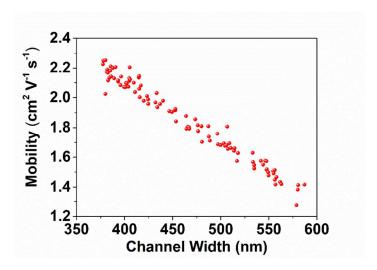


Figure S4 Channel width dependences of mobilities in OFETs based on $N@C_{60}$ single crystals.