Supporting Information for

Polydopamine Induced In-situ Formation of Metallic Nanoparticles in Confined Microchannels of Porous Membrane as Flexible Catalytic Reactor

Zhen Zeng^a, Mingfen Wen^a, Boxuan Yu^a, Gang Ye^{a,b,*}, Xiaomei Huo^a, Yuexiang Lu^{a,b}, Jing Chen^{a,b,*}

^a Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China

^b Beijing Key Lab of Radioactive Waste Treatment, Tsinghua University, Beijing 100084, China

Corresponding Authors, E-mail: yegang@mail.tsinghua.edu.cn; jingxia@tsinghua.edu.cn

Supporting Figures

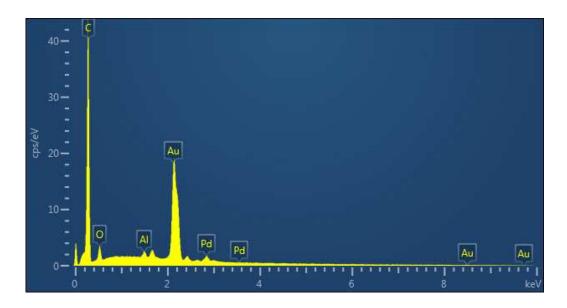
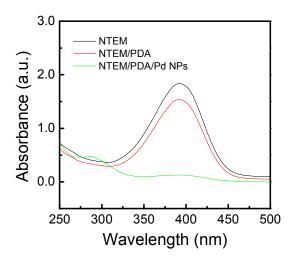



Figure S1. EDX spectrum of PDA modified NTEM after immobilization of Pd NPs

Figure S2. Catalytic reduction of 4-NP by native NTEM membrane, PDA deposited NTEM, and Pd NPs immobilized NTEM.

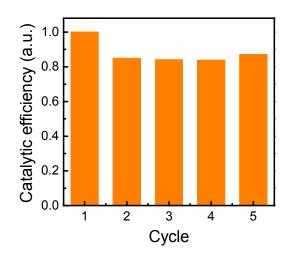
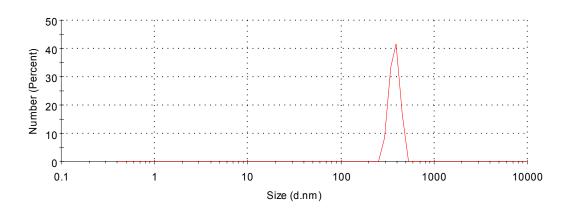
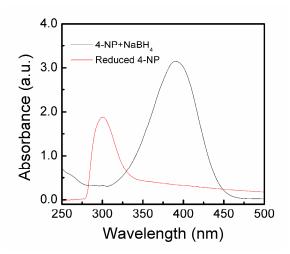




Figure S3. Reusability of the Pd NPs immobilized NTEM for catalytic reduction of 4-NP.

Figure S4. Dynamic light scattering (DLS) measurement of the filtrate in the first run catalytic reduction of 4-NP by the functionalized membrane.

Figure S5. UV-vis absorption spectra of reaction mixture of 4-NP and NaBH₄ (black line) and the reduced product (red line) catalyzed by isolated PDA/Pd hybrid nanotubes.