A One-Step, TEMPO-Catalyzed and Water-Mediated Stereoselective Conversion of Glycals into 2-Azido-2-Deoxysugars with a PIFA-Trimethylsilyl Azide Reagent System

Ande Chennaiah and Yashwant D. Vankar*
Department of Chemistry, Indian Institute of Technology Kanpur 208016

Table of Contents

1. General Experimental Section 2
2. Experimental Details 2
3. Table for optimization of reaction conditions 3
4. Characterization of products 4-16
5. NMR Spectra 17-90
6. ORTEP diagram and Crystal data of the compound 16 91-92
7. ORTEP diagram and Crystal data of the compound 24 92-93
8. ORTEP diagram and Crystal data of the compound 30 94-95
9. ORTEP diagram and Crystal data of the compound 34 95-96
10. References 96

1. General Experimental Section

All experiments were performed in an oven-dried apparatus and under nitrogen atmosphere in dry solvents, unless otherwise stated. Commercial grade solvents were dried by known methods, and stored over $4 \AA$ molecular sieves. IR spectra were recorded as a thin film and expressed in cm^{-1}. High resolution mass spectra were recorded by Q-TOF using electrospray ionization (ESI) method. ${ }^{1} \mathrm{H}$ (500 MHz or 400 $\mathrm{MHz})$ and ${ }^{13} \mathrm{C}(125 \mathrm{MHz}$ or 100 MHz$)$ NMR spectra were recorded using CDCl_{3} as a solvent. The ratio of α - and β-anomers was calculated on the basis of the integrated intensities of anomeric protons and $\mathrm{C}-1$ signals in ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra respectively. Dichloromethane was freshly distilled over calcium hydride under nitrogen atmosphere. TMSN_{3} and TEMPO were purchased from the Sigma-Aldrich Chemical Co. and Alfa-Aesar Co. respectively. $\mathrm{PhI}\left(\mathrm{OCOCF}_{3}\right)_{2}$ and $\mathrm{Bu}_{4} \mathrm{NHSO}_{4}$ were purchased from Spectrochem Pvt. Ltd. (Mumbai). Optical rotations were recorded on AUTOPOL II polarimeter at $25^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. TLC plates were prepared using thin layers of silica gel on microscopic slides, and visualization of spots was done by exposure to iodine or spraying with $10 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ and charring. Column chromatography was performed over silica gel ($100-200 \mathrm{Mesh}$) using hexane and ethyl acetate as eluents.

2. Experimental Details

General procedure for conversion of glycals into 2-azido-2-deoxysugars ' \mathbf{A} '
To a stirred solution of a glycal ($200 \mathrm{mg}, 0.730 \mathrm{mmol}$) and $\mathrm{TMSN}_{3}(293 \mu \mathrm{~L}, 2.203 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12$ mL) at $0{ }^{\circ} \mathrm{C}$, was added $\mathrm{PhI}\left(\mathrm{OCOCF}_{3}\right)_{2}(632 \mathrm{mg}, 1.469 \mathrm{mmol})$, TEMPO ($23 \mathrm{mg}, 0.146 \mathrm{mmol}$), $\mathrm{Bu}_{4} \mathrm{NHSO}_{4}(50 \mathrm{mg}, 0.146 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}(661 \mu \mathrm{~L}, 37 \mathrm{mmol})$ sequentially without any intervening time. ${ }^{\$}$ After the addition was completed, the reaction mixture was stirred at the same temperature for appropriate time. Upon consumption of the starting material (TLC monitoring and scarlet color of the reaction mixture turning to pale yellow color) saturated aqueous NaHCO_{3} was added and further stirred for 15 min at $0{ }^{\circ} \mathrm{C}$. Extraction was done with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, and the combined organic extracts were washed with water $(1 \times 10 \mathrm{~mL})$ and brine $(1 \times 10 \mathrm{~mL})$ then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The crude product was purified by column chromatography to get the pure product.
[Note: \$ It is important to add all the reagents including water in quick succession, or else, in cases with C3-benzyl (or silyl) protections, the amount of the corresponding enone increases.]

		OAc -0		\rightarrow			
Entry	Oxidant	TMSN_{3} (equiv)	TEMPO (equiv)	$\underset{\text { (equiv) }}{\mathrm{Bu}_{4} \mathrm{NHSO}_{4}}$	$4{ }_{4}{ }_{\text {(equiv) }}^{\mathrm{H}_{2} \mathrm{O}}$	Solvent	Yield(\%)
1	PIFA (1 equiv)	1	-	-	1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	n.r.
2	PIFA (1 equiv)	1	0.1	-	1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$18^{\text {a }}$
3	PIFA (2 equiv)	2	0.1	-	2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$25^{\text {a }}$
4	PIFA (2 equiv)	2	0.2	0.1	5	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$40^{\text {a }}$
5	PIFA (2 equiv)	3	0.2	0.1	10	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	63
6	PIFA (2 equiv)	3	0.2	0.2	50	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	80
7	PIFA (2 equiv)	3	0.2	0.2	50	DMF	n.r
8	PIFA (2 equiv)	3	0.2	0.2	50	THF	n.
9	PIFA (2 equiv)	3	0.2	0.2	50	Toluene	n.r.
10	PIDA (2 equiv)	3	0.2	0.2	50	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	n.
11	PIDA (2 equiv)	3	0.2	0.2	50	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	n.r.
12	PhIO (2 equiv)	3	0.2	0.2	50	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	n.r.
13	Phlo (2 equiv)	3	0.2	0.2	50	$\mathrm{CH}_{3} \mathrm{CN}$	n.
14	PhlO (2 equiv)	3	0.2	0.2	50	Toluene	n.r.
Reaction conditions: Glycals (0.730 mmol), $\mathrm{TMSN}_{3}(2.203 \mathrm{mmol}), \mathrm{Phl}\left(\mathrm{OCOCF}_{3}\right)_{2}$ (1.469 mmol), TEMPO (0.146 mmol), $\mathrm{Bu}_{4} \mathrm{NHSO}_{4}(0.146 \mathrm{mmol}), \mathrm{H}_{2} \mathrm{O}(37 \mathrm{mmol})$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$, Isolated yields after purification by silica gel column chromatography ${ }^{\text {a }}$ Yield based on recovered starting material							

Typical procedure for the synthesis of $\mathbf{2}$ in $1 \mathbf{m m o l}$ scale:

To a stirred solution of a glycal $\mathbf{1}(300 \mathrm{mg}, 1.101 \mathrm{mmol})$ and $\mathrm{TMSN}_{3}(439 \mu \mathrm{~L}, 3.305 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(15 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, was added $\mathrm{Ph}\left(\mathrm{OCOCF}_{3}\right)_{2}(947 \mathrm{mg}, 2.202 \mathrm{mmol})$, TEMPO ($35 \mathrm{mg}, 0.220 \mathrm{mmol}$), $\mathrm{Bu}_{4} \mathrm{NHSO}_{4}(75 \mathrm{mg}, 0.220 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}(991 \mu \mathrm{~L}, 55.05 \mathrm{mmol})$ sequentially without any intervening time. After the addition was completed, the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ temperature for 35 min . Upon consumption of the starting material (TLC monitoring and scarlet color of the reaction mixture turning to pale yellow color) 5 mL of saturated aqueous NaHCO_{3} was added and the reaction mixture further stirred for 15 min at $0{ }^{\circ} \mathrm{C}$. Extraction was done with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, and the combined organic extracts were washed with water $(1 \times 10 \mathrm{~mL})$ and brine $(1 \times 10 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent evaporated. The crude product was purified by column chromatography to get the pure product $\mathbf{2}$ in 80% yield (291 mg) as a colorless oil.

4. Characterization of products

(2R,3R,4R,5R)-2-(acetoxymethyl)-5-azido-6-hydroxytetrahydro-2H-pyran-3,4-diyl diacetate (2)

Compound 2 was prepared from $1(200 \mathrm{mg}, 0.735 \mathrm{mmol})$ using general procedure ' \mathbf{A} ' in 80% yield (194 mg) as a colorless oil; $\mathrm{R}_{\mathrm{f}}=0.40$ (hexane/EtOAc, 6:4); IR (neat) $v_{\text {max }}$ $/ \mathrm{cm}^{-1} 3429,2114,1748,1234 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) mixture of anomers $(\alpha / \beta=$ $1: 0.5) \delta 5.47(\mathrm{dd}, J=3.1,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.42(\mathrm{dd}, J=5.2,3.4 \mathrm{~Hz}, 3 \mathrm{H}), 5.39(\mathrm{~d}, J=3.3$ $\mathrm{Hz}, 1 \mathrm{H}), 5.36-5.32(\mathrm{~m}, 1 \mathrm{H}), 4.83(\mathrm{dd}, J=10.9,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.47$ (dd, $J=7.0$, $6.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.15-4.08(\mathrm{~m}, 6 \mathrm{H}), 3.92(\mathrm{td}, J=6.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{dd}, J=11.0,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{dd}$, $J=10.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 1 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 5 \mathrm{H}), 2.07(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 8 \mathrm{H}), 2.06(\mathrm{~s}, 9 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.82,170.31,170.13, \mathrm{C}_{1}-\beta-96.53, \mathrm{C}_{1}-\alpha-92.47,71.30,71.00,68.46,67.81$, 66.67, 66.58, 62.06, 61.93, 61.71, 58.12, 20.85, 20.81, 20.77, 20.75; HRMS Calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{NaO}_{8}[\mathrm{M}$ $+\mathrm{Na}]^{+}=354.0913$, found 354.0908.

(3R,4R,5R,6R)-3-azido-4,5-bis(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-ol (4)

Compound 4 was prepared from $2(200 \mathrm{mg}, 0.480 \mathrm{mmol})$ using general procedure ' \mathbf{A} ' in 78% yield (178 mg) as a colorless oil; $\mathrm{R}_{\mathrm{f}}=0.40$ (hexane/EtOAc, 7:3); IR (neat) $v_{\text {max }}$ $/ \mathrm{cm}^{-1} 3101,2112,1454,1063 ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ mixture of anomers $(\alpha / \beta=$ $1: 0.5) \delta 7.42-7.21(\mathrm{~m}, 27 \mathrm{H}), 5.29(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{dd}, J=11.5,1.9 \mathrm{~Hz}, 2 \mathrm{H})$, $4.71(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.68(\mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.56-4.47(\mathrm{~m}, 3 \mathrm{H}), 4.41$ (ddd, $J=18.7,12.5,5.9 \mathrm{~Hz}$, $3 \mathrm{H}), 4.14(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{qd}, J=10.5,2.9 \mathrm{~Hz}, 3 \mathrm{H}), 3.83(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=10.3$, $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.60-3.45(\mathrm{~m}, 3 \mathrm{H}), 3.40(\mathrm{dd}, J=9.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{dd}, J=10.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 138.24, 138.15, 137.66, 137.59, 128.67, 128.56, 128.43, 128.36, 128.18, $128.15,128.08,128.01,127.94,127.91, \mathrm{C}_{1}-\beta-96.55, \mathrm{C}_{1}-\alpha-92.44,80.93,77.47,74.76,73.81,73.67,73.61$, 72.67, 72.48, 72.29, 69.72, 69.41, 68.78, 64.67, 60.45; HRMS Calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}=$ 476.2185 , found 476.2186 .
(2R,3R,4R,5R)-5-azido-2-(((tert-butyldimethylsilyl)oxy)methyl)-6-hydroxytetrahydro-2H-pyran-3,4-diyl diacetate (6)

Compound $\mathbf{6}$ was prepared from $5(200 \mathrm{mg}, 0.581 \mathrm{mmol})$ using general procedure 'A' in 71% yield (165 mg) as a colorless oil; $\mathrm{R}_{\mathrm{f}}=0.40$ (hexane/EtOAc, 7:3); IR (neat) $v_{\text {max }}$ $/ \mathrm{cm}^{-1} 3426,2930,2113,1753,1253 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) mixture of anomers $(\alpha / \beta=1: 0.9) \delta 5.50(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.42-5.36(\mathrm{~m}, 3 \mathrm{H}), 4.83(\mathrm{dd}, J=10.8,3.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.78-3.66(\mathrm{~m}, 4 \mathrm{H}), 3.67-3.51(\mathrm{~m}, 4 \mathrm{H}), 2.13(\mathrm{~s}$, $2 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 5 \mathrm{H}), 0.85(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 18 \mathrm{H}), 0.01(\mathrm{dd}, J=7.1,4.5 \mathrm{~Hz}, 11 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.13,170.10, \mathrm{C}_{1}-\beta-96.52, \mathrm{C}_{1}-\alpha-92.50,73.74,71.65,69.24,68.76,67.87,66.51,62.41$, $61.19,60.76,58.43,25.89,25.85,20.84,20.78,18.34,18.29,-5.44,-5.47,-5.50,-5.56$; HRMS Calcd for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}=404.1853$, found 404.1851.
(3R,4R,5R,6R)-3-azido-4,5-bis(benzyloxy)-6-(((tert-butyldimethylsilyl)oxy)methyl)tetrahydro-2H-pyran-2-ol (8)

Compound 8 was prepared from $7(200 \mathrm{mg}, 0.454 \mathrm{mmol})$ using general procedure ' \mathbf{A} ' in 67% yield (150 mg) as a colorless oil; $\mathrm{R}_{\mathrm{f}}=0.70$ (hexane/EtOAc, $8: 2$); IR (neat) $v_{\max }$ $/ \mathrm{cm}^{-1} 3415,2928,2111,1100 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ mixture of anomers $(\alpha / \beta=$ $1: 0.6) \delta 7.45-7.22(\mathrm{~m}, 11 \mathrm{H}), 5.29(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.73$ $(\mathrm{s}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{dd}, J=18.6,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.96$ (m, 1H), $3.92(\mathrm{ddd}, J=18.6,13.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{dd}, J=10.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=8.6,3.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.67-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.36(\mathrm{td}, J=10.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.88(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 10 \mathrm{H}), 0.04(\mathrm{t}, J=2.5 \mathrm{~Hz}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.54,138.39,137.72,137.66,128.65,128.41,128.19,128.08$, $128.00,127.79, \mathrm{C}_{1}-\beta-96.62, \mathrm{C}_{1}-\alpha-92.53,80.82,75.50,74.96,74.93,73.38,72.64,72.42,72.16,71.39$, $64.99,61.72,61.20,60.54,26.05,26.02,18.39,18.33,-5.29$; HRMS Calcd for $\mathrm{C}_{26} \mathrm{H}_{41} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{Si}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$ $=517.2846$, found 517.2848
(3R,4R,5S,6R)-3-azido-4,5-bis((tert-butyldimethylsilyl)oxy)-6-(((tert-butyldimethylsilyl)oxy)methyl)tetrahydro-2H-pyran-2-ol (10)

Compound 10 was prepared from $9(200 \mathrm{mg}, 0.409 \mathrm{mmol})$ using general procedure ' \mathbf{A} ' in 56% yield (125 mg) as a colorless oil; $\mathrm{R}_{\mathrm{f}}=0.80$ (hexane/EtOAc, 9:1); IR (neat) $v_{\max } / \mathrm{cm}^{-1} 3010,2111,1263 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) mixture of anomers $(\alpha / \beta=$ $0.8: 1) \delta 5.33(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.05-3.99(\mathrm{~m}, 2 \mathrm{H}), 3.94$ $(\mathrm{d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{dd}, J=13.4,5.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.75-3.64(\mathrm{~m}, 3 \mathrm{H}), 3.64-3.57(\mathrm{~m}, 1 \mathrm{H}), 3.57-3.49$ $(\mathrm{m}, 1 \mathrm{H}), 3.41(\mathrm{dd}, J=10.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{dd}, J=7.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.97(\mathrm{~s}, 9), 0.96(\mathrm{~s}, 8 \mathrm{H}), 0.92(\mathrm{~d}, J$ $=2.8 \mathrm{~Hz}, 19 \mathrm{H}), 0.88(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 18 \mathrm{H}), 0.20(\mathrm{~s}, 4 \mathrm{H}), 0.16(\mathrm{~s}, 11 \mathrm{H}), 0.14(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~d}, J=1.3 \mathrm{~Hz}$, $6 \mathrm{H}), 0.06(\mathrm{~s}, 11 \mathrm{H}),-0.00(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{C}_{1}-\beta-96.90, \mathrm{C}_{1}-\alpha-94.10$ $76.15,74.61,71.25,70.04,66.48,62.63,61.29,61.10,26.37,26.32,26.19,25.88,18.66,18.57,18.21$, $0.07,-3.68,-3.81,-4.06,-4.50,-4.63,-4.71,-5.22$. ; HRMS Calcd for $\mathrm{C}_{24} \mathrm{H}_{57} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{Si}_{3}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}=$ 565.3637 , found 565.3635 .
(2R,3S,4R,5R)-2-(acetoxymethyl)-5-azido-6-hydroxytetrahydro-2H-pyran-3,4-diyl diacetate (12)

Compound 12 was prepared from $11(200 \mathrm{mg}, 0.735 \mathrm{mmol})$ using general procedure 'A' in 75% yield $(182 \mathrm{mg})$ as a colorless oil; $\mathrm{R}_{\mathrm{f}}=0.40$ (hexane/EtOAc, 6:4); IR (neat) $v_{\max } / \mathrm{cm}^{-1} 3433,2111,1739,1228 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ mixture of anomers $(\alpha / \beta=1: 0.9) \delta 5.55-5.50(\mathrm{~m}, 1 \mathrm{H}), 5.44(\mathrm{dd}, J=9.9,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~s}, 2 \mathrm{H}), 5.32$ $(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.07-5.02(\mathrm{~m}, 1 \mathrm{H}), 5.02-4.95(\mathrm{~m}, 2 \mathrm{H}), 4.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.60(\mathrm{~s}, 1 \mathrm{H}), 4.30-4.13(\mathrm{~m}, 8 \mathrm{H}), 4.20-4.08(\mathrm{~m}, 7 \mathrm{H}), 4.08-4.02(\mathrm{~m}, 3 \mathrm{H}), 3.93(\mathrm{dd}, J=10.5,3.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.70(\mathrm{ddd}, J=9.9,4.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.50-3.44(\mathrm{~m}, 1 \mathrm{H}), 3.40(\mathrm{dd}, J=10.5,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.09$ $(\mathrm{d}, J=1.6 \mathrm{~Hz}, 7 \mathrm{H}), 2.07(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 15 \mathrm{H}), 2.04(\mathrm{dd}, J=4.0,2.4 \mathrm{~Hz}, 9 \mathrm{H}), 2.01(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.31,171.11,171.07,170.36,170.32,170.01,169.91, \mathrm{C}_{1}-\beta-96.26, \mathrm{C}_{1}-\alpha-92.73,92.13$, $72.76,72.66,72.44,71.94,70.85,70.55,68.64,68.45,68.43,67.52,66.10,65.56,64.87,63.54,62.42$, $62.28,62.10,61.95,61.53,20.85,20.82,20.79,20.72,20.69,20.57$; HRMS Calcd for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{8}[\mathrm{M}+$ $\left.\mathrm{NH}_{4}\right]^{+}=349.1359$, found 349.1363.

Compound 14 was prepared from $13(200 \mathrm{mg}, 0.480 \mathrm{mmol})$ using general procedure ' \mathbf{A} ' in 72% yield (165 mg) as a white solid; m.p. $=205-207{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.40$ (hexane/EtOAc, 7:3); IR (neat) $\nu_{\max } / \mathrm{cm}^{-1} 3416,2919,2108,1090,697 ;{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) mixture of anomers $(\alpha / \beta=1: 0.8) \delta 7.40-7.26(\mathrm{~m}, 24 \mathrm{H}), 7.18-7.09$ $(\mathrm{m}, 4 \mathrm{H}), 5.31(\mathrm{~d}, J=3.4 \mathrm{~Hz} 1 \mathrm{H}), 4.87(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.83-4.75(\mathrm{~m}, 3 \mathrm{H}), 4.58-4.45(\mathrm{~m}, 6 \mathrm{H}), 4.12$ $-4.05(\mathrm{~m}, 1 \mathrm{H}), 4.05-3.97(\mathrm{~m}, 2 \mathrm{H}), 3.70-3.52(\mathrm{~m}, 6 \mathrm{H}), 3.51-3.30(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 137.92,137.73,137.66,128.62,128.59,128.27,128.22,128.14,128.06,127.99,127.94, \mathrm{C}_{1}-\beta-$ $96.28, \mathrm{C}_{1}-\alpha-92.17,83.19,80.24,78.60,77.80,75.69,75.15,74.94,73.65,73.60,70.71,68.63,67.51$, 64.11; HRMS Calcd for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{5}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}=493.2451$, found 493.2450.
(2R,3S,4R,5R)-5-azido-2-(((tert-butyldimethylsilyl)oxy)methyl)-6-hydroxytetrahydro-2H-pyran-3,4-diyl diacetate (16)

Compound 16 was prepared from $15(200 \mathrm{mg}, 0.581 \mathrm{mmol})$ using general procedure ' \mathbf{A} ' in 68% yield (160 mg) as as a white solid; m.p. $=185-187{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.50$ (hexane/EtOAc, 7:3); IR (neat) $v_{\text {max }} / \mathrm{cm}^{-1} 3449,2930,2112,1756,1235 ;{ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) mixture of anomers ($\alpha / \beta=1: 0.7$) $\delta 5.50(\mathrm{dd}, J=10.3,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.37$ (d, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.04-4.96(\mathrm{~m}, 2 \mathrm{H}), 4.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dt}, J=10.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}$, $1 \mathrm{H}), 3.71$ - 3.65 (m, 3H), 3.53 (ddd, $J=9.2,4.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.43 (dd, $J=10.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.37$ (dd, J $=10.6,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 4 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 2 \mathrm{H}), 0.90-0.82(\mathrm{~m}, 18 \mathrm{H}), 0.04(\mathrm{~d}, J=$ $5.2 \mathrm{~Hz}, 11 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.47,169.89,169.79, \mathrm{C}_{1}-\beta-96.20, \mathrm{C}_{1}-\alpha-92.05,74.92$, $73.11,70.97,70.25,69.10,68.88,65.05,62.47,62.33,61.63,26.00,25.81,20.89,20.85,20.81,20.77$, 18.56, -5.32, -5.35 ; HRMS Calcd for $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{NaO}_{7} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}=426.1672$, found 426.1679.
(3R,4R,5S,6R)-3-azido-4,5-bis(benzyloxy)-6-(((tert-butyldimethylsilyl)oxy)methyl)tetrahydro-2H-pyran-2-ol (18)

Compound 18 was prepared from $17(200 \mathrm{mg}, 0.454 \mathrm{mmol})$ using general procedure ' \mathbf{A} ' in 68% yield (153 mg) as a colorless oil; $\mathrm{R}_{\mathrm{f}}=0.70$ (hexane/EtOAc, 8:2); IR (neat) $v_{\text {max }} / \mathrm{cm}^{-1} 3408,2928,2109,1050 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) mixture of anomers $(\alpha / \beta=1: 0.6) \delta 7.41-7.27(\mathrm{~m}, 16 \mathrm{H}), 4.92-4.81(\mathrm{~m}, 4 \mathrm{H}), 4.70(\mathrm{dd}, J=16.0,11.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.56(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.05-3.99(\mathrm{~m}, 1 \mathrm{H}), 3.94-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.87$ (dd, $J=5.6,3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.83(\mathrm{t}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{dd}, J=9.1,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.61(\mathrm{~m}, 2 \mathrm{H}), 3.49-3.43(\mathrm{~m}, 1 \mathrm{H}), 3.39$ (dd, $J=10.2,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{ddd}, J=9.9,5.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 1 \mathrm{H}), 0.90(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 17 \mathrm{H})$, $0.10-0.01(\mathrm{~m}, 11 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.29,138.12,137.93,128.64,128.40,128.32$, $128.08,128.01,127.96,127.90, C_{1}-\beta-96.21, C_{1}-\alpha-92.15,83.17,80.18,78.29,76.35,75.79,75.14,72.15$, $67.72,64.28,62.24,62.11,26.06,18.51,-4.96,-4.98,-5.22,-5.25$; HRMS Calcd for $\mathrm{C}_{26} \mathrm{H}_{41} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{Si}[\mathrm{M}+$ $\mathrm{NH}_{4}{ }^{+}=517.2846$, found 517.2841.
(2R,3S,4R,5R)-5-azido-2-(((tert-butyldimethylsilyl)oxy)methyl)-6-hydroxytetrahydro-2H-pyran-3,4-diyl dibenzoate (20)

Compound 20 was prepared from $19(200 \mathrm{mg}, 0.427 \mathrm{mmol})$ using general procedure ' \mathbf{A} ' in 75% yield (170 mg) as a colorless oil. $\mathrm{R}_{\mathrm{f}}=0.30$ (hexane/EtOAc, 6:4); IR
(neat) $v_{\text {max }} / \mathrm{cm}^{-1} 2925,2111,1733,1273 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) mixture of anomers $(\alpha / \beta=1: 0.3) \delta$ $8.00-7.86(\mathrm{~m}, 6 \mathrm{H}), 7.57-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.43-7.24(\mathrm{~m}, 7 \mathrm{H}), 6.02-5.94(\mathrm{~m}, 1 \mathrm{H}), 5.57-5.48(\mathrm{~m}, 1 \mathrm{H})$, $5.48-5.37(\mathrm{~m}, 2 \mathrm{H}), 4.91(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{dt}, J=10.1,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~s}, 1 \mathrm{H}), 3.85-3.70(\mathrm{~m}$, $4 \mathrm{H}), 3.68(\mathrm{dd}, J=10.0,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.56-3.47(\mathrm{~m}, 1 \mathrm{H}), 0.85(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 14 \mathrm{H}), 0.00(\mathrm{~d}, J=3.1 \mathrm{~Hz}$, 9H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.92,165.87,165.42,133.50,133.44,133.38,129.99,129.87$, $129.24,129.10,128.52,128.48, \mathrm{C}_{1}-\beta-96.60, \mathrm{C}_{1}-\alpha-92.59,75.49,73.03,70.97,70.85,69.59,69.41,65.58$, $62.83,62.65,62.11,26.02,25.98,18.58,18.53,-5.31$; HRMS Calcd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{NaO}_{7} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}=$ 550.1985 , found 550.1984 .
(3R,4R,5S,6R)-3-azido-4,5-bis(methoxymethoxy)-6-((methoxymethoxy)methyl)tetrahydro-2H-pyran-2-ol (22)

Compound 22 was prepared from $21(200 \mathrm{mg}, 0.719 \mathrm{mmol})$ using general procedure ' \mathbf{A} ' in 72% yield (175 mg) as a colorless oil; $\mathrm{R}_{\mathrm{f}}=0.40$ (hexane/EtOAc, 6:4); IR (neat) $v_{\max } / \mathrm{cm}^{-1} 3388,2924,2109,1029 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) mixture of anomers $(\alpha / \beta=1: 0.8) 4.89(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{dt}, J=5.8,4.2 \mathrm{~Hz}, 4 \mathrm{H}), 4.79-$ $4.74(\mathrm{~m}, 2 \mathrm{H}), 4.70-4.62(\mathrm{~m}, 7 \mathrm{H}), 4.00$ (dddd, $J=15.1,5.1,4.5,1.8 \mathrm{~Hz}, 3 \mathrm{H}), 3.91-3.76(\mathrm{~m}, 2 \mathrm{H}), 3.76-$ $3.58(\mathrm{~m}, 3 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{dd}, J=10.5,5.1 \mathrm{~Hz}, 5 \mathrm{H}), 3.39(\mathrm{t}, J=5.4 \mathrm{~Hz}, 7 \mathrm{H}), 3.35(\mathrm{~s}, 7 \mathrm{H}), 3.26$ (dd, $J=9.6,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{dd}, J=10.4,3.3 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13}{ }^{3} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 98.63,98.58,98.35$, 97.97, 96.79, 96.74, $\mathrm{C}_{1}-\beta-96.28, \mathrm{C}_{1}-\alpha-92.31,79.81,77.82,76.74,74.32,69.89,66.99,66.76,66.69$, $63.23,63.14,56.60,56.57,56.47,56.43,56.29,56.08,55.50$; HRMS Calcd for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{NaO}_{8}[\mathrm{M}+\mathrm{Na}]^{+}$ $=360.1383$, found 360.1385 .

(3R,4R,5S,6R)-3-azido-4,5-dimethoxy-6-(methoxymethyl)tetrahydro-2H-pyran-2-ol (24)

Compound 24 was prepared from $23(200 \mathrm{mg}, 1.063 \mathrm{mmol})$ using general procedure ' \mathbf{A} ' in 77% yield (203 mg) as a white solid; m.p. $=160-163^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.40$ (hexane/EtOAc, 7:3); IR (neat) $v_{\max } / \mathrm{cm}^{-1} 2923,2108,1106 ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, CDCl_{3}) mixture of anomers ($\alpha / \beta=1: 0.5$) $\delta 5.19(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.33(\mathrm{dd}, J=8.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{ddd}, J=10.0,5.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.58(\mathrm{~m}, 5 \mathrm{H}), 3.56-$ $3.46(\mathrm{~m}, 7 \mathrm{H}), 3.37(\mathrm{~s}, 4 \mathrm{H}), 3.23(\mathrm{dd}, J=10.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.15-3.09(\mathrm{~m}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{C}_{1}-\beta-95.99, \mathrm{C}_{1}-\alpha-91.86,85.11,81.75,80.59,79.86,74.46,71.43,71.39,70.11,66.85,63.51$, $60.88,60.65,60.61,59.15$; HRMS Calcd for $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{NaO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}=270.1066$, found 270.1067.
(2R,4aR,7R,8R,8aS)-7-azido-6-hydroxy-2-phenylhexahydropyrano[3,2-d][1,3]dioxin-8-yl acetate (26)

Compound 26 was prepared from $25(200 \mathrm{mg}, 0.724 \mathrm{mmol})$ using general procedure ' \mathbf{A} ' in 68% yield (165 mg) as a semi solid; $\mathrm{R}_{\mathrm{f}}=0.30$ (hexane $/ E t O A c, 7: 3$); IR (neat) $v_{\text {max }} / \mathrm{cm}^{-1} 3431,2923,2110,1743,1095 ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ mixture of anomers $(\alpha / \beta=1: 0.8) 7.51-7.40(\mathrm{~m}, 7 \mathrm{H}), 7.40-7.30(\mathrm{~m}, 10 \mathrm{H}), 5.88(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{t}, J=9.9$ $\mathrm{Hz}, 1 \mathrm{H}), 5.59-5.54(\mathrm{~m}, 1 \mathrm{H}), 5.51-5.48(\mathrm{~m}, 2 \mathrm{H}), 5.37(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.22$ (dd, $J=10.2,3.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.17(\mathrm{dd}, J=13.8,5.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.95(\mathrm{~s}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.72-4.66(\mathrm{~m}, 1 \mathrm{H}), 4.38$ (dd, $J=10.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.36-4.12(\mathrm{~m}, 6 \mathrm{H}), 4.09(\mathrm{t}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{t}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.67$ $(\mathrm{m}, 4 \mathrm{H}), 3.63(\mathrm{t}, J=9.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.53-3.42(\mathrm{~m}, 3 \mathrm{H}), 3.40(\mathrm{~s}, 1 \mathrm{H}), 3.33(\mathrm{dd}, J=10.3,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.16$ $(\mathrm{s}, 1 \mathrm{H}), 2.15(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 8 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.37,170.13,170.00,137.14,136.97$,
$136.81,133.38,129.41,129.31,128.53,128.41,126.32,126.23,102.13,102.04,101.84,101.65,101.21$, $\mathrm{C}_{1}-\beta-96.83, \mathrm{C}_{1}-\alpha-93.86,93.28,79.56,78.70,77.61,76.25,75.38,72.10,71.32,71.18,70.07,69.18$, $68.95,68.82,68.52,68.45,67.33,66.70,65.92,65.59,64.18,64.03,62.90,62.40,21.00,20.83,20.72$; HRMS Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}=336.1196$, found 336.1192 .
(2R,4aR,7R,8R,8aS)-7-azido-8-(benzyloxy)-2-phenylhexahydropyrano[3,2-d][1,3]dioxin-6-ol (28)

Compound 28 was prepared from $27(200 \mathrm{mg}, 0.617 \mathrm{mmol})$ using general procedure ' \mathbf{A} ' in 59% yield (140 mg) as a colorless oil. $\mathrm{R}_{\mathrm{f}}=0.30$ (hexane $/ E t O A c, 7: 3$); $\mathrm{R}_{\mathrm{f}}=$ 0.50 (hexane/EtOAc, 8:2); IR (neat) $\nu_{\max } / \mathrm{cm}^{-1} 3430,2922,2113,1095 ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ mixture of anomers $(\alpha / \beta=1: 0.9) \delta 7.49$ (ddd, $\left.J=7.6,6.1,2.0 \mathrm{~Hz}, 4 \mathrm{H}\right), 7.44-7.27$ $(\mathrm{m}, 15 \mathrm{H}), 5.59(\mathrm{~s}, 1 \mathrm{H}), 5.58(\mathrm{~s}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{dd}, J=18.5,11.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.81(\mathrm{dd}, J$ $=11.1,4.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.65(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{dd}, J=10.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{dd}, J=10.3,5.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.16-4.08(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{dd}, J=16.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.73$ (ddd, $J=11.5,7.3,3.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.61$ (t, J $=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=9.8,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.43(\mathrm{ddd}, J=12.9,6.4,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.98(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 137.86,137.31,137.16,129.25,129.22,128.58,128.56,128.45,128.43$, $128.38,128.09,126.15,126.11,101.60,101.48, C_{1}-\beta-96.67, C_{1}-\alpha-92.87,82.86,81.68,79.17,76.34$, $75.24,75.10,69.05,68.62,67.46,66.56,63.74,62.92 ;$ HRMS Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{ClN}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Cl}]^{-}=$ 418.1170 , found 418.1177 .

(3R,4S,5S,6S)-5-azido-6-hydroxytetrahydro-2H-pyran-3,4-diyl diacetate (30)

Compound 30 was prepared from $29(200 \mathrm{mg}, 0.999 \mathrm{mmol})$ using general procedure ' A^{\prime} in 76% yield (197 mg) as a white solid; m.p. $=137-139^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.40$ (hexane/EtOAc, 7:3); IR (neat) $v_{\max } / \mathrm{cm}^{-1} 3417,2927,2113,1747,1241 ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ mixture of anomers $(\alpha / \beta=0.6: 1) \delta 5.43-5.29(\mathrm{~m}, 1 \mathrm{H}), 5.22-5.19(\mathrm{~m}$, $1 \mathrm{H}), 4.81(\mathrm{dd}, J=10.8,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.11(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{dd}, J=13.5,2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=10.8,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-3.61(\mathrm{~m}, 2 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 1 \mathrm{H}), 2.08(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.50,170.20, \mathrm{C}_{1}-\beta-96.91, \mathrm{C}_{1}-\alpha-92.66,71.10,68.72,68.11,67.57,64.59$, $62.44,60.80,58.53,21.07,21.03,20.88,20.83$; HRMS Calcd for $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{~N}_{4} \mathrm{O}_{6}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}=277.1148$, found 277.1143 .

(2S,3S,4S,5R)-3-azido-4,5-bis(benzyloxy)tetrahydro-2H-pyran-2-ol (32)

Compound 32 was prepared from $31(200 \mathrm{mg}, 0.674 \mathrm{mmol})$ using general procedure ' \mathbf{A} ' in 73% yield (175 mg) as a colorless oil; $\mathrm{R}_{\mathrm{f}}=0.30$ (hexane/EtOAc, 6:4); IR (neat) $v_{\text {max }} / \mathrm{cm}^{-1} 3400,2915,2111 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) mixture of anomers $(\alpha / \beta=$ $1: 0.4) \delta 7.40-7.28(\mathrm{~m}, 18 \mathrm{H}), 5.30(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{t}, J=3.3 \mathrm{~Hz}, 2 \mathrm{H})$, $4.67-4.64(\mathrm{~m}, 2 \mathrm{H}), 4.62(\mathrm{q}, J=3.4 \mathrm{~Hz}, 3 \mathrm{H}), 4.55(\mathrm{dd}, J=29.2,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dd}, J=12.7,3.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.98-3.92(\mathrm{~m}, 2 \mathrm{H}), 3.89(\mathrm{dd}, J=9.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-3.75(\mathrm{~m}, 3 \mathrm{H})$, $3.70(\mathrm{td}, J=3.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{dd}, J=9.0,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{dd}, J=12.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.02,137.81,137.70,137.41,128.66,128.62,128.59,128.18,128.10,128.04$, $127.97, \mathrm{C}_{1}-\beta-96.02, \mathrm{C}_{1}-\alpha-92.71,78.53,75.58,72.57,72.26,71.93,71.74,71.69,71.16,63.86,62.57$, 60.54, 60.46; HRMS Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{ClN}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Cl}]^{-}=390.1221$, found 390.1222 .

Compound 34 was prepared from $33(200 \mathrm{mg}, 0.999 \mathrm{mmol})$ using general procedure ' A ' in 71% yield (184 mg) as a white solid; m.p. $=155-157{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.30$ (hexane/EtOAc, 6:4); IR (neat) $v_{\max } / \mathrm{cm}^{-1} 3450,2953,2111,1753,1240,1054 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) mixture of anomers $(\alpha / \beta=1: 0.8) \delta 5.52-5.46(\mathrm{~m}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J=3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.04-4.97(\mathrm{~m}, 1 \mathrm{H}), 4.95-4.88(\mathrm{~m}, 2 \mathrm{H}), 4.65(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{dd}, J=11.6,5.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.02(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{t}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{dd}, J=11.1,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{dd}, J=10.0,7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.35-3.28(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 5 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $170.49,170.39,170.37, \mathrm{C}_{1}-\beta-96.78, \mathrm{C}_{1}-\alpha-92.24,72.16,69.93,69.40,69.14,64.84,62.87,61.60,58.78$, 20.86, 20.82, 20.77; HRMS Calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{NaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+}=282.0702$, found 282.071.

(3R,4R,5R)-3-azido-4,5-bis(benzyloxy)tetrahydro-2H-pyran-2-ol (36)

Compound $\mathbf{3 6}$ was prepared from $\mathbf{3 5}(200 \mathrm{mg}, 0.674 \mathrm{mmol})$ using general procedure ' \mathbf{A} ' in 68% yield (163 mg) as a colorless oil; $\mathrm{R}_{\mathrm{f}}=0.40$ (hexane/EtOAc, 7:3); IR (neat) $v_{\text {max }} / \mathrm{cm}^{-1} 3400,2922,2110,1096 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ mixture of anomers $(\alpha / \beta=1: 0.9) \delta 7.42-7.24(\mathrm{~m}, 20 \mathrm{H}), 5.15(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.85$ (dd, $J=20.2,10.5 \mathrm{~Hz}, 3 \mathrm{H}), 4.74-4.65(\mathrm{~m}, 2 \mathrm{H}), 4.65-4.55(\mathrm{~m}, 3 \mathrm{H}), 4.43(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-$ $3.89(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{t}, J=10.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{dd}, J=11.0,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{ddt}, J=10.7,5.2,2.9 \mathrm{~Hz}$, $2 \mathrm{H}), 3.42-3.32(\mathrm{~m}, 2 \mathrm{H}), 3.28(\mathrm{dd}, J=9.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{dd}, J=11.3,10.7 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.96,137.94,137.81,128.61,128.54,128.34,128.27,128.06,128.01,127.93,127.90$, $\mathrm{C}_{1}-\beta-96.65, \mathrm{C}_{1}-\alpha-92.12,81.99,79.04,78.37,77.61,75.56,75.51,73.40,73.32,66.90,63.97,63.63$, 60.32; HRMS Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{ClN}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Cl}]^{-}=390.1221$, found 390.1229.
(2S,3R,4S,5S,6R)-2-(((2R,3S,4R,5R)-4-acetoxy-2-(acetoxymethyl)-5-azido-6-hydroxytetrahydro-2H-pyran-3-yl)oxy)-6-(acetoxymethyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate (38)

Compound 38 was prepared from 37 ($200 \mathrm{mg}, 0.357 \mathrm{mmol}$) using general procedure ' \mathbf{A} ' in 74% yield (163 mg) as a colorless oil; $R_{\mathrm{f}}=0.40$ (hexane/EtOAc,1:1); IR (neat) $v_{\text {max }} / \mathrm{cm}^{-1} 3410,2868,2109,1068 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) mixture of anomers ($\alpha / \beta=1: 0.6$) $\delta 5.50-5.39(\mathrm{~m}, 2 \mathrm{H})$, $5.35-5.29(\mathrm{~m}, 3 \mathrm{H}), 5.16(\mathrm{~s}, 1 \mathrm{H}), 5.10(\mathrm{dd}, J=7.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{dd}, J=7.3,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{dd}$, $J=11.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.99-4.87(\mathrm{~m}, 4 \mathrm{H}), 4.68(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.55-4.49(\mathrm{~m}, 1 \mathrm{H}), 4.50-4.30(\mathrm{~m}$, $5 \mathrm{H}), 4.15(\mathrm{tt}, J=5.2,3.7 \mathrm{~Hz}, 4 \mathrm{H}), 4.12-4.02(\mathrm{~m}, 5 \mathrm{H}), 4.01-3.81(\mathrm{~m}, 4 \mathrm{H}), 3.75-3.65(\mathrm{~m}, 2 \mathrm{H}), 3.60$ (ddd, $J=9.8,4.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{dd}, J=10.4,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{dd}, J=10.6,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.12$ (dd, J $=5.7,3.8 \mathrm{~Hz}, 12 \mathrm{H}), 2.09(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 12 \mathrm{H}), 2.03(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 7 \mathrm{H}), 2.01(\mathrm{t}, J=4.5 \mathrm{~Hz}, 7 \mathrm{H}), 1.93(\mathrm{t}, J$ $=2.2 \mathrm{~Hz}, 7 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.91,170.71,170.64,170.55,170.40,170.29,169.86$, $169.78,169.44,169.22,101.26,100.96, \mathrm{C}_{1}-\beta-95.99,92.43, \mathrm{C}_{1}-\alpha-92.04,76.35,75.95,74.06,72.85,72.11$, $71.05,70.65,70.07,69.19,68.36,66.86,66.70,65.16,62.31,62.05,61.77,61.16,60.86,20.95,20.75$, 20.69, 20.62, 20.56; HRMS Calcd for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{NaO}_{16}[\mathrm{M}+\mathrm{Na}]^{+}=642.1759$, found 642.1759.
(3R,4R,5S,6R)-3-azido-4-(benzyloxy)-6-((benzyloxy)methyl)-5-(((2S,3R,4S,5S,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)tetrahydro-2H-pyran-2-ol (40)

Compound 40 was prepared from 39 ($200 \mathrm{mg}, 0.235 \mathrm{mmol}$) using general procedure ' \mathbf{A} ' in 58% yield (123 mg) as a colorless oil; $\mathrm{R}_{\mathrm{f}}=0.40$ (hexane/EtOAc, 6:4); IR (neat) $\nu_{\max } / \mathrm{cm}^{-1} 3416,2921,2109,1453,1095 ;{ }^{1} \mathrm{H}$
NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) mixture of anomers $(\alpha / \beta=1: 0.5) \delta 7.46-7.05$ $(\mathrm{m}, 68 \mathrm{H}), 5.25(\mathrm{~s}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.01-4.95(\mathrm{~m}, 1 \mathrm{H}), 4.81(\mathrm{td}$, $J=11.0,2.3 \mathrm{~Hz}, 3 \mathrm{H}), 4.75-4.63(\mathrm{~m}, 7 \mathrm{H}), 4.57-4.46(\mathrm{~m}, 5 \mathrm{H}), 4.32(\mathrm{ddd}, J=13.9,9.2,5.0 \mathrm{~Hz}, 5 \mathrm{H})$, $4.22(\mathrm{dd}, J=11.8,8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.97(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.93-3.89(\mathrm{~m}, 2 \mathrm{H}), 3.87-3.81(\mathrm{~m}, 2 \mathrm{H}), 3.80-$ $3.72(\mathrm{~m}, 3 \mathrm{H}), 3.55(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.51-3.45(\mathrm{~m}, 2 \mathrm{H}), 3.42-3.28(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 139.14,138.90,138.66,138.55,138.42,138.30,138.21,138.08,128.62,128.51,128.36$, $128.33,128.14,128.02,127.96,127.91,127.78,127.69,127.62,127.56,127.44,126.10,103.07,102.95$, $\mathrm{C}_{1}-\beta-96.17, \mathrm{C}_{1}-\alpha-92.04,82.59,81.41,80.07,78.25,76.39,75.44,74.91,73.89,73.79,73.55,73.43$, $73.35,72.79,70.97,68.31,68.15,68.10,67.27,63.65$; HRMS Calcd for $\mathrm{C}_{54} \mathrm{H}_{61} \mathrm{~N}_{4} \mathrm{O}_{10}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}=$ 925.4388, found 925.4381.
(2R,3R,4R,5R,6S)-2-(acetoxymethyl)-5-azido-6-((tert-butyldiphenylsilyl)oxy)tetrahydro-2H-pyran-3,4-diyl diacetate(41)

Compound 41 was prepared from $2(100 \mathrm{mg}, 0.301 \mathrm{mmol})$ using a literature procedure $^{1 \mathrm{a}}$ in 69% yield $(119 \mathrm{mg})$ as a colorless syrup; $R_{\mathrm{f}}=0.40$ (hexane/EtOAc,7:3); IR (neat) $\nu_{\max } / \mathrm{cm}^{-1}$ 2941, 2113, 1763, 1257; ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.72$ (ddd, $\left.J=10.5,8.0,1.3 \mathrm{~Hz}, 4 \mathrm{H}\right), 7.45-7.34(\mathrm{~m}, 6 \mathrm{H}), 5.23$ $(\mathrm{dd}, J=3.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{dd}, J=10.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J=11.2,6.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.89(\mathrm{dd}, J=11.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{dd}, J=10.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{td}, J=6.6,0.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.16(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.32,170.18$, $169.83,135.99,135.92,133.02,132.51,130.16,129.99,127.77,127.53,97.06,71.36,70.72,66.60$, $63.61,61.32,27.00,26.79,20.73,20.62,20.53,19.25$; HRMS Calcd for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}=$ 570.2272 , found 570.2270 .
(2R,3S,4R,5R,6S)-2-(acetoxymethyl)-5-azido-6-((tert-butyldiphenylsilyl)oxy)tetrahydro-2H-pyran-3,4-diyl diacetate (42)

Compound 42 was prepared from $12(100 \mathrm{mg}, 0.301 \mathrm{mmol})$ using a literature procedure ${ }^{1 \mathrm{~b}}$ in 73% yield $(126 \mathrm{mg})$ as a colorless syrup; $R_{\mathrm{f}}=0.40$ (hexane/EtOAc, $7: 3$); IR (neat) $\nu_{\max } / \mathrm{cm}^{-1} 2935,2111,1753$,

$1260 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.74-7.68(\mathrm{~m}, 4 \mathrm{H}), 7.41(\mathrm{~m}, 6 \mathrm{H}), 5.23(\mathrm{~d}, J$ $=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{dd}, J=10.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J$ $=11.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{dd}, J=11.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{dd}, J=10.8,7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.54(\mathrm{dt}, J=6.7,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~s}$, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 170.37, 170.22, 169.88, 136.00, 135.94, 133.01, 132.49, 130.18, $130.01,127.79,127.55,97.07,71.36,70.71,66.60,63.60,61.33,26.90,20.78,20.70,20.64,19.27$; HRMS Calcd for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}=570.2272$, found 570.2275 .
(3R,4R,5R,6R)-3-azido-4,5-bis(benzyloxy)-6-((benzyloxy)methyl)tetrahydro-2H-pyran-2-one (43)

Compound 43 was prepared from $4(100 \mathrm{mg}, 0.211 \mathrm{mmol})$ using a literature procedure ${ }^{2}$ in 70% yield (70 mg) as a colorless oil; $\mathrm{R}_{\mathrm{f}}=0.60$ (hexane/EtOAc, 7:3); IR (neat) $v_{\text {max }} / \mathrm{cm}^{-1} 2923,2113,1746,1207 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-7.21$ (m, 16H), $4.90(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~s}, 2 \mathrm{H}), 4.60(\mathrm{dd}, J=10.8,6.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.47$ (dd, $J=25.7,11.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.34-4.27(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{~s}, 1 \mathrm{H}), 3.72-3.62(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 167.53,137.50,137.34,137.10,128.75,128.66,128.56,128.46,128.32,128.22,128.19$, 128.16, 128.10, 127.92, 78.95, 77.99, 74.98, 73.82, 72.67, 71.27, 67.38, 61.66; HRMS Calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}=474.2029$, found 474.2029.
(2S,3R,4R,5R,6R)-3-azido-4,5-bis(benzyloxy)-6-((benzyloxy)methyl)-2-methoxytetrahydro-2Hpyran (44)

To a stirred solution of compound $3(200 \mathrm{mg}, 0.480 \mathrm{mmol})$ and $\mathrm{TMSN}_{3}(191 \mu \mathrm{~L}, 1.441 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{PhI}\left(\mathrm{OCOCF}_{3}\right)_{2}(413 \mathrm{mg}, 0.961 \mathrm{mmol})$, TEMPO ($15 \mathrm{mg}, 0.096 \mathrm{mmol}$), $\mathrm{Bu}_{4} \mathrm{NHSO}_{4}(33 \mathrm{mg}, 0.096 \mathrm{mmol})$ and $\mathrm{MeOH}(971 \mu \mathrm{~L}, 24.025 \mathrm{mmol})$. After the addition was completed, the reaction mixture was stirred at the same temperature for 1 h . Upon consumption of the starting material (TLC monitoring), it was quenched with aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 X 10 mL). The combined organic extracts were washed with water $(1 \times 10 \mathrm{~mL})$ and brine $(1 \times 10 \mathrm{~mL})$ and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration in vacuo gave a crude residue which was purified by silica gel column chromatography with hexane:EtOAc eluent to afford 44 and $\mathbf{4 5}$ in 70% overall yield (165 mg) with α-anomer $40 \% \quad(95 \quad \mathrm{mg}) \quad \beta$-anomer $30 \quad \% \quad(70 \quad \mathrm{mg})$ as a colorless oil. Data for β-isomer: $\mathrm{R}_{\mathrm{f}}=0.45$ (hexane/EtOAc, 7:3); IR (neat) $v_{\text {max }} / \mathrm{cm}^{-1} 2922,2109,1454,1052 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.22(\mathrm{~m}, 16 \mathrm{H}), 4.88(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.72-$ $4.64(\mathrm{~m}, 2 \mathrm{H}), 4.57(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{q}, J=11.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.10(\mathrm{~d}, J=8.0 \mathrm{~Hz}$,
$1 \mathrm{H}), 3.89(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=10.3,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{dd}, J=8.3,3.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.53(\mathrm{~s}, 3 \mathrm{H})$, $3.41(\mathrm{dt}, J=5.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.36-3.31(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.41,137.90$, 137.69, 128.64, 128.60, 128.37, 128.05, 128.02, 127.94, 127.80, 103.24, 80.97, 74.70, 73.72, 73.67, 72.61, 72.16, 68.66, 63.33, 57.12.; HRMS Calcd for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{5}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}=507.2607$, found 507.2606.
(2R,3R,4R,5R,6R)-3-azido-4,5-bis(benzyloxy)-6-((benzyloxy)methyl)-2-methoxytetrahydro-2Hpyran(45)

Data for α-isomer: $\mathrm{R}_{\mathrm{f}}=0.50$ (hexane/EtOAc, 7:3); IR (neat) $v_{\max } / \mathrm{cm}^{-1} 2922,2111$, 1453, 1070; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.25(\mathrm{~m}, 16 \mathrm{H}), 4.88(\mathrm{~d}, J=11.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.80(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.75-4.68(\mathrm{~m}, 2 \mathrm{H}), 4.56-4.49(\mathrm{~m}, 2 \mathrm{H}), 4.43(\mathrm{dd}, J=$ $11.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.96-3.87(\mathrm{~m}, 3 \mathrm{H}), 3.64-3.50(\mathrm{~m}, 3 \mathrm{H})$, $3.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.43,137.98,137.72,128.67,128.58,128.44,128.37$, $128.28,128.06,128.01,127.95,127.86,127.71,99.14,77.79,74.93,73.69,73.58,72.45,69.63,68.93$, $60.18,55.56$; HRMS Calcd for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}_{5}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}=507.2607$, found 507.2606.
(2R,3R,4R,5R,6S)-6-acetamido-2-(acetoxymethyl)-5-azidotetrahydro-2H-pyran-3,4-diyldiacetate (46)

To a stirred solution of $1(100 \mathrm{mg}, 0.367 \mathrm{mmol})$ and $\mathrm{TMSN}_{3}(98 \mu \mathrm{~L}, 0.734 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(4 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{PhI}\left(\mathrm{OCOCF}_{3}\right)_{2}(316 \mathrm{mg}, 0.734 \mathrm{mmol})$, TEMPO (12 $\mathrm{mg}, 0.073 \mathrm{mmol}$), After the addition was completed, the reaction mixture was stirred at same temperature for 45 min . Upon consumption of starting material (TLC monitoring), it was quenched with aqueous $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{X} 10 \mathrm{~mL})$. The combined organic extracts were washed with water $(1 \times 10 \mathrm{~mL})$ and brine $(1 \times 10 \mathrm{~mL})$ and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration in vacuo gave a crude residue which was purified by silica gel column chromatography with hexane:EtOAc eluent to afford 46 in 75% yield $(102 \mathrm{mg}) ; \mathrm{R}_{\mathrm{f}}=0.30$ (hexane/EtOAc, 1:1); IR (neat) $v_{\max } / \mathrm{cm}^{-1} 2216,2924,2114,1749,1234 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.89$ $(\mathrm{dd}, J=7.5,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{dd}, J=11.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{dd}, J=11.1,5.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.13(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.09-4.04(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.56,170.73,170.37,75.72,69.74,67.10,66.95,61.57,56.85$, 23.35, 20.82, 20.79, 20.72; HRMS Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{NaO}_{8}[\mathrm{M}+\mathrm{Na}]^{+}=395.1179$, found 395.1162 .
(2S,3R,4S,5S,6R)-2-(((2R,3S,4R,5R,6S)-4-acetoxy-2-(acetoxymethyl)-5-azido-6-((tert-butyldiphenylsilyl)oxy)tetrahydro-2H-pyran-3-yl)oxy)-6-(acetoxymethyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate (47)

To a stirred solution of $\mathbf{3 8}(1 \mathrm{~g}, 1.615 \mathrm{mmol})$ in dry DMF (15 mL) was added imidazole ($220 \mathrm{mg}, 3.230 \mathrm{mmol}$), a catalytic amount of 4(dimethylamino) pyridine (DMAP, $20 \mathrm{mg}, 0.161 \mathrm{mmol}$) followed by tert-butylchlorodiphenylsilane ($840 \mu \mathrm{~L}, 3.230 \mathrm{mmol}$) and stirring continued at room temperature for 10 h . Upon consumption of the starting material (TLC monitoring) DMF was removed under reduced pressure and the residue was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and extracted with cold ether (3 X 10 mL). The combined organic extracts were washed with water $(1 \times 10 \mathrm{~mL})$ and brine $(1 \times 10$ mL) and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration in vacuo gave a crude residue which was purified by silica gel column chromatography with hexane:EtOAc eluent to afford 47 in 76% yield (1.05 g) as a colorless syrup; $\mathrm{R}_{\mathrm{f}}=0.45$ (hexane/EtOAc, 7:3); $[\alpha]_{D}^{28}=+21.5\left(\mathrm{c} 0.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$); IR (neat) $v_{\max } / \mathrm{cm}^{-1} 2112$, $1751,1369,1222,1063$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72-7.59(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.28(\mathrm{~m}, 6 \mathrm{H}), 5.07-$ 4.97 (m, 1H), $4.96-4.83(\mathrm{~m}, 2 \mathrm{H}), 4.50-4.35(\mathrm{~m}, 2 \mathrm{H}), 4.25-4.09(\mathrm{~m}, 2 \mathrm{H}), 4.09-3.96(\mathrm{~m}, 2 \mathrm{H}), 3.93$ (dd, $J=11.8,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-3.75(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.50-3.40(\mathrm{~m}, 1 \mathrm{H}), 3.25-3.11$ $(\mathrm{m}, 1 \mathrm{H}), 2.14-2.10(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.05-2.02(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.95-1.93(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{~s}, J$ $=1.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.32,170.17,170.14,170.03,169.43$, $168.90,135.91,135.83,135.66,132.89,132.22,130.17,129.92,127.91,127.76,127.54,127.45,100.99$, $96.54,76.31,72.56,72.27,71.04,70.80,69.21,66.79,66.76,61.86,60.99,26.78,26.73,20.90,20.64$, 20.58, 20.50, 19.14, 19.08; HRMS Calcd for $\mathrm{C}_{40} \mathrm{H}_{55} \mathrm{~N}_{4} \mathrm{O}_{16} \mathrm{Si}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}=875.3382$, found 875.3383.
(2S,3R,4S,5S,6R)-2-(((2R,3S,4R,5R,6S)-5-acetamido-4-acetoxy-2-(acetoxymethyl)-6-((tert-butyldiphenylsilyl)oxy)tetrahydro-2H-pyran-3-yl)oxy)-6-(acetoxymethyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate (48)

To a solution of $\mathbf{4 7}(1 \mathrm{~g}, 1.165 \mathrm{mmol})$ in acetic anhydride $(15 \mathrm{~mL})$ at 0 ${ }^{\circ} \mathrm{C}$ was added Zn dust $(2.536 \mathrm{~g}, 38.445)$ and acetic acid $(5.991 \mathrm{~mL}$, 104.850 mmol) and stirred at room temperature for 1 h . Upon consumption of the starting material (TLC monitoring), the reaction mixture was filtered through Celite and extracted with EtOAc (2 X 10 mL). The combined organic extracts were washed with water $(1 \times 10 \mathrm{~mL})$ and brine $(1 \times 10 \mathrm{~mL})$ and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration in vacuo gave a residue which was purified by silica gel column chromatography with hexane:EtOAc eluent to afford 48 in 82% yield (830 mg) as a colorless syrup. $\mathrm{R}_{\mathrm{f}}=0.30$ (hexane/EtOAc, 1:1); $[\alpha]_{D}^{28}=+36.0$ (c $0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (neat) $v_{\text {max }} / \mathrm{cm}^{-1} 3364,1751,1369,1227,1059 ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.72-7.57(\mathrm{~m}, 7 \mathrm{H}), 7.47-7.30(\mathrm{~m}, 10 \mathrm{H}), 5.80(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{~d}, J=9.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.34(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.32-5.30(\mathrm{~m}, 1 \mathrm{H}), 5.11-5.02(\mathrm{~m}, 2 \mathrm{H}), 4.99-4.94(\mathrm{~m}, 2 \mathrm{H}), 4.87$ (dt, $J=$ $10.4,5.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.77(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{ddd}, J=13.3,8.1,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.56$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, 4.48 (dt, $J=13.7,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.33(\mathrm{dd}, J=11.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.16(\mathrm{~m}, 2 \mathrm{H}), 4.16-4.04(\mathrm{~m} 2 \mathrm{H})$, $4.01(\mathrm{dd}, J=11.7,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{dt}, J=12.1,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.79-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{t}, J=9.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.39-3.23(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 5 \mathrm{H}), 2.04(\mathrm{dd}, J=7.2,2.6 \mathrm{~Hz}, 10 \mathrm{H}), 2.03-1.97$ (m, 11H), $1.94(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 13 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.72$, $170.64,170.25,170.20,170.04,170.00,169.90,169.87,169.58,169.13,135.87,135.67,135.57,135.41$,
$132.76,132.69,132.43,132.04,130.20,130.05,129.96,129.87,127.87,127.66,127.61,127.40,101.01$, $100.69,95.95,93.74,76.42,74.33,73.16,72.67,72.55,72.39,70.87,70.81,70.66,70.47,69.17,66.72$, $66.67,62.68,62.20,60.94,60.88,55.29,52.09,26.86,26.60,26.57,23.23,23.15,20.84,20.75,20.61$, 20.57, 20.54, 20.49, 20.39, 19.06, 18.99; HRMS Calcd for $\mathrm{C}_{42} \mathrm{H}_{56} \mathrm{NO}_{17} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}=874.3318$, found 874.3318.
(2S,3R,4S,5S,6R)-2-(((2R,3S,4R,5R)-5-acetamido-4-acetoxy-2-(acetoxymethyl)-6-hydroxytetrahydro-2H-pyran-3-yl)oxy)-6-(acetoxymethyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate (49)

To a stirred solution of $\mathbf{4 8}(700 \mathrm{mg}, 0.800 \mathrm{mmol})$ in dry THF at $0^{\circ} \mathrm{C}$ was added a freshly prepared buffered TBAF solution (1.7 mL) following a literature procedure ${ }^{1 \mathrm{~b}}$ and stirred for 15 min at same temperature. Upon consumption of the starting material (TLC monitoring), the reaction mixture was diluted with water and extracted with EtOAc (2 X 10 mL). The combined organic extracts were washed with water $(1 \times 10 \mathrm{~mL})$ and brine $(1 \times 10 \mathrm{~mL})$ and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration in vacuo gave a residue which was purified by silica gel column chromatography with hexane:EtOAc eluent to afford 49 in 83% yield (423 mg) as a colorless semi solid; $\mathrm{R}_{\mathrm{f}}=0.30$ (hexane/EtOAc, 3:7); IR (neat) $v_{\text {max }} / \mathrm{cm}^{-1} 3360,1754,1364,1232,1056 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.73(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{t}$, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.38-5.27(\mathrm{~m}, 2 \mathrm{H}), 5.14(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.12-5.01(\mathrm{~m}, 2 \mathrm{H}), 5.00-4.90(\mathrm{~m}, 2 \mathrm{H})$, $4.53(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{t}, J=9.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.24-4.13(\mathrm{~m}, 2 \mathrm{H}), 4.14-3.93(\mathrm{~m}, 5 \mathrm{H}), 3.85(\mathrm{t}, J=6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.73(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.08(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 5 \mathrm{H}), 2.04-1.98(\mathrm{~m}, 15 \mathrm{H})$, $1.97(\mathrm{~s}, 4 \mathrm{H}), 1.93(\mathrm{~s}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.15,171.00,170.69,170.57,170.44,170.17$, $170.02,169.91,169.37,100.97,93.23,91.51,75.95,74.56,71.16,70.95,70.69,70.48,70.07,69.70$, $69.25,68.44,68.26,66.68,62.91,62.23,60.92,60.73,52.14,50.89,20.80,20.69$; HRMS Calcd for $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{NO}_{17}[\mathrm{M}+\mathrm{H}]^{+}=636.2140$, found 636.2133.
(2S,3R,4S,5S,6R)-2-(((2R,3S,4R,5R)-5-acetamido-4-acetoxy-2-(acetoxymethyl)-6-(2,2,2-trichloro-1-iminoethoxy)tetrahydro-2H-pyran-3-yl)oxy)-6-(acetoxymethyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate (50)

DBU ($28 ~ \mu \mathrm{~L}, 0.188 \mathrm{mmol}$) was added to a stirred solution of $\mathrm{CCl}_{3} \mathrm{CN}(568 \mu \mathrm{~L}, 5.661 \mathrm{mmol})$ and $49(400 \mathrm{mg}, 0.629 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL) under nitrogen at $0{ }^{\circ} \mathrm{C}$ and stirred for 2 h . On consumption of the starting material (TLC monitoring), the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ and further extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with water $(1 \times 10 \mathrm{~mL})$ and brine $(1 \times 10 \mathrm{~mL})$, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration in vacuo gave a residue which was purified by silica gel column chromatography with hexane:EtOAc as eluent to afford $\mathbf{5 0}$ in 85% yield (418 mg) as colorless oil; $\mathrm{R}_{\mathrm{f}}=0.40$ (hexane/EtOAc, 1:1); IR (neat) $v_{\max } / \mathrm{cm}^{-1} 3330,1763,1678 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) mixture of anomers $(\alpha / \beta=0.2: 1$) $\delta 8.76(\mathrm{~s}, 1 \mathrm{H}), 6.28(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.37-5.32(\mathrm{~m}, 1 \mathrm{H}), 5.29(\mathrm{dd}, J=10.9$, $9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.12$ (dd, $J=10.4,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.95$ (dd, $J=10.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.54$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), $4.47-4.41(\mathrm{~m}, 2 \mathrm{H}), 4.15-4.05(\mathrm{~m}, 3 \mathrm{H}), 4.00(\mathrm{ddd}, J=10.0,4.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{dd}, J=17.3,7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 6 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.33,170.43,170.36,170.29,170.17,170.14,169.28,160.62,101.43, \mathrm{C}_{1}-\beta-94.81$,
$\mathrm{C}_{1}-\alpha-90.95,75.82,71.17,71.04,70.87,69.32,66.77,61.73,60.94,52.07,23.14,20.99,20.90,20.73$, 20.60; HRMS Calcd for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{C}_{13} \mathrm{~N}_{2} \mathrm{O}_{17}[\mathrm{M}+\mathrm{H}]^{+}=779.1236$, found 779.1235.
(2S,3R,4S,5S,6R)-2-(((3aR,5R,6S,7R,7aR)-7-acetoxy-5-(acetoxymethyl)-2-methyl-5,6,7,7a-tetrahydro-3aH-pyrano[3,2-d]oxazol-6-yl)oxy)-6-(acetoxymethyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate (51)

To a solution of $\mathbf{5 0}(400 \mathrm{mg}, 0.512 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-30^{\circ} \mathrm{C}$ was added TMSOTf ($19 \mu \mathrm{l}, 0.102 \mathrm{mmol}$), and the resulting mixture was stirred at the same temperature for 1.5 h . After the reaction was complete (TLC monitoring), it was quenched with aqueous $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{X} 10 \mathrm{~mL})$. The combined organic extracts were washed with water $(1 \times 10 \mathrm{~mL})$ and brine $(1 \times 10 \mathrm{~mL})$ and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration in vacuo gave a crude residue which was purified by silica gel column chromatography with hexane:EtOAc eluent to afford 52 in 74% yield (234 mg) as a colorless syrup. $\mathrm{R}_{\mathrm{f}}=0.30$ (hexane/EtOAc, 3:7); IR (neat) $v_{\text {max }} / \mathrm{cm}^{-1}$ $3328,1759,1672 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.89(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.35$ (dd, $J=3.4,0.7 \mathrm{~Hz}, 1 \mathrm{H}$), $5.15(\mathrm{dd}, J=10.3,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{dd}, J=10.4,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.19(\mathrm{dd}, J=12.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.16-4.07(\mathrm{~m}, 3 \mathrm{H}), 4.05(\mathrm{dd}, J=12.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{t}, J=$ $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.50-3.45(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.09-2.07(\mathrm{~m}, 9 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H})$, $2.01(\mathrm{~s}, 3 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.67,170.40,170.14,169.52$, 169.34, 166.95, $102.48,99.21,78.08,71.13,70.99,70.61,68.98,67.65,67.00,65.09,63.64,61.19,21.08,20.86,20.77$, 20.73, 20.72, 20.61, 13.99; HRMS Calcd for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{NO}_{16}[\mathrm{M}+\mathrm{H}]^{+}=618.2034$, found 618.2032.
(2S,3R,4S,5S,6R)-2-(((2R,3S,4R,5R,6R)-5-acetamido-4-acetoxy-2-(acetoxymethyl)-6(($(3 \mathrm{aR}, 5 \mathrm{R}, 5 \mathrm{SaS}, 8 \mathrm{aS}, 8 \mathrm{bR})-2,2,7,7-$ tetramethyltetrahydro-3aH-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-5-yl)methoxy)tetrahydro-2H-pyran-3-yl)oxy)-6-(acetoxymethyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate (53)

To a mixture of $\mathbf{5 1}(100 \mathrm{mg}, 0.162 \mathrm{mmol})$, compound $52(64 \mathrm{mg}, 0.242$ $\mathrm{mmol})$ and freshly activated molecular sieves ($4 \AA, 50 \mathrm{mg}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ at room temperature under nitrogen were added $\mathrm{Yb}(\mathrm{OTf})_{3}(30 \mathrm{mg}, 0.048 \mathrm{mmol})$ and the solution refluxed for 16 h . Upon consumption of the starting material (TLC monitoring), the solids were filtered off through a pad of Celite and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Concentration of solvent in vacuo gave a residue which was purified by silica gel column chromatography with hexane:EtOAc as eluent to afford 53 in 68% yield (97 mg) as a colorless oil; $\mathrm{R}_{\mathrm{f}}=0.20$ (hexane/EtOAc, 2:8); IR (neat) $v_{\text {max }}$ $/ \mathrm{cm}^{-1} 3335,1751,1668,1286 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.61(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{~d}, J=5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.35(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{dd}, J=10.4,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{dd}, J=9.9,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{dd}, J=$ $10.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.61-4.55(\mathrm{~m}, 2 \mathrm{H}), 4.52-4.46(\mathrm{~m}, 2 \mathrm{H}), 4.30(\mathrm{dd}, J=5.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.03$ $(\mathrm{m}, 6 \mathrm{H}), 3.96-3.90(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{dd}, J=12.7,8.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.64-3.56(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{~d}, J=$ $1.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.80$, $170.55,170.51,170.47,170.27,170.16,169.40,109.56,108.80,101.97,101.18,96.43,76.07,73.34$, $72.92,71.24,71.10,70.89,70.45,69.33,68.89,68.83,68.56,66.83,62.47,60.98,53.50,26.27,26.11$,
25.10, 24.46, 23.42, 21.01, 20.77, 20.64; HRMS Calcd for $\mathrm{C}_{38} \mathrm{H}_{56} \mathrm{NO}_{22}[\mathrm{M}+\mathrm{H}]^{+}=878.3294$, found 878.3293.

N-((2R,3R,4R,5S,6R)-4-hydroxy-6-(hydroxymethyl)-2-(((2R,3R,4S,5R)-3,4,5,6-tetrahydroxytetrahydro-2H-pyran-2-yl)methoxy)-5-(((2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)tetrahydro-2H-pyran-3-yl)acetamide (54)

Compound 53 ($75 \mathrm{mg}, 0.085 \mathrm{mmol}$) was dissolved in dry $\mathrm{CH}_{3} \mathrm{OH}(2$ $\mathrm{mL}), \mathrm{Na}$ metal ($10 \mathrm{mg}, 0.004 \mathrm{mmol}$) was added to it at $0{ }^{\circ} \mathrm{C}$ and stirred under nitrogen for 20 min at same temperature. Upon consumption of the starting material (TLC monitoring), reaction mixture was neutralized with an acidic ion exchange resin (Amberlite IR-120), filtered through cotton plug and the solvent removed under vacuum. The resulting crude product was dissolved in mixture of trifluoroacetic acid/water ($9: 1$) (1 mL) and stirred for 15 min at room temperature. The product was purified by washing with excess of ethanol. The solvent was decanted, and the residue was dried under vacuum to afford pure product $54(31 \mathrm{mg}, 67 \%)$ as a white solid; m.p. $=156-158{ }^{\circ} \mathrm{C} ;[\alpha]_{D}^{28}=+0.083(\mathrm{c}$ $0.3, \mathrm{H}_{2} \mathrm{O}$); IR (neat) $v_{\text {max }} / \mathrm{cm}^{-1} 3425,1648,1071,1031 ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 4.61(\mathrm{~d}, J=6.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.58(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-3.55(\mathrm{~m}, 18 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 174.79,103.03,101.64,96.59,78.63,75.48,74.88,73.79,72.80,72.66,72.46,72.01$, $71.10,69.33,69.13,69.03,68.80,68.69,61.13,60.20,57.56,55.14,22.31$; HRMS Calcd for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{NO}_{16}$ $[\mathrm{M}-\mathrm{H}]=544.1878$, found 544.1873.

5. NMR Spectra

${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 2

${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 4

${ }^{13} \mathrm{C}$ NMR spectrum $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 4

${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{6}$

${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 6

${ }^{1} \mathrm{H}$ NMR spectrum $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{8}$

${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound $\mathbf{1 0}$

${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 0}$

${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 12

${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 4}$

${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 6}$

${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 16

${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{1 8}$

${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 20

${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 22

${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 24

${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 24

${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 26

${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 26

${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{2 8}$

${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 28

${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 0}$

${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 32

${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 4}$

永侖

${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 34

${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 38

${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{4 0}$
Aco

${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 41

ョ. 天" $\%$ \%

${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{4 1}$

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 41

X : parts per Million : 1H

nOe spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, irradiation of $\mathrm{H}-5$) of compound 41
(Irradiation of proton $\mathrm{H}-5$, led to the enhancement for protons $\mathrm{H}-1$ and $\mathrm{H}-3$, indicating that $\mathrm{H}-5, \mathrm{H}-1$ and $\mathrm{H}-3$ are cis oriented)

(Upon irradiation of proton $\mathrm{H}-2$, no enhancement was observed for the signal of proton $\mathrm{H}-4$)

nOe spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, irradiation of $\mathrm{H}-4$) of compound 41
(Upon irradiation of proton $\mathrm{H}-4$, no enhancement was observed for the signal of proton $\mathrm{H}-2$)

${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 42

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 42

X : parts per Million : 1H

nOe spectrum $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, irradiation of $\left.\mathrm{H}-3\right)$ of compound 42
(Irradiation of proton $\mathrm{H}-3$, led to the enhancement for protons $\mathrm{H}-1$ and $\mathrm{H}-5$, indicating that $\mathrm{H}-3, \mathrm{H}-1$ and $\mathrm{H}-5$ are cis oriented)

(Irradiation of proton $\mathrm{H}-1$, led to the enhancement for protons $\mathrm{H}-3$ and $\mathrm{H}-5$, indicating that $\mathrm{H}-1, \mathrm{H}-3$ and $\mathrm{H}-5$ are cis oriented)

(Irradiation of proton $\mathrm{H}-2$, led to the enhancement for proton $\mathrm{H}-4$, indicating that $\mathrm{H}-2, \mathrm{H}-4$ are cis oriented)

${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 43

${ }^{13} \mathrm{C}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 43

${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 44

${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 44

${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{4 5}$

$$
i_{11}^{m}
$$

${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 46

${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 47

${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 48

${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 48

${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 49

${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 49

${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 0}$

${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 51

${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 1}$

${ }^{1} \mathrm{H}$ NMR spectrum ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 3}$

${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{5 3}$

箒

68z zz-

${ }^{13} \mathrm{C}$ NMR spectrum ($125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) of compound 54

Crystallography

Compounds 16, 24, $\mathbf{3 0}$ and $\mathbf{3 4}$ were crystallized by slow evaporation of their solution in CDCl_{3} and EtOH over a period of 95 h . The crystals of suitable quality were mounted in glass capillaries, cooled to 273 K and the intensity data were collected on a Bruker APEX-II CCD detector system with Mo-sealed Siemens ceramic diffraction tube $(\lambda=0.71073)$ and a highly oriented graphite monochromator operating at 50 kV and 30 mA . The data were collected on a hemisphere mode and processed with SAINT-Plus. ${ }^{3}$ Empirical absorption corrections were made using SADABS. ${ }^{3}$ The structures were solved by direct methods using Olex2 package and refined by full matrix least-squares method based on F2 using ShelXL (Sheldrick, 2015) program. ${ }^{4}$ All the non-hydrogen atoms were refined anisotropically. The hydrogen atoms were included in the ideal positions with fixed isotropic U values and were riding with their respective non-hydrogen atoms.

6. Figure 1: X-ray ORTEP diagram showing 30% probability thermal ellipsoids of compound 16 (CCDC 1812127)

Table 1. Crystal data and structure refinement of compound 16

Identification code
Empirical formula
Formula weight

16
C16 H29 N3 O7 Si
403.17

7. Figure 2: X-ray ORTEP diagram showing 30\% probability thermal ellipsoids of compound 24 (CCDC 1818675)

Table 2. Crystal data and structure refinement for 24

Identification code	24
Empirical formula	C9 H17 N3 O5
Formula weight	247.26
Temperature	100(2) K
Wavelength	$0.71073 \AA$
Crystal system	orthorhombic
Space group	P $2_{1} 2_{1} 2_{1}$
Unit cell dimensions	$a=4.5258(5) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=14.2965(16) \AA \quad \beta=90^{\circ}$.
	$\mathrm{c}=18.8278(19) \AA \quad \gamma=90^{\circ}$.
Volume	1218.2(2) \AA^{3}
Z	4
Density (calculated)	$1.348 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.110 \mathrm{~mm}^{-1}$
F(000)	528
Crystal size	$0.20 \times 0.20 \times 0.20 \mathrm{~mm}^{3}$
Theta range for data collection	2.16 to 25.98°.
Index ranges	$-5<=\mathrm{h}<=5,-17<=\mathrm{k}<=17,-23<=\mathrm{l}<=23$
Reflections collected	15840
Independent reflections	$2401[\mathrm{R}(\mathrm{int})=0.0819]$
Completeness to theta $=25.98^{\circ}$	99.9 \%
Max. and min. transmission	0.9783 and 0.9783
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	2401 / 0 / 158
Goodness-of-fit on F^{2}	1.158
Final R indices [I >2 sigma(I)]	$\mathrm{R} 1=0.0429, \mathrm{wR} 2=0.1072$
R indices (all data)	$\mathrm{R} 1=0.0771, \mathrm{wR} 2=0.1501$
Absolute structure parameter	-2(2)
Largest diff. peak and hole	0.350 and -0.378 e. \AA^{-3}

8. Figure 3: X-ray ORTEP diagram showing 30% probability thermal ellipsoids of compound 30 (CCDC 1826411)

Table 3. Crystal data and structure refinement for $\mathbf{3 0}$

Identification code	30
Empirical formula	C9 H13 N3 O6
Formula weight	259.22
Temperature	100(2) K
Wavelength	71.073 pm
Crystal system	triclinic
Space group	P1
Unit cell dimensions	$\mathrm{a}=5.5601(5) \mathrm{pm} \quad \alpha=104.486(3)^{\circ}$.
	$\mathrm{b}=6.9368(5) \mathrm{pm} \quad \beta=105.146(3)^{\circ}$.
	$\mathrm{c}=8.3942(7) \mathrm{pm} \quad \gamma=92.947(2)^{\circ}$.
Volume	$0.30021(4) \mathrm{nm}^{3}$
Z	1
Density (calculated)	$1.434 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.122 \mathrm{~mm}^{-1}$
F(000)	136
Crystal size	$0.20 \times 0.20 \times 0.20 \mathrm{~mm}^{3}$
Theta range for data collection	3.06 to 28.28°.
Index ranges	$-7<=\mathrm{h}<=7,-9<=\mathrm{k}<=9,-11<=\mathrm{l}<=11$
Reflections collected	4697
Independent reflections	$2913[\mathrm{R}(\mathrm{int})=0.0370]$
Completeness to theta $=28.28^{\circ}$	99.8 \%
Max. and min. transmission	0.9761 and 0.9761

Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
Absolute structure parameter
Largest diff. peak and hole

Full-matrix least-squares on F^{2}
2913/3/166
1.038
$\mathrm{R} 1=0.0436, \mathrm{wR} 2=0.0942$
$R 1=0.0535, w R 2=0.1007$
-1.3(10)
0.258 and -0.233 e. \AA^{-3}

9. Figure 4: X-ray ORTEP diagram showing 30% probability thermal ellipsoids of compound 34 (CCDC
1818677)

Table 4. Crystal data and structure refinement for compound 34

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient

34
C9 H13 N3 O6
259.22

100(2) K
$0.71073 \AA$
tetragonal
P 41
$\mathrm{a}=8.7528(5) \AA \quad \alpha=90^{\circ}$.
$\mathrm{b}=8.7528(5) \AA$
$\beta=90^{\circ}$.
$\mathrm{c}=15.7972(12) \AA$
$\gamma=90^{\circ}$.
$1210.25(13) \AA^{3}$
4
$1.423 \mathrm{Mg} / \mathrm{m}^{3}$
$0.121 \mathrm{~mm}^{-1}$
$F(000)$
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=28.24^{\circ}$
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})]$
R indices (all data)
Absolute structure parameter
Largest diff. peak and hole

544
2.33 to 28.24°.
$-11<=\mathrm{h}<=11,-11<=\mathrm{k}<=11,-20<=\mathrm{l}<=21$
19108
$2983[\mathrm{R}($ int $)=0.1085]$
99.9 \%

Full-matrix least-squares on F^{2}
2983/1/166
1.160
$\mathrm{R} 1=0.0620, \mathrm{wR} 2=0.1360$
$\mathrm{R} 1=0.0927, \mathrm{wR} 2=0.1756$
-0.3(19)
0.395 and -0.473 e. \AA^{-3}

10. References

1. (a) Ichikawa, S.; Matsuda, A. Nucleosides, Nucleotides Nucleic Acids. 2004, 23, 239-253; (b) Johnson, C. L.; Guo, Z. J. Carbohydr. Chem., 2013, 32, 301-323
2. Kuzuhara, H.; Oguchi, N.; Ohrui, H.; Emoto, S. Carbohydr. Res., 1972, 23, 217-222.
3. Bruker, SMART, SAINT-Plus, SADABS. Bruker Axs Inc. 1998 Madison, Wisconcin, USA
4. G. M. Sheldrick, Acta Cryst., 2015, C 71, 3.
