Supporting Information

for

High Crystallinity Urchin-like VS₄ Anode for High-performance Lithium Ion Storage

Guang Yang,^a Bowei Zhang,^b Jianyong Feng,^a Huanhuan Wang,^d Mingbo Ma,^a Kang Huang,^e Jilei Liu,^f* Srinivasan Madhavi,^{a,b}* Zexiang Shen^{a,b,c} and Yizhong Huang^a*

^a School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798

^b Energy Research Institute @ NTU (ERI@N), Nanyang Technological University, Research

Techno Plaza, 50 Nanyang Drive, Singapore 637553

^c Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore

^d CINTRA CNRS/NTU/Thales, UMI 3288, 50 Nanyang Drive, 637553, Singapore.

^e Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China

^fCollege of Materials Science and Engineering, Hunan University, Changsha, 410082, China

* Corresponding authors: <u>liujilei@hnu.edu.cn/liuj0058@e.ntu.edu.sg</u> (J. Liu), <u>Madhavi@ntu.edu.sg</u> (S. Madhavi), and <u>YZHuang@ntu.edu.sg</u> (Y. Huang)

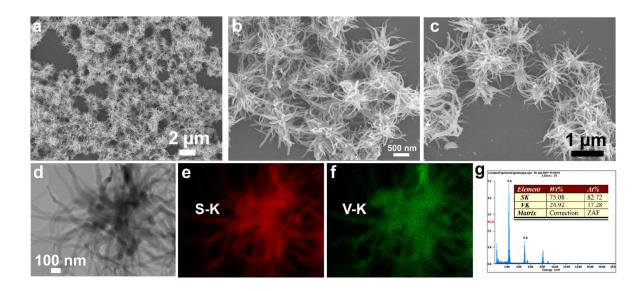


Figure. S1 SEM images and elemental mapping of urchin-like VS₄.

Table S1 FT	IR peaks and t	heir assignments.
	in pound und t	abbiginnents.

Peaks	Band assignment	Reference
1631	δ(OH)	1
1400	Amorphous carbon	1
1200	C-O-R	2
980	S ²⁻ (V-S-V)	2-4
550	Terminal S stretching	2-4

v: stretching; δ : bending.

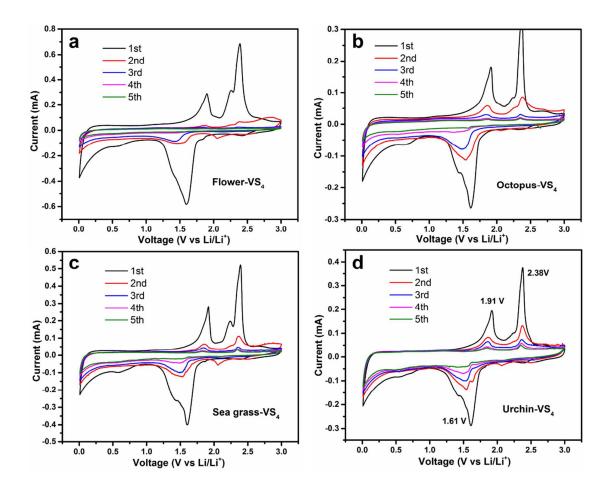


Figure. S2 First five CVs of: (a) flower-VS₄; (b) octopus-VS₄; (c) sea grass-VS₄; (d) urchinlike VS₄ with a scan rate of 0.2 mV s⁻¹ in the voltage range of 0.01-3.00 V vs Li/Li⁺.

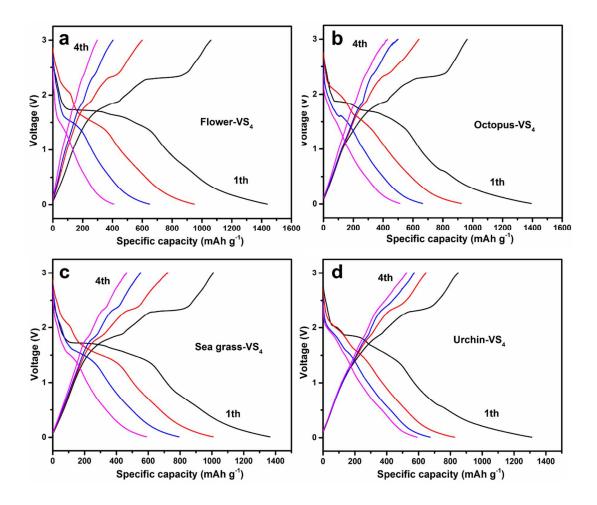


Figure. S3 First three galvanostatic discharge-charge profiles at a current rate of 0.1 A g^{-1} in the voltage range of 0.1-3 V vs Li/Li⁺ for: (a) flower-VS₄; (b) octopus-VS₄; (c) sea grass-VS₄; (d) urchin-like VS₄.

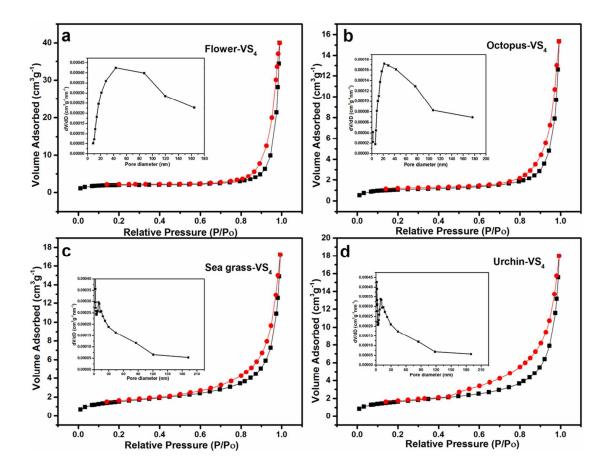


Figure. S4 The Nitrogen-adsorption-desorption isotherms of the (a) flower-VS₄, (b) octopus-VS₄, (c) sea grass-VS₄, and (d) urchin-like VS₄. The insets are their corresponding pore size distribution.

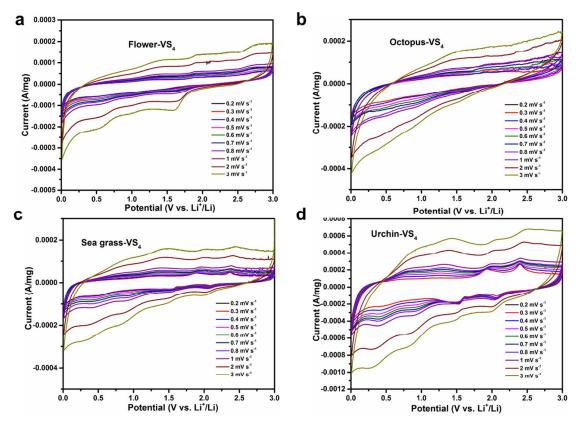
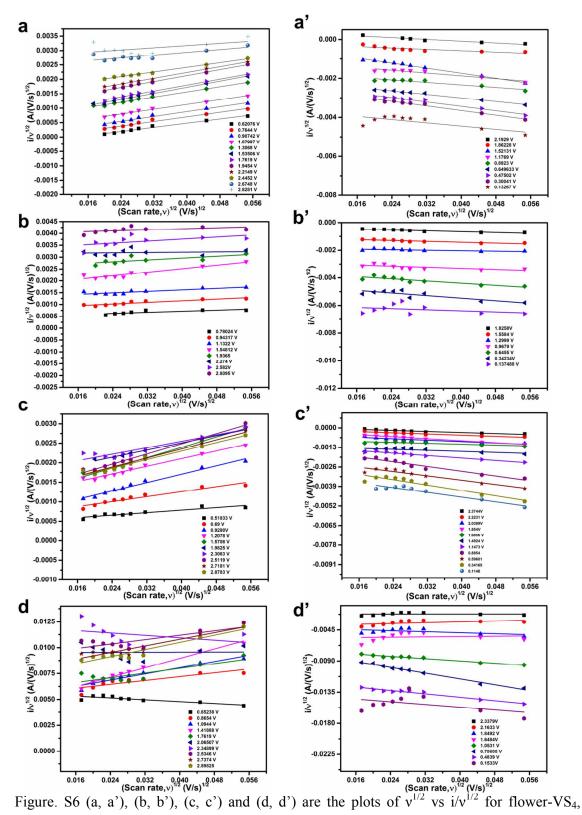



Figure. S5 CV curves of (a) flower-VS₄; (b) octopus-VS₄; (c) sea grass-VS₄; (d) urchin-VS₄ at different scan rates between 0.01 to 3.00 V.

octopus-VS₄, sea grass-VS₄ and urchin-like VS₄ at both anodic and cathodic scan. The plots

are used for calculating constants k_1 and k_2 at different potentials of the cathodic scan and anodic scan.

The total current at a fixed potential can be described using the following equation: $I(V) = k_1v + k_2v^{1/2}$, where k_1v and $k_2v^{1/2}$ represent the capacitive contribution and intercalation contribution, respectively. k_1 and k_2 can be obtained from the slope and y-axis intercept of the straight line: $i(V)/v^{1/2} = k_1v^{1/2} + k_2$, as shown in Figure. S6. Thus, the contribution from capacitive and intercalation can be calculated and each component contribution at scan rate of 0.3 mV/s is shown in Figure. 4b.

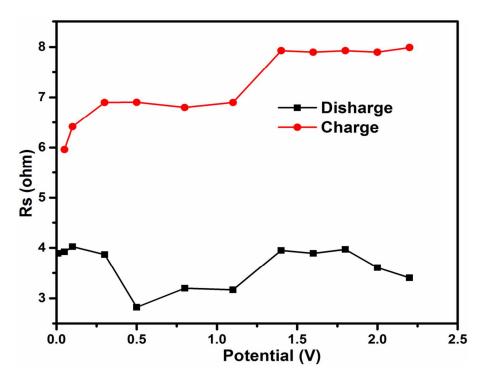


Figure. S7 Variation trend of R_s of urchin-VS₄.

References

 Li, Q.; Wei, Q.; Sheng, J.; Yan, M.; Zhou, L.; Luo, W.; Sun, R.; Mai, L., Mesoporous Li₃VO₄/C Submicron-Ellipsoids Supported on Reduced Graphene Oxide as Practical Anode for High-Power Lithium-Ion Batteries. *Adv. Sci.* 2015, *2*, 1500284. 2. Zhou, Y.; Li, Y.; Yang, J.; Tian, J.; Xu, H.; Yang, J.; Fan, W., Conductive Polymer-Coated VS₄ Submicrospheres As Advanced Electrode Materials in Lithium-Ion Batteries. *ACS Appl. Mater. Interfaces* **2016**, *8*, 18797-18805.

3. Fang, W.; Zhao, H.; Xie, Y.; Fang, J.; Xu, J.; Chen, Z., Facile Hydrothermal Synthesis of VS₂/Graphene Nanocomposites with Superior High-Rate Capability as Lithium-Ion Battery Cathodes. *ACS Appl. Mater. Interfaces* **2015**, *7*, 13044-13052.

4. Lui, G.; Jiang, G.; Duan, A.; Broughton, J.; Zhang, J.; Fowler, M. W.; Yu, A., Synthesis and Characterization of Template-Free VS₄ Nanostructured Materials with Potential Application in Photocatalysis. *Industrial & Engineering Chemistry Research* **2015**, *54*, 2682-2689.