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S1 Finite Difference Poisson–Boltzmann Method

S1.1 Theoretical Basics

The fundamental nonlinear Poisson–Boltzmann (PB) equation is formulated on the electro-

static potential (ESP) field ϕ(r) at arbitrary position r when a charge distribution is given

as a source as follows:

−∇ · [ε(r)∇ϕ(r)] = 4πρ(r) + 4πe
∑
i

λi(r)cizie
− zieϕ(r)

kBT , (S1)

where a solute with the charge density ρ(r) is surrounded by a continuum solvent including

dissolved electrolyte where the dielectric constant ε(r) changes depending on the medium

polarizability; the charge distribution for the i-th type mobile ion is recursively determined

from the potential with its accessibility to solute molecule λi(r) in the form of a step function

with respect to the bulk concentration ci and valence zi through the Boltzmann’s law using

the elemental charge, e, the Boltzmann constant, kB, and the absolute temperature, T .

An electrolyte solvent containing only a pair of symmetric salts satisfies electroneutrality

because the salts have the same concentration of both positive and negative ions with the

same valence (|zi| = z, in short). In such a situation, the charge distribution of mobile ions

in the bulk, where ε(r) has a constant value εout and λ(r) is considered to be equal to unity,

is connected to the Debye–Hückel equation with ionic strength I = 1
2

∑
i ciz

2
i ,

4πe
∑
i

cizie
− zieϕ(r)

kBT = −εoutκ
2ζ sinh

[
ϕ(r)

ζ

]
, (S2)

where ζ = −kBT
ze

and κ =
√
8πe2I/εoutkBT , the so-called the Debye–Hückel parameter.

For the low electrostatic potential (ESP) condition where sinh
[
ϕ(r)
ζ

]
∼ ϕ(r)

ζ
, eq S2 is equal

to −εoutκ
2ϕ(r) and, consequently, a linearized form of eq S1 is derived by introducing the
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simple assumptions above,S1,S2

−∇ · [ε(r)∇ϕ(r)] + ε(r)κ2(r)ϕ(r) = 4πρ(r), (S3)

where κ(r) = κλ(r).

S1.2 Discretization and Numerical Solution

In the finite difference method for numerically solving the PB equation, the three-dimensional

lattice space has nl (x, y, z ∈ l) grid points on each axis with interval hl and defines a

box with length of Ll = (nl − 1)hl on each side. The continuous functions, ϕ(r), ε(r),

κ(r) and ρ(r), are all discretized in the space and the values are assigned onto grids or

their midpoints as ϕi,j,k, εi,j,k, κi,j,k and ρi,j,k, respectively, corresponding to the grid in-

dices (i, j, k), where x = {x0 + (i− 1)hx|1 ≤ i ≤ nx}, y = {y0 + (j − 1)hy|1 ≤ j ≤ ny}, and

z = {z0 + (k − 1)hz|1 ≤ k ≤ nz} for the reference points of coordinates (x0, y0, z0). The

interior/exterior dielectric regions are separated by the solvent-excluded molecular surface

(SES)S3,S4 consisting of exposed contact regions defined by atomic radii and reentrant ones

defined by the spherical surface of the solvent probe (see Figure 1). The smoothed numerical

surface (SNS) algorithmS5 was employed for the generation of the SES in this study. The

dielectricity inside the solute is uniformly distributed with the value εin here, while more so-

phisticated assignments based on local specificityS6–S8 or Gaussian-smoothing methodsS9–S12

have also been proposed for unpolarized media. The solute charge distribution ρ(r) is given

by the assembly of each point charge QA on atom A at nuclear position rA,

ρ(r) =
∑
A

QAδ(r − rA), (S4)

with Dirac’s delta δ(r). Each point charge value is separately assigned to the nearest eight

grid points, i.e., the vertexes of the cell, weighted by the trilinear method,S13 where the

factor is determined according to the closeness to each grid point. Using the solute charge
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distribution, the initial value of each ϕi,j,k on the whole lattice space and the outer boundary

condition are preset by the Debye–Hückel approximationS13 in consideration of the screening

effects of the electrolyte solvent. Now, eq S3 is written in a discretized form,S13

εi− 1
2
,j,k(ϕi,j,k − ϕi−1,j,k) + εi+ 1

2
,j,k(ϕi,j,k − ϕi+1,j,k)

h2
x

+
εi,j− 1

2
,k(ϕi,j,k − ϕi,j−1,k) + εi,j+ 1

2
,k(ϕi,j,k − ϕi,j+1,k)

h2
y

+
εi,j,k− 1

2
(ϕi,j,k − ϕi,j,k−1) + εi,j,k+ 1

2
(ϕi,j,k − ϕi,j,k+1)

h2
z

+εi,j,kκ
2
i,j,kϕi,j,k =

4πρi,j,k
hxhyhz

, (S5)

and simplified to a matrix expression as an algebraic equation on the ESP vector Φ =

{..., ϕi,j,k, ...},

AΦ = Q, (S6)

where A and Q = {..., ρi,j,k, ...} indicate a coefficient matrix to the ESP vector and a vector

related to solute charge density, respectively. Beginning with the initial guess of Φ, this

equation is iteratively solved by updating the old guess to the new estimation of Φ until the

mean square change from previous step falls below the threshold. Here, eq S6 is solved using

the Gauss–Seidel algorithm accelerated by the successive over-relaxation (SOR) method,S2

whereas the multigrid methodS14–S18 will be implemented to reach stable convergence more

rapidly in our future work.

S1.3 Reaction Field Generation

After the convergence of Φ, the induced charges providing the reaction field on a solute as

a substitution of solvent are assigned to grid points on the dielectric boundary according

to the numerical formulation of Gauss’s law to reproduce the ESP around the pointsS5 (see

Appendix S1.A for the derivation). Furthermore, by projecting the position of each induced

charge ρindi,j,k from the uneven grid surface onto the spherically smoothed SES, the electrostatic
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solute–solvent interaction is improved with the corrected reaction field.S5 The value of each

induced charge ρindi,j,k on the corrected position rs
m is the same as that before the correction

but is hereafter represented as qsm for convenience. Finally, the ESP generated inside and

imposed on a solute is given by the expression below:

φ(r) =
M∑

m=1

qsm
εin |r − rs

m|
, (S7)

where M is the total number of induced charges on the molecular surface. Note that one

must set a value of εin that is appropriate to the intrinsic polarizability of the solute for a

fixed charge distribution in the classical treatment. However, one has only to set it to unity

when a polarizable medium with a quantum mechanical (QM) electron density is employed

as the solute;S19,S20 we follow this agreement as the electron density of solute determined by

the fragment molecular orbital (FMO) method is used in this study.

Appendix S1.A Induced Charge Definition Based on Gauss’s Law

An induced charge distribution on the dielectric boundary is determined to satisfy Gauss’s

theorem in the differential equation form in the relationship between the electric field E(r)

and the source of charge,

∇ ·E(r) = 4πρ(r) + 4πρind(r), (S8)

where ρ(r) and ρind(r) are the fixed charge density and the induced one, respectively. By

substituting E(r) = −∇ϕ(r) for the equation above, one obtains the Poisson equation,

−∇2ϕ(r) = 4πρ(r) + 4πρind(r), (S9)

which is the simplest form of eq S3 and discretized in the same form of eq S5 with the

conditions in vacuo, where ε(r) is unity and κ(r) is zero. A numerical description of Gauss’s
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law finally yields the solution of an induced charge in the finite difference formalism,

ρindi,j,k =− ρi,j,k +
hxhyhz

4π

[
2

(
1

h2
x

+
1

h2
y

+
1

h2
z

)
ϕi,j,k

−ϕi−1,j,k + ϕi+1,j,k

h2
x

− ϕi,j−1,k + ϕi,j+1,k

h2
y

− ϕi,j,k−1 + ϕi,j,k+1

h2
z

]
, (S10)

and the simplified one in the same form in reference S5,

ρindi,j,k =− ρi,j,k +
3h

2π

(
ϕi,j,k −

ϕi−1,j,k + ϕi+1,j,k + ϕi,j−1,k + ϕi,j+1,k + ϕi,j,k−1 + ϕi,j,k+1

6

)
,

(S11)

in the case that the grid intervals on all axes are equal, i.e., hx = hy = hz = h.
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S2 Figures and Tables

Figure S1: Charge transfer in vacuo and in implicit solvent focusing on the fragment unit
of each base pair in the 12-base-pair DNA duplex. The amount of charge in units of the
elementary charge was estimated by natural population analysis (NPA).S21,S22
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Figure S2: Atomic charge distribution in vacuo and the difference to that in implicit solvent
for (a) C3–G3′ and (b) A6–T6′ base pairs. The amount of charge in units of the elementary
charge was estimated by natural population analysis (NPA),S21,S22 and the net value for each
base fragment is shown in parenthesis.
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Figure S3: Summation of the IFIEs on stacking interactions between each base pair inside
the 12-base-pair DNA duplex compared in vacuo to those in implicit solvent.
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Figure S4: Frontier molecular orbitals on (a) base and (b) sugar–phosphate backbone frag-
ments of dC9 compared in vacuo with in explicit solvent surrounded by a 10-Å solvent shell
including 14 Na+ counterions.
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Table S1: Changes in the Frontier Molecular Orbital Energies on Each Fragment
Type of the 12-Base-Pair DNA Duplex in Vacuo and in Implicit Solventa

HOMO LUMO band gap
mean s.d. mean s.d. mean s.d.

adenine base
in vacuo 18.210 0.062 30.127 0.084 11.917 0.029
in solvent −4.637 0.054 7.283 0.047 11.920 0.022

guanine base
in vacuo 16.470 1.513 28.394 1.543 11.924 0.177
in solvent −4.539 0.317 7.349 0.393 11.887 0.204

cytosine base
in vacuo 14.759 1.339 27.053 1.348 12.294 0.055
in solvent −5.982 0.331 6.358 0.326 12.340 0.044

thymine base
in vacuo 16.869 0.161 28.858 0.168 11.989 0.104
in solvent −5.703 0.102 6.318 0.167 12.021 0.091

sugar–phosphate backbone
in vacuo 12.829 1.053 27.858 1.640 15.029 0.695
in solvent −9.373 0.242 6.396 0.427 15.769 0.301

a Each value is averaged over fragments of the same type, excluding those in terminal base
pairs, and shown with its standard deviation. All calculated values are in electronvolts

(eV).
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Table S2: Solvation Free Energies of the 12-Base-Pair DNA Duplex in Explicit
Solvent with Increasing Solvent Shell Thickness and Number of Counterions and
Comparison to Those in Implicit Solventa

Shell thicknessb Counterionsc ∆E ind Ees G
Explicit solvent model

0 0 0.0 0.0 0.0
3 0 434.5 −1452.4 −1017.9
4 0 499.9 −1777.3 −1277.3
5 8 530.2 −3986.3 −3456.2
6 10 533.9 −4571.6 −4037.7
7 11 543.4 −4874.7 −4331.3
8 12 550.0 −5246.2 −4696.2
9 13 551.5 −5492.6 −4941.1
10 14 547.0 −5684.3 −5137.3
11 14 546.4 −5714.3 −5167.8
12 15 547.5 −5945.9 −5398.5
13 15 549.9 −5998.4 −5448.6
14 15 551.5 −6051.5 −5500.0
20 22 555.5 −6967.4 −6411.9

PB implicit solvent model (only es-term is considered)
0 0 229.1 −6316.1 −6087.0

a All calculated values are in kcal/mol. b Each shell thickness value of explicit solvent is in
Å. c Number of counterions, Na+. d Each value is estimated from the MP2 total energy

including the electron-correlation energy.
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