Supporting Information

Robust and Conductive Red MoSe₂ for Stable and Fast Lithium Storage

Sanpei Zhang,^{†,‡} Gan Wang,^{†,‡} Jun Jin,[†] Linlin Zhang[†], Zhaoyin Wen^{†,*} and Jianhua Yang,[†]

[†] CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China

E-mail: zywen@mail.sic.ac.cn

[‡] University of Chinese Academy of Sciences, Beijing 100049, P. R. China

Content

- 1. Experimental Section
- 2. UV-visible absorption spectra of the prepared series red MoSe₂ samples
- 3. XRD, SEM and TEM images of the prepared MoO₃ nanosheets
- 4. SEM and TEM images of the prepared pure MoSe₂ nanosheets
- 5. EDX spectra of the red MoSe₂ nanosheets
- 6. Elemental mapping images of the red MoSe₂ nanosheets.
- 7. I-V curves of all the samples
- 8. The electronic conductivity of the prepared series red MoSe₂ samples
- 9. XPS spectra of the red MoSe₂ nanosheets.
- 10. XPS spectra of the red MoO₃ nanosheets
- 11. BET analysis results of the black MoSe₂ and red MoSe₂ nanosheets
- 12. Discharge-charge voltage profiles of the Li-ion batteries with black MoSe₂ anode
- 13. Discharge-charge voltage profiles of the Li-ion batteries with MoO₃ electrode.
- 14. CV profiles of red MoSe₂ anode
- 15. Rate capability of the red MoSe₂ anode

1. Experimental Section

Samples Preparation

Hexaammonium heptamolybdate tetrahydrate $((NH_4)_6Mo_7O_{24}\cdot 4H_2O)$, thiourea (NH_2CSNH_2) and selenourea (NH_2CSeNH_2) were purchased from the Sigma-Aldrich Company. The autoclave (model number 4749) was ordered from the Nanjing RNK Science and tech Company.

*Preparation of pure MoSe*₂: The synthesis of the MoSe₂ nanosheets was conducted in pure N₂ atmosphere environment. Firstly, 7 mmol NH₂CSeNH₂ was dissolved in 30 mL deionized water under vigorous stirring for 30 min to form a homogeneous solution. Then 1 mmol (NH₄)₆Mo₇O₂₄·4H₂O was added into the solution and stirred for 1 h. Subsequently, the solution was transferred into a 43 mL Teflon-lined stainless-steel autoclave and kept at 230°C for 20 h. After being cooled to room temperature, the generated precipitates were filtered and washed with ethanol and water. The precipitates separated from the solution by centrifugation were freeze dried for 24 h.

*Preparation of Red MoSe*₂: Red MoSe₂ nanosheets were synthesized by a fast-oxidized process. Specifically, pure MoSe₂ nanosheets and potassium permanganate powders were separately placed in a two-zone tube furnace, which was evacuated until the pressure was lower than 5 Pa. The zone containing MoSe₂ nanosheets was next heated to 250-350°C, and the zone containing potassium permanganate to 500°C, then held for 1 h. Red MoSe₂ nanosheets were obtained after cooling to the ambient temperature. In comparison, the red MoSe₂ prepared with different annealing time was synthesized by the same procedure.

Structural Analyses

Ultraviolet–visible (UV–vis) absorption spectroscopy analysis in the wavelength range of 250–1000 nm is completed by using a Hitachi UV-4100 spectrophotometer. XRD was conducted on a Rigaku D/Max ultima II with Cu Kα radiation. The FESEM images were taken on a JEOL JSM-6700F SEM. TEM images were taken on JEOL JEM-2100F microscopes. X-ray photoelectron spectroscopy analysis was conducted

using a twin anode gun, Mg KR (1253.6 eV) (Microlab 310F Scanning Auger Microprobe, VG Scientific Ltd.). The specific surface area was further measured by the Brunauer–Emmett–Teller (BET) method using nitrogen adsorption–desorption isotherms on a Micromeritics Tristar II 3020 analyzer. The discharge products were analyzed by X-ray photoelectron spectroscopy (ESCALAB 250). The room-temperature I-V characteristics were carried out in the voltage range of -1 V–+1 V at a scanning rate of 1 mV/s.

Electrochemical measurements

Lithium-ion batteries: active material (70 wt.%), Ketjen Black (KB) carbon (EC600JD) (20 wt.%) and Polytetrafluoroethylene (PTFE) binder (10 wt. %, Aldrich) in ethanol were mixed into a homogeneous slurry. The obtained slurry was pasted on stainless steel mesh, followed by drying in a vacuum oven for 12 hours at 80 °C. After cutting the electrode disks of 1.0 cm diameter, the disk was used as the anode of LIBs without calendared before testing and the average thickness of the coating is ~ 0.02 mm. The cells were assembled in an argon-filled glove box (O_2 $\,\leqslant\,$ 0.1 ppm, H_2O $\,\leqslant\,$ 0.1 ppm) with the prepared anode as working electrode and lithium metal foil as the counter/reference electrode. The electrolyte is 1M LiPF₆ in a mixture of ethylene carbonate and diethyl carbonate (1:1 by weight). Glass fiber (Whatman) was used as separator. The typical mass loading of active materials is about 0.8 mg cm⁻². The charge-discharge tests were performed on a LAND battery tester. Cyclic voltammograms (CV) were obtained on a CHI 660D electrochemical workstation. For ex-situ XPS and HRTEM at different reactive potentials, the electrode sheets cycled at a current density of 500 mA/g were required to be removed from the disassembled batteries and washed with DMC.

2. UV-visible absorption spectra of the prepared series red MoSe₂ samples.

Figure S1. UV–visible absorption spectra showing the different absorption between the prepared series red MoSe₂ samples.

UV-visible absorption curves of the series red MoSe₂ samples with different annealing time also show dramatical divergence, indicating the evolution on the band gap. After annealing at the oxidized atmosphere about 2h, the red MoSe₂ shows a semiconductor characteristic. The bandgap of the red MoSe₂ (2h) is estimated to be around 1.53 eV.

3. XRD, SEM and TEM images of the blue MoO₃ nanosheets

Figure S2. Characterization of blue MoO₃. XRD pattern (a), SEM image (b), TEM and corresponding HRTEM images of the blue MoO₃ nanosheets.

4. SEM and TEM images of the prepared black MoSe₂ nanosheets

Figure S3. SEM (a) and corresponding enlarged SEM (b) images of the prepared MoSe₂ nanosheets. TEM (c) and HRTEM (d) images of the MoSe₂ NSs, displaying a uniform d spacing of 0.65 nm for the (002) plane in the MoSe₂ NSs.

5. EDX spectra of the red MoSe₂ nanosheets

Figure S4. EDS spectra of the red MoSe₂ nanosheets, indicating the exist of elements Mo, Se, and O.

6. Elemental mapping images of the red MoSe₂ nanosheets.

Figure S5. The dark-field TEM images (a) and corresponding element mapping images (b-d) of the prepared red MoSe₂ nanosheets (corresponding to area 3 in Figure 2f), suggesting the homogeneous distribution of Mo, O and Se.

7. Conductivity analysis of the prepared series samples.

Figure S6. I-V curves of the prepared black MoSe₂, red MoSe₂ and blue MoO₃.

8. The electronic conductivity of the prepared series red MoSe₂ samples.

Figure S7. The electronic conductivity of the prepared series red MoSe₂ samples.

Figure S8. The overall (a) and high resolution O1s XPS spectra (b) of the prepared red MoSe₂ nanosheets.

10. XPS spectra of the blue MoO₃ nanosheets.

Figure S9. High-resolution XPS spectra of Mo 3d of the blue MoO_3 nanosheets. The existence of Mo^{5+} verify that the prepared blue MoO_3 nanosheets were not fully oxidized to pure MoO_3 semiconductors

9. XPS spectra of the red MoSe₂ nanosheets.

11. BET analysis results of the red MoSe₂ nanosheets.

Figure S10 Nitrogen adsorption-desorption isotherms of the prepared black MoSe₂ (a), red MoSe₂ (c) and blue MoO₃ (d). Corresponding pore size distributions of the prepared black MoSe₂ (b).

12. Discharge-charge voltage profiles of the Li-ion batteries with black MoSe₂ anode.

Figure S11. Discharge-charge voltage profiles of prepared black MoSe₂ anode in the initial 5 cycles.

13. Discharge-charge voltage profiles of the Li-ion batteries with MoO₃ electrode.

Figure S12. Discharge-charge voltage profiles of prepared blue MoO₃ anode in the initial cycle.

14. CV profiles of red MoSe₂ anode

Figure S13. CV profiles of red MoSe₂ anode at a scanning rate of 0.1 mV/s showing the 1st, 2nd and 3rd cycles between 0.05 and 3.0 V.

15. Rate capability of the red MoSe₂ anode

Figure S14. The capacities retention of the red $MoSe_2$ nanosheets, black $MoSe_2$ nanosheets and blue MoO_3 at current densities from 0.2 A g⁻¹ to 5 A g⁻¹.