Investigating the Secondary Structure of Membrane Peptides Utilizing Multiple ${ }^{2} \mathrm{H}$-labeled Hydrophobic Amino Acids via Electron Spin Echo Envelope Modulation (ESEEM) Spectroscopy

Lishan Liu, Indra D. Sahu, Lauren Bottorf, Robert M. McCarrick and Gary A. Lorigan* Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA

[^0]
Supplemental Figures:

Figure S1: Three-pulse ESEEM experimental data of AChR M2 $\mathbf{~} \delta$ with ${ }^{2} \mathrm{H}$-labeled d_{3} Ala6 at the N-terminal (-) and C-terminal (+) sides in DMPC/DHPC (3.5:1) bicelles at $\mathrm{T}=200 \mathrm{~ns}$ for the $i+1$ to $i+4$ in Time domain and Frequency domain.

Ala 12

Figure S2: Three-pulse ESEEM experimental data of AChR M2ס with ${ }^{2}$ - -labeled d_{3} Ala12 at the N-terminal (-) and C-terminal (+) sides in DMPC/DHPC (3.5:1) bicelles at $\mathrm{T}=200 \mathrm{~ns}$ for the $i+1$ to $i+4$ in Time domain and Frequency domain.

Figure S3: Three-pulse ESEEM experimental data of AChR M2 2 with ${ }^{2} \mathrm{H}$-labeled d_{3} Ala14 at the N-terminal (-) and C-terminal (+) sides in DMPC/DHPC (3.5:1) bicelles at $\mathrm{T}=200 \mathrm{~ns}$ for the $i+1$ to $i+4$ in Time domain and Frequency domain.

Figure S4: Three-pulse ESEEM experimental data of AChR M2 with $^{2}{ }^{2}$-labeled d_{8} Val9 at the N -terminal (-) and C-terminal (+) sides in DMPC/DHPC (3.5:1) bicelles at $\mathrm{r}=200 \mathrm{~ns}$ for the $i+1$ to $i+4$ in Time domain and Frequency domain.

Figure S5: Three-pulse ESEEM experimental data of AChR M2 δ with ${ }^{2} \mathrm{H}$-labeled d_{8} Val15 at the N-terminal (-) and C-terminal (+) sides in DMPC/DHPC (3.5:1) bicelles at $\mathrm{T}=200 \mathrm{~ns}$ for the $i+1$ to $i+4$ in Time domain and Frequency domain.

Figure S6: Three-pulse ESEEM experimental data of AChR M2 2 with ${ }^{2} \mathrm{H}$-labeled d_{8} Phe16 at the N-terminal (-) and C-terminal (+) sides in DMPC/DHPC (3.5:1) bicelles at $\mathrm{T}=200 \mathrm{~ns}$ for the $i+1$ to $i+4$ in Time domain and Frequency domain.

[^0]: * Corresponding author. Email: lorigag@miamioh.edu, Ph: 513-5293338

