Supporting Information

Synthesis and Desymmetrization of Meso-Tricyclic Systems Derived from Benzene Oxide

Desirée M. Matías and Jeffrey S. Johnson*

Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, United States

jsj@unc.edu

Table of Contents:	Page
Mechanistic Experiments	S1
NMR Spectra	S 3
HPLC Traces	S20
Crystallographic Data for 5d	S23

Mechanistic Experiments

Crossover experiment

A solution of **3d** (25.0 mg, 0.08 mmol) in dichloromethane (0.5 mL) was cooled to -78 °C. *N*benzyl maleimide (15.4 mg, 0.08 mmol) was added and the reaction was stirred for 20 min. The reaction was moved to an ice bath and stirred for 1 h. The solvent was evaporated under reduced pressure and the crude oil analyzed. Only returned starting materials were observed, indicating that no retro Diels-Alder reaction had taken place.

Double epimerization experiments

To a solution of **4b** (10 mg, 0.06 mmol) in dichloromethane (0.1 mL) in a flame-dried 1 dram vial was added DBU (8 μ L, 0.05 mmol) and the reaction was allowed to stir at room temperature for 16 h. A sat. aq. NaHCO₃ solution (1 mL) was added and the solution was extracted with EtOAc (3 x 1 mL). The organics were combined, dried with sodium sulfate and concentrated. Full conversion to the opposite diastereoisomer was observed by ¹H NMR spectroscopy.

Table S1: Effect of base:

To a solution of 4b (30.0 mg, 0.09 mmol) in methanol (0.7 mL) was added NaBH₄ (7.15 mg, 0.19 mmol) at room temperature and the reaction was allowed to stir for 1 h.

Water workup: 1 mL of water and 1 mL of ethyl acetate were added and the layers were separated. The aqueous layer was extracted using ethyl acetate ($3 \times 2 \text{ mL}$) and the organics were combined, dried with sodium sulfate and concentrated. Only **4b** was observed by ¹H NMR.

Acetone workup: 1 mL of acetone was added and the solvent was removed under reduced pressure. The residue was passed through a silica gel plug using ethyl acetate and the solvent was removed to obtain a 1:1.2 mixture of diastereoisomers, favoring **5b**.

nOe experiment for 3d

6.81

140 130 120 110 100 90 f1 (ppm) òc Ó

HPLC Traces of Racemic and Optically Active Desymmetrization Products

210:5:395:5

210:5:395:5

3342624.28

29164163.62

313171.62

1738356.90

4.416 min

6.583 min

Compound 7

Compound 9

– 34.612 min 26.968 min 20 35 15 30 25 Time (min)

40

Channel	Ret. Time	Area	Height
210:5:395:5	23.117 min	43053094.08	792074.24
210:5:395:5	34.612 min	6096713.01	52065.35

ORTEP diagram for succinimide **5d.** Ellipsoid contours at the 50% probability level.

Identification code	v1602003
Empirical formula	
Empirical formula	C18H29INU5
Formula weight	339.42
Temperature/K	100
Crystal system	orthorhombic
Space group	Pbca
a/Å	5.79580(6)
b/Å	14.35143(15)
c/Å	43.7743(5)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	3641.06(7)
Z	8
$\rho_{calc}g/cm^3$	1.238
μ/mm ⁻¹	0.732
F(000)	1472.0
Crystal size/mm ³	0.262 × 0.189 × 0.036
Radiation	CuKα (λ = 1.54178)
2Θ range for data collection/°	4.036 to 133.198

$-6 \le h \le 6$, $-15 \le k \le 17$, $-51 \le l \le 52$
40425
$3201 [R_{int} = 0.0298, R_{sigma} = 0.0173]$
3201/0/226
1.057
$R_1 = 0.0491$, $wR_2 = 0.1242$
$R_1 = 0.0638$, $wR_2 = 0.1336$
0.20/-0.16

Atom	X	У	Ζ	U(eq)
C1	2417(7)	11906(3)	5845.3(6)	103.0(11)
C2	3441(6)	11979(3)	5533.3(7)	104.4(12)
C3	2446(6)	11324(2)	5305.3(6)	90.2(9)
C4	3359(6)	11442(2)	4980.1(5)	81.9(9)
C5	2164(5)	10833.6(19)	4750.7(5)	75.6(8)
С6	2886(5)	11007.3(19)	4420.3(5)	67.3(7)
C7	1509(5)	10431.7(18)	4193.6(5)	66.1(7)
C8	2100(4)	10661.4(17)	3866.4(5)	60.7(6)
N9	892(3)	10053.5(13)	3650.1(4)	51.6(5)
C10	1588(4)	9154.7(17)	3591.5(5)	52.4(6)
C11	-139(3)	8696.5(14)	3378.1(4)	42.9(5)
C12	1071(3)	8193.1(13)	3113.1(4)	39.3(4)
C13	-539(3)	8079.8(13)	2846.6(4)	40.1(4)
C14	-2003(3)	8864.4(13)	2765.3(4)	41.5(5)
C15	-1796(3)	9742.4(14)	2951.4(4)	40.9(5)
C16	-1813(3)	9495.6(13)	3293.6(4)	41.7(5)
C17	-1094(4)	10301.4(16)	3495.0(5)	50.4(5)
018	3315(3)	8812.3(14)	3698.5(4)	75.5(5)
C19	2127(4)	7272.7(14)	3215.7(5)	49.6(5)
020	3221(3)	6797.6(11)	2967.7(4)	56.4(4)
021	-2994(2)	8052(1)	2913.3(3)	49.8(4)
C22	-3538(3)	10473.0(14)	2859.2(5)	48.0(5)
023	-5805(3)	10141.3(11)	2919.6(4)	60.4(5)
024	-2032(3)	11049.7(12)	3522.3(4)	72.0(5)

Table S3. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for x1602003. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	U11	U22	U 33	U 23	U 13	U 12
C1	117(3)	132(3)	60.1(16)	-11.0(17)	-8.0(18)	-15(2)
C2	122(3)	126(3)	64.5(17)	-10.1(17)	-3.2(18)	-33(2)
C3	118(3)	99(2)	53.3(14)	-2.6(14)	-7.3(16)	-25(2)
C4	109(2)	83.1(19)	53.8(14)	-4.1(13)	-7.8(14)	-18.5(17)
C5	100(2)	77.7(18)	48.8(13)	-1.0(12)	-5.5(14)	-14.6(16)
C6	78.8(18)	72.6(16)	50.4(13)	-6.7(11)	-4.3(12)	-10.3(14)
C7	79.5(18)	71.8(16)	46.9(12)	-6.8(11)	-3.1(11)	-15.4(14)
C8	60.2(15)	72.6(16)	49.2(12)	-9.1(11)	-3.8(11)	-14.1(13)
N9	49.4(11)	62.6(12)	42.8(9)	-6.8(8)	-1.1(8)	-4.6(9)
C10	44.7(13)	71.3(15)	41.2(11)	-0.3(10)	-1.2(9)	3.0(11)
C11	38.1(11)	49.4(12)	41.4(10)	4.0(9)	3.5(8)	-1.8(9)
C12	33.5(10)	39(1)	45.4(10)	3.1(8)	1.9(8)	-2.5(8)
C13	34.7(10)	40.8(10)	44.9(10)	0.9(8)	2.0(8)	-2.8(9)
C14	34.9(10)	44.5(11)	45(1)	1.8(8)	-1.6(8)	-5.0(9)
C15	29.5(10)	43.5(11)	49.7(11)	0.5(9)	-0.7(8)	-3.5(8)
C16	31.2(10)	47.0(11)	47.0(11)	-3.4(8)	3.4(8)	-0.9(9)
C17	44.8(12)	57.8(14)	48.6(12)	-4.4(10)	5.5(9)	-0.1(11)
018	64.0(11)	97.1(13)	65.4(10)	-11.9(9)	-24.1(9)	19.5(10)
C19	46.6(12)	42.4(11)	59.8(12)	6.1(10)	-6.6(10)	-1.6(10)
020	39.3(9)	40.6(8)	89.2(12)	-7.4(8)	3.9(8)	-1.3(7)
021	38.7(8)	47.4(8)	63.3(9)	1.2(7)	1.1(7)	-8.9(7)
C22	39.7(12)	41.3(11)	62.9(13)	1.4(9)	-0.9(9)	-1.5(9)
023	34.9(9)	42.4(9)	103.9(13)	-3.6(8)	-8.5(8)	2.1(7)
024	73.1(12)	61.3(11)	81.6(12)	-21.9(9)	-7.9(9)	11.9(9)

Table S4. Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for x1602003. The Anisotropic displacement factor exponent takes the form: - $2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Table S5. Bond Lengths for x1602003.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
C1	C2	1.493(4)	C11	C16	1.547(3)
C2	С3	1.487(4)	C12	C13	1.503(3)
СЗ	C4	1.528(4)	C12	C19	1.523(3)
C4	C5	1.500(3)	C13	C14	1.454(3)
C5	C6	1.526(3)	C13	021	1.453(2)
C6	C7	1.518(3)	C14	C15	1.505(3)
C7	C8	1.509(3)	C14	021	1.452(2)
C8	N9	1.466(3)	C15	C16	1.539(3)
N9	C10	1.376(3)	C15	C22	1.511(3)
N9	C17	1.383(3)	C16	C17	1.513(3)
C10	C11	1.519(3)	C17	024	1.210(3)
C10	018	1.210(3)	C19	020	1.430(3)
C11	C12	1.536(3)	C22	023	1.423(2)

Table S6. Bond Angles for x1602003.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
СЗ	C2	C1	114.6(3)	C14	C13	C12	117.94(17)
C2	С3	C4	114.9(3)	021	C13	C12	117.08(16)
C5	C4	С3	113.6(2)	021	C13	C14	59.94(12)
C4	C5	C6	114.4(2)	C13	C14	C15	118.00(16)
C7	C6	C5	112.8(2)	021	C14	C13	60.00(12)
C8	C7	C6	112.5(2)	021	C14	C15	117.54(16)
N9	C8	C7	111.99(19)	C14	C15	C16	109.48(16)
C10	N9	C8	122.59(19)	C14	C15	C22	112.54(16)
C10	N9	C17	113.18(18)	C22	C15	C16	114.54(16)
C17	N9	C8	124.2(2)	C15	C16	C11	113.52(15)
N9	C10	C11	109.12(18)	C17	C16	C11	104.75(16)
018	C10	N9	123.5(2)	C17	C16	C15	112.92(16)
018	C10	C11	127.4(2)	N9	C17	C16	108.59(18)
C10	C11	C12	111.53(16)	024	C17	N9	123.6(2)
C10	C11	C16	103.85(16)	024	C17	C16	127.8(2)
C12	C11	C16	117.03(15)	020	C19	C12	111.57(17)
C13	C12	C11	110.70(16)	C14	021	C13	60.06(12)
C13	C12	C19	112.60(16)	023	C22	C15	109.59(16)
C19	C12	C11	111.63(16)				

Atom	X	у	Ζ	U(eq)
H1A	755	12027	5834	155
H1B	3145	12365	5980	155
H1C	2679	11278	5926	155
H2A	3228	12624	5458	125
H2B	5121	11863	5548	125
H3A	751	11407	5302	108
H3B	2765	10679	5373	108
H4A	3173	12102	4918	98
H4B	5029	11298	4978	98
H5A	479	10933	4768	91
H5B	2481	10174	4802	91
H6A	2681	11676	4372	81
H6B	4544	10858	4397	81
H7A	1814	9762	4231	79
H7B	-157	10543	4227	79
H8A	1682	11318	3824	73
H8B	3786	10596	3836	73
H11	-1022	8222	3498	52
H12	2368	8602	3044	47
H13	13	7679	2675	48
H14	-2353	8945	2543	50
H15	-238	10009	2906	49
H16	-3413	9304	3352	50
H19A	3276	7393	3378	60
H19B	903	6871	3302	60
H20	4460(60)	7100(20)	2927(6)	96(11)
H22A	-3257	11054	2975	58
H22B	-3374	10614	2639	58
H23	-6670(50)	10630(20)	2917(6)	89(10)

Table S7. Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for x1602003.

Experimental

Single crystals of $C_{18}H_{29}NO_5$ **[x1602003]** were grown from dichloromethane/hexane. A suitable crystal was selected and diffraction data was obtained on a 'Bruker APEX-II CCD' diffractometer. The crystal was kept at 100 K during data collection. Using Olex2 [1], the structure was solved with the olex2.solve [2] structure solution program using Charge Flipping and refined with the XL [3] refinement package using Least Squares minimisation.

- 1. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.
- 2. Bourhis, L.J., Dolomanov, O.V., Gildea, R.J., Howard, J.A.K., Puschmann, H. (2015). Acta Cryst. A71, 59-75.
- 3. Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122.

Crystal structure determination of [x1602003]

Crystal Data for C₁₈H₂₉NO₅ (M =339.42 g/mol): orthorhombic, space group Pbca (no. 61), a = 5.79580(6) Å, b = 14.35143(15) Å, c = 43.7743(5) Å, V = 3641.06(7) Å³, Z = 8, T = 100 K, μ (CuK α) = 0.732 mm⁻¹, Dcalc = 1.238 g/cm³, 40425 reflections measured ($4.036^{\circ} \le 2\Theta \le 133.198^{\circ}$), 3201 unique ($R_{int} = 0.0298$, $R_{sigma} = 0.0173$) which were used in all calculations. The final R_1 was 0.0491 (I > 2 σ (I)) and wR_2 was 0.1336 (all data).

Refinement model description

Number of restraints - 0, number of constraints - unknown.

Details:

```
Fixed Uiso
    At 1.2 times of:
    All C(H) groups, All C(H,H) groups
    At 1.5 times of:
    All C(H,H,H) groups
    2.a Ternary CH refined with riding coordinates:
    C11(H11), C12(H12), C13(H13), C14(H14), C15(H15), C16(H16)
    2.b Secondary CH2 refined with riding coordinates:
    C2(H2A,H2B), C3(H3A,H3B), C4(H4A,H4B), C5(H5A,H5B), C6(H6A,H6B), C7(H7A,H7B),
    C8(H8A,H8B), C19(H19A,H19B), C22(H22A,H22B)
    2.c Idealised Me refined as rotating group:
    C1(H1A,H1B,H1C)
```

This report has been created with Olex2, compiled on 2015.09.30 svn.r3233 for OlexSys. Please let us know if there are any errors or if you would like to have additional features.