Supporting Information

Sophisticated Construction of Binary PdPb Alloy Nanocubes as Robust Electrocatalysts toward Ethylene Glycol and Glycerol Oxidation

Hui Xu^{†§}, Pingping Song^{†§}, Carlos Fernandez^ξ, Jin Wang[†], Mingshan Zhu^{*‡}, Yukihide Shiraishi^Δ, and Yukou Du^{*†Δ}

[†] College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China

[‡] Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, P.R. China

 ξ School of Pharmacy and Life Sciences Robert Gordon University U K

^ATokyo University of Science Yamaguchi, Sanyo-Onoda-shi, Yamaguchi 756-0884,

Japan

§ These authors contributed equally

*E-mail: mingshanzhu@yahoo.com (M.Z.), duyk@suda.edu.cn (Y.D.)

Figure S1. Size distribution of Pd₂Pb NCs.

Figure S2. Typical N_2 adsorption–desorption isotherms of the Pd_2Pb NCs, and the inset shows the pore-size distribution curve.

Figure S3. TEM images (a and c) and size distributions (b and d) of Pd_3Pb NCs (a and b) and Pd_4Pb NCs (c and d).

Figure S4. Additional TEM images of $Pd_{1.5}Pb$ NCs (a and b), and PdPb NCs (c and d).

Figure S5. LR-TEM (a) and HR-TEM (b) images with different of PdPb nanocrystals with prepared in the same condition while changing the PbAc₂ with PbCl₂.

Figure S6. CVs (1st, 200th, 300th, 400th and 500th cycle) of (a) Pd_2Pb NCs, (b) Pd_3Pb NCs, (c) Pd_4Pb NCs and (d) commercial Pd/C for EGOR, respectively. The CVs were operated in the solution of 1 M KOH and 1 M EG at the scan rate of 50 mV s⁻¹.

Figure S7. CVs (1st, 100^{th} , 200th, 300th, 400th and 500th cycle) of (a) Pd₂Pb NCs, (b) Pd₃Pb NCs, (c) Pd₄Pb NCs and (d) commercial Pd/C for GOR, respectively. The CVs were operated in the solution of 1 M KOH and 1 M glycerol at the scan rate of 50 mV s⁻¹.

Figure S8. Representative TEM images of (a and b) Pd_2Pb NCs, (c and d) Pd_3Pb NCs, and (e and f) Pd_4Pb NCs catalysts before electrochemical durability test.

Figure S9. Representative TEM images of (a and b) Pd₂Pb NCs, (c and d) Pd₃Pb NCs, and (e and f) Pd₄Pb NCs catalysts after electrochemical durability test.

Figure S10. TEM images of Pd/C (a and b) before and (c and d) after 500 cycles in 1 M KOH containing 1 M glycerol at 50 mV s⁻¹.

Catalysts	Peaks	currents	Electrolyte	References	
	from CV	⁷ curves			
	J _m	J _s			
	(A/mg)	(mA/cm^2)			
Pd ₂ Pb NCs	2.22	9.20	1.0 M KOH + 1.0 M	This work	
			EG		
Pd-Ag/C	0.96		1.0 M	Int. J. Hydrogen Energy 2015,	
			KOH + 0.5 M EG	40, 2225-2230	
AuPd NCs	0.69	4.72	0.5 M	J. Colloid Interface Sci. 2018,	
			KOH + 0.5 M EG	509, 10-17.	
Pd ₉₀ Cu ₁₀	3.30		1.0 M KOH + 1.0 M	New J. Chem 2017, 41,	
			EG	13812-13822	
PdCu/C		~ 2.50	0.3 M KOH + 0.3 M	Procedia Chem. 2014, 12,	
			EG	19-26	
Pd-Fe ₂ CoO _x /C	0.48		0.5 M KOH + 0.5 M	Int. J. Hydrogen Energy 2015,	
			EG	<i>40</i> , <u>10041-10048</u> .	
Pd/Ni	0.10		1.0 M	Open Catal J. 2010, 3, 70-78	
			KOH + 1.0 M EG		
PdNi/C	0.23		1.0 M	J. Mater. Chem. A 2015, 3,	
			KOH + 1.0 M EG	15920-15926	
Pd ₁ Cu ₁	3.58		1.0 M	Electrochim. Acta 2018, 261,	
nanosphere			KOH + 1.0 M EG	521-529.	
PdCuBi	0.17		1 M KOH + 0.5 M	J. Power Sources. 2014, 249,	
nanoparticles			EG	9-12	
Au-Pd@Pd	0.54		0.5 M KOH +	Int. J. Hydrogen Energy 2016,	
			0.5 M EG	44, 2547-2553	
PdAg NFs	3.60	9.01	1.0 M	J. Electroanal. Chem. 2017,	
			KOH + 1.0 M EG	806, 1-7	
PdAg	0.17		0.1 M	Int. J. Hydrogen Energy 2015,	
nanoparticle			KOH + 1.0 M EG	40, 2225-2230	
PdRu NCs	1.17	3.35	1.0 M KOH + 1.0 M	Appl. Surf. Sci. 2018, 427,	
			EG	83-89.	
Au@Pd	4.02	8.87	1.0 M KOH + 1.0 M	J. Alloys Compond. 2017,	
<u> </u>			EG	723, 36-42	

Table S1. EGOR performances of Pd2Pb NCs and various Pd-based electrocatalysts

from published works

Catalysts	Peaks currents from CV curves		Electrolyte	References
	J _m (A/mg)	$J_s(mA/cm^2)$		
Pt ₅₂ Cu ₄₈ HTNCs	3.20	6.20	1.0 M KOH + 1.0 M Glycerol	This work
Pd ₆₃ Ag ₃₇ nanocorals	1.60	6.07	1.0 M KOH + 0.5 M Glycerol	J. Mater. Chem. A 2015 , <i>3</i> , 15920-15926
AuPd NCs	4.08	0.59	0.5 M KOH + 0.5 M Glycerol	J. Colloid Interface Sci. 2018 , 509, 10-17.
$Pd_xAg_{(100-x)}/C$	~ 0.25		0.1 M KOH + 0.1 M Glycerol	Electrocatal. 2013 , 4, 167-178
PdCu/C		~ 1.40	0.3 M KOH + 0.3 M Glycerol	Procedia Chem. 2014 , <i>12</i> , 19-26
PdAu/CB		7.23	1.0 M KOH + 0.5 M Glycerol	J. Power Sources 2015 , 297, 149-157
Pd-CNx/G	1.10		0.5 M KOH + 0.5 M Glycerol	ACS Catal. 2015, 5, 3174-3180
Pd ₅ Ru-PEDOT/C		4.30	1 M KOH + 0.5 M Glycerol	Electrochim. Acta 2015 , <i>180</i> , 339-352
Pd ₅₀ Ni ₅₀ /C	0.19		0.1 M KOH + 0.1 M Glycerol	Electrocatal. 2013 , 4, 167-178
Pd ₃ Sn/phen-C	0.18		0.1 M KOH + 0.5 M Glycerol	Int. J. Hydrogen Energy 2016 , <i>41</i> , 1272-14280
Pd-NiOx-P/C	0.368		0.1 M KOH + 0.5 M Glycerol	Chem. Eng. J. 2017 , 38, 419-427
PtAg nanotubes	0.21	6.0	0.5 M KOH + 0.5 M Glycerol	Electrochem. Commun. 2014 ,46,36-39

Table S2. GOR performances of Pd_2Pb NCs and various Pd-based electroatalysts from published works