Supporting Information

Marbostat-100 defines a new class of potent and selective anti-inflammatory and antirheumatic histone deacetylase 6 inhibitors

Andreas Sellmer ${ }^{1}$, Hubert Stangl ${ }^{2}$, Mandy Beyer 3, Elisabeth Griüntein ${ }^{1}$, Michel Leonhardt ${ }^{1}$, Herwig Pongratz ${ }^{1}$, Emerich Eichhorn ${ }^{1}$, Sigurd Elz ${ }^{1}$, Birgit Striegl ${ }^{4,5}$, Zsuzsa Jenei-Lanzl ${ }^{2,6}$, Stefan Dove ${ }^{l} \neq$, Rainer H. Straub ${ }^{2} \neq$, Oliver H. Krämer ${ }^{3} \neq$, Siavosh Mahboobi ${ }^{1} \neq *$
${ }^{1}$ Institute of Pharmacy, Faculty of Chemistry and Pharmacy, University of Regensburg, 93040 Regensburg, Germany
${ }^{2}$ Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital 93042 Regensburg, Germany
${ }^{3}$ Institute of Toxicology, Johannes Gutenberg University Mainz, Universitätsmedizin 55131 Mainz, Germany
${ }^{4}$ Technical University of Applied Sciences (OTH) Regensburg, 93053, Regensburg, Germany
${ }^{5}$ Regensburg Center of Biomedical Engineering (RCBE), OTH and University Regensburg, 93053 Regensburg, Germany
${ }^{6}$ Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim GmbH, 60528 Frankfurt/Main, Germany

\ddagger These senior authors contributed equally. *Corresponding author, E-mail: Siavosh.mahboobi@chemie.uni-regensburg.de

Content:

Enzymatic inhibitory activities on HDACs $1,2,4,5,6,8,11$ and K_{i}-values,	S 2
Cell culture, western blot and antibodies	S 3
Flow cytometry and transfection	S 4
Biological effects of Marbostat-100 in different human cell lines	$\mathrm{S} 5-\mathrm{S} 6$
Induction, assessment of arthritis and scoring	$\mathrm{S} 6-\mathrm{S} 7$
Bone parameter analysis by $\mu \mathrm{CT}$ and Hematogram data	$\mathrm{S} 7-\mathrm{S} 8$
Synthesis schemes for intermediates and non-key-compounds	$\mathrm{S} 9-\mathrm{S} 14$
Analytical data and preparation of compounds investigated	$\mathrm{S} 14-\mathrm{S} 47$
NMR spectra of intermediates of Marbostat-100 (5a), Marbostat-100 (5a) and final test compounds	$\mathrm{S} 49-\mathrm{S} 61$
Crystallographic data	$\mathrm{S} 62-\mathrm{S} 85$
References	$\mathrm{S} 86-\mathrm{S} 87$

Enzymatic Inhibitory Activities on HDACs $\mathbf{1 , 2 , 4 , 5 , 6 , 8}$ and 11 and K_{i}-values

HDAC enzyme inhibition assays were conducted by Reaction Biology Corporation (Malvern, PA, USA) using a tenpoint dose response curve with half-log serial dilutions, fluorogenic peptides at $50 \mu \mathrm{M}$ as enzymatic substrates. Substrate for HDAC1,2,6 and 11: fluorogenic peptide from p53 residues 379-382 (RHKK(Ac)AMC). Substrate for HDAC-4 and -5: fluorogenic HDAC class II substrate (Boc-Lys(TFA)AMC). Substrate for HDAC-8: fluorogenic peptide from p53 residues 379-382 (RHK(Ac)K(Ac)AMC) at a concentration of $100 \mu \mathrm{M}$. Marbostat-100 (5a) inhibited HDAC6 selectively, on basis of the enzymatic inhibitory study in a panel of $10 \mathrm{Zn}^{2+}$-dependent HDACs.
K_{i} values were calculated from the respective IC_{50} values, determined in duplicate, according to the following formula: ${ }^{1}$

$$
\mathrm{K}_{\mathrm{i}}=\mathrm{IC}_{50} /\left[1+\left(\mathrm{S} / \mathrm{K}_{\mathrm{m}}\right)\right]
$$

With:
$\mathrm{K}_{\mathrm{i}}=$ Inhibition constant
IC_{50} : Concentration of inhibitor that causes 50% of inhibition of the enzymatic reaction.
$\mathrm{K}_{\mathrm{m}}=$ Michaelis constant of the substrate (S).
S = Substrate concentration.

According to the companys informations the following parameters were used:

HDAC- subtype	1	2	3	4	5	6	7	8	10	11
K $[\mu \mathrm{M}]$	5.2	5.8	3.2	33.4	43.4	13.2	53.5	226.5	4.3	7.4

Cell culture and treatment conditions

The human leukemia cell lines MV4-11, Jurkat, HEL and BV173 were seeded in 6 well dishes with a density of 200,000 cells per ml for whole cell lysates and with a density of 150.000 cells per ml in 12 well dishes for flow cytometry. After an adaption time of at least 2 h , the cells were exposed to different HDACi as described in figure legends. The human adherent cells HEK293T were cultured in 6 well dishes with 400,000 cells per dish and stimulated after an adaption time of 24 h as described. Leukemia cell lines were maintained in RPMI 1640 (Sigma) $+10 \%$ FBS (Gibco) $+1 \%$ Pen/Strep (Gibco) and adherent cells were maintained in DMEM (Sigma) $+10 \%$ FBS + 1% Pen/Strep.

Isolation of PBMCs

Peripheral blood mononuclear cells (PBMCs) were isolated by Ficoll Histopaque ${ }^{\circledR}$ - 1077 (Sigma) density gradient centrifugation from buffy coats. The samples were obtained from blood donors from the blood bank of the University Medical Center Mainz. PBMCs were washed three times with PBS +2 mM EDTA $+0.05 \%$ BSA and seeded at 1×10^{6} cells $/ \mathrm{ml}$ in 12 well plates for flow cytometry in RPMI $1640+10 \%$ FBS $+1 \%$ Pen/Strep.

Western blot and antibodies

Western blot was done as described in Beyer et al. ${ }^{2}$. The proteins were detected via fluorescence coupled antibodies (LI-COR) using the Odyssey® imaging system. The antibodies used for Western blot were purchased from Sigma-Aldrich (acetylated Tubulin, catalog no. T7451), Merck (acetylated histone H3, catalog no. 06-599), Enzo (HSP90 (AC88), catalog no. ADI-SPA830), Cell Signaling (HDAC6 (D2E5), catalog no. 7558.

Figure S1a: A) and B) MV4-11 cells were treated for 24 h with 100 nM Marbostat-100 and compared with different compounds designed as potential new HDAC6i. The cells were analysed by Western blot. HSP90 served as loading control. The results are shown are representative from at least two independent experiments.

Figure S1b: A) and B) MV4-11 cells were treated for 24 h with 200 nM Marbostat-100 or MS-275 ($5 \mu \mathrm{M}$) and compared with different compounds designed as potential new HDAC6i. The cells were analysed by Western blot. For information about the selectivity of the compounds investigated, acetylation of H 3 was performed in addition to the detection of acetyl-tubulin as a marker for inhibition of HDAC6. Accumulation of hyperacetylated histone H3 shows an inhibition of class I HDACs (HDAC1,-2,-3, and -8). The slight hyperacetylation of tubulin in MS275treated cells is a side effect of a sligt degradation of HDAC6. The results shown are representative from at least two independent experiments.

Flow cytometry

Cell cycle distributions were determined with propidium iodide (PI; Sigma) using a flow cytometer (FACS canto II). The cells were collected on ice and permeabilized for at least 1 h in $80 \% \mathrm{EtOH}$ at $-20^{\circ} \mathrm{C}$, followed by aRNase digestion step ($1 \mu \mathrm{~g}$ per sample) for 1 h at room temperature. PI was added to every sample and measured on the flow cytometer immediately. To differente between apoptosis and necrosis, we performed Annexin V/PI double staining. Cells were collected on ice and stained with Annexin V (Miltenyi) for 30 min on ice. Afterwards, PI was added and samples were measured immediately. As unstained control, an untreated cell sample was divded in half and stained with Annexin V and PI. This single stained sample was included to compensate the overlay of the dyes as well as the autofluorescence.

Transfection

Cells were transfected with the plasmids HDAC6 FLAG (\# 13823 from Addgene) and pcDNA3.1 as empty vector control. $4 \mu \mathrm{l}$ Turbofectamin (Thermoscientific) and $2 \mu \mathrm{~g}$ plasmid were mixed in 200μ Gibco ${ }^{\text {TM }}$ Opti-MEM® I reduced serum medium and incubated for 20 min at room temperature. After the incubation time, the mixtures were added to the cells for 48 h .
Afterwards, the cells were seeded again and after an adaption time of 24 h stimulated with 500 nM Marbostat-100 for 48 h and prepared for SDS-PAGE.

Biological effects of Marbostat-100 in different human cell lines

Figure S2: Human leukemia cell lines (a) Jurkat, (c) HEL and (e) BV173 were treated with increasing concentrations of Marbostat-100 (5, 20, 50, 100, 250, 500 and 1000 nM) or with $5 \mu \mathrm{M}$ MS-275 for 24 h . Effects of the drugs and biological effects were determined via Western blot. HSP90 serves as loading control. Densitometric analyses of the blots was performed, to quantify the hyperacetlyation of α-Tubulin compared to HSP90 ((b) Jurkat, (d) HEL and (f) BV173). (g) BV173 cells were treated with 50 nM Marbostat-100 for different time points (10 min, $30 \mathrm{~min}, 1 \mathrm{~h}, 2 \mathrm{~h}, 16 \mathrm{~h}, 24 \mathrm{~h}$ and 48 h) or $5 \mu \mathrm{M} \mathrm{MS}-275$ for 24 h . The hyperacetylation of α-Tubulin compared to the loading control HSP90 was evaluated by densitometry (h). HEK293T cells were treated with Marbostat-100 (5, 20, $50,100,250,500$ and 1000 nM) or $5 \mu \mathrm{M} \mathrm{MS}-275$ for 24 h . (j) MV4-11 cells were stimulated with 50 nM Marbostat-100, different doses of the HDAC6i Tubastatin A ($5 \mathrm{nM}, 20 \mathrm{nM}, 50 \mathrm{nM}, 100 \mathrm{nM}, 250 \mathrm{nM}, 500 \mathrm{nM}$, $1 \mu \mathrm{M}, 5 \mu \mathrm{M}$ and $10 \mu \mathrm{M}$), or $5 \mu \mathrm{M}$ MS-275 for 24 h . The effects were analysed by Western blot. (k) Jurkat and (l) HEL cell lines were stimulated with increasing doses of Marbostat-100 (5, 20, 50, 100, 250, 500 or 1000 nM) or $5 \mu \mathrm{M}$ MS-275 for 24 h . The effects to cell cycle distribution were analysed by flow cytometry. (m) PBMCs were treated with Marbostat-100 (50, 100, 250, 500 and 1000 nM) or $5 \mu \mathrm{M}$ MS-275 for 24 h and apoptosis was analysed by flow cytometry. All results are shown are representative of at least two indepent experiments.

Induction, assessment of arthritis and scoring

Score points were assigned for inflamed toes, midfeet and ankles. Each limb was scored separately and scored as follows: 0 , no swelling; 0.5 , mild ankle swelling; up to 2.0 , severe ankle swelling. Scores for all toes and ankles were totaled for each mouse. The maximum arthritis score amounted to 12 points per extremity (2 points for each of four toes, 2 points for midfeet and ankle) and 48 per animal.

Additionally, paw diameters were assessed using an electronic external caliper gauge (Kroeplin, Schlüchtern, Germany) totaling the paw diameters per animal, and body weights were determined. After a total of 15 days of continuous treatment, mice were killed by CO_{2} asphyxia and the paws andseveral organs (liver, kidneys) were collected for further analysis.

For histological analysis and scoring, limbs were fixed for 24 h with a neutral buffered solution containing 3.7% formalin and subsequently decalcified in a 14% EDTA (Sigma,

Deisenhofen, Germany) solution buffered to pH 7.2 . After dehydration with a neutral buffered 20% sucrose solution, decalcified paws were then embedded in Tissue Tek O.C.T compound (Sakura Finetek, Leiden, the Netherlands). $10 \mu \mathrm{~m}$ thick sections were cut using a freezing microtome (Leica, Germany). For histological assessment of arthritis signs in the joints, sections were stained with 1,9- Dimethyl-Methylene blue solution (DMMB). DMMB is a cationic dye that specifically binds to sulfated glycosaminoglycans, which are highly expressed in articular cartilage. Hence, DMMB staining also allows for an estimate of cartilage quality. The two hindlimbs per mouse were scored separately in a blinded manner and the mean score was calculated for each animal. Following aspects were analyzed in this histological evaluation of mouse joints: A typical sign of arthritic joints is the invasion of immune cells into the joint cavity and adjacent tissues such as synovial tissue and muscle tissue. This invasion of cells into the joint cavity and into adjacent tissue was each separately scored with 0-4 points, higher scores describing a higher amount of invading cells. Additionally, the inflammation of the periosteum and erosion of underlying cortical bone was scored with $0-4$ points, higher scores meaning higher inflammation and more erosion. Other hallmarks of arthritic joints like the erosion of articular and subchondral bone ($0-4$ points) and the degradation of articular cartilage ($0-4$ points, higher score=more cartilage degradation) were scored separately. Ultimately, score points of all five aspects were totaled per extremity, resulting in a maximum score of 20 , and the mean out of two hind extremities was calculated for each animal.

Bone parameter analysis by microCT: Scanning, reconstruction of volumes, 3D morphometry measurements

All scans were performed on the microCT system phoenix v|tome|x s 240/180 research edition from GE Sensing \& Inspection Technologies GmbH (software phoenix datos|x 2 acquisition 2.4.0). Scanning parameters for hind paws were as follows: 30 kV voltage, $230 \mu \mathrm{~A}$ current, 500 ms time, 800 images, voxel size $20 \mu \mathrm{~m}$. Both hind paws were scanned of all mice with CIA. Additionally, both hind paws from age matched healthy mice served as control. Reconstructed volumes were processed using the respective manufacturer's software phoenix datos $\mid x 2$ reconstruction 2.4.0. The morphometric parameters were determined using the software Volume Graphics VG Studio Max 2.2.3. The morphometric parameters examined were volume fraction (BV/TV, data not shown), relative bone surface (BS/BV) as an indicator for erosions in bone. The region of interest (ROIs) for the hind paws were defined as follows: ROIs were created in the reconstructed volumes of the second, third and fourth toe. The ROIs were extended from the middle toe joint 1.0 mm distal and 2.2 mm proximal resulting in $(3.20 \pm 0.05) \mathrm{mm}$ long areas along the bones axis. From 20 hind paws analyzed per treatment group and from 10 hind
paws in the healthy control group, outliers beyond the group mean $\pm 2.0 *$ SD in each group were excluded in the BS/BV analysis (see also figure 6L, main part).

Hematogram data

Whole blood was collected in EDTA coated tubes after cardiac puncture and subsequently analyzed by a full automatic counter. Hemoglobin, erythrocytes and leukocytes were determined in blood samples from the first (Marbostat-100 versus vehicle, Figure S3 A,B,C) and second (compound $\mathbf{5 f}$ versus vehicle, Figure S3 D,E,F) experiment. Compared to vehicle, no significant changes in the blood parameters were detected (Mann-Whitney test was used to compare groups).

Figure S3. Hematogram from Marbostat-100and compound 5 f treatment groups in CIA. Hemoglobin (A), red blood cell count (B), and white blood cell count (C) from the first experiment testing Marbostat-100 ($30 \mathrm{mg} / \mathrm{kg}$) against vehicle treatment in CIA. Hemoglobin (D), red blood cell count (E), and white blood cell count (F) from the second experiment testing compound $\mathbf{5 f}(42.3 \mathrm{mg} / \mathrm{kg})$ against vehicle treatment in CIA. One dot represents the value of one blood sample and mouse analyzed. See figure legend in the main part for explanation of box plots and abbreviations.

Synthesis schemes for intermediates and non-key-compounds

Scheme S1. Synthesis of methylene bridged tetrahydro- β-carboline (HEAD 1) ${ }^{a}$.

${ }^{a}$ Reagents and conditions: (a) $\mathrm{AcOH}, \Delta, 48 \mathrm{~h}$.(b) $\mathrm{THF}, \mathrm{LiAlH}_{4}, 6{ }^{\circ} \mathrm{C}, 16 \mathrm{~h}$.(c) EtOH , TFA, formaldehyde (43), $60^{\circ} \mathrm{C}, 3 \mathrm{~h}$.(d) Methoxyamine hydrochloride, $\mathrm{H}_{2} \mathrm{O}, 60^{\circ} \mathrm{C}, 2 \mathrm{~h}$.

Modified from the literature ${ }^{3,4} 1 \mathrm{H}$-pyrrole-2,5-dione (63) was added to indole (57a) to give $\mathbf{6 4}$. Reduction of $\mathbf{6 4}$ using LiAlH_{4} led to the secondary amine $\mathbf{6 5}$. ${ }^{5,}{ }^{6}$ The ring closure to $\mathbf{6 6}$ was performed with formaldehyde (43) by acidic catalysis. ${ }^{5}$

Scheme S2. Synthesis of head group 3, a tetrahydro- β-carboline angularly fused with a cyclohexanone ${ }^{a}$.

${ }^{a}$ Reagents and conditions: (a) THF, glutaric anhydride 68, rt, 20 min . (b) $\mathrm{MeOH}, \mathrm{SOCl}_{2}, 20^{\circ} \mathrm{C}, 3 \mathrm{~h}$.(c) toluene, $\mathrm{MeCN}, \mathrm{POCl}_{3}$, reflux, 5 h .(d) $\mathrm{MeOH}, \mathrm{NaBH}_{4}$, rt, 1 h .(e) $\mathrm{MeOH}, \mathrm{HCl}_{\mathrm{aq}}$, rt, 1 h .

Compound 73 (scheme S2), a tetrahydro- β-carboline angularly fused with a cyclohexanone which was investigated as head group, was prepared as follows: Tryptamine (67) was reacted with glutaric acid anhydride (68) and directly esterified according to Da Silva et al. to 70. ${ }^{7}$ The imine 71 was obtained by Bischler-Napieralski cyclization. ${ }^{8,9}$ Subsequent ring closure was achieved by sodium borohydride reduction and acidic catalyzation to afford 73. ${ }^{10}$

Scheme S3. Synthesis of compound $\mathbf{4}^{a}$.

${ }^{a}$ Reagents and conditions: (a) DMF, $\mathrm{NaH}, 0^{\circ} \mathrm{C}$, 15 min . (b) rt, 1 h .(c) TFA, rt, 30 min . (d) DMF, BOP 25, $\mathrm{NH}_{2} \mathrm{OTHP}$ 26, rt, 2 - 3 h.(e) $\mathrm{MeOH}, \mathrm{HCl}_{\text {aqu. }}$, rt.

Compound 4, bearing the 1,3,4,9-tetrahydro-2,4-methanopyrido[3,4-b]indolyle as a tetracylic head group 1 was available from the respective indole derivative $\mathbf{6 6}^{5}$ as shown in scheme S3a. The general synthetic strategy to obtain methyl-2,3,4,9-tetrahydro- $1 H$-pyrido [3,4-b] indole-4carboxylate hydrochlorides (16a-d) ${ }^{11}$ as intermediates for the synthesis of derivatives bearing head group 2 and derivatives thereof is shown in scheme $\mathrm{S} 4 . \mathrm{Al}_{2} \mathrm{O}_{3}$ catalyzed addition of methyl 2-acetoxy-3-nitropropanoate (71) ${ }^{12,13}$ to the indoles 57a-d according to Ballini et al. ${ }^{14}$ initially leads to racemic methyl 2 -(1 H -indol-3-yl)-3-nitropropanoates (78a-d). Reduction with $\mathrm{Zn} / \mathrm{HCl}$ and alkaline work-up gives methyl 3 -amino-2-(1 H -indol-3-yl) propanoates (79a-d), ${ }^{11}$ which were purified by conversion into their hydrochlorides. Pictet-Spengler reaction of the hydrochlorides 79a-d with formaldehyde (43) according to Shi et al. ${ }^{15}$ leads to the formation of methyl-2,3,4,9-tetrahydro-1 H -pyrido [3,4-b] indole-4-carboxylate hydrochlorides (16a-d). ${ }^{11}$

Scheme S4. Synthesis of 16a-d for modification of head group 2^{a}.

[^0]Use of bromomethylphenylacrylates $\mathbf{8 0}{ }^{16,17}$ or $\mathbf{8 1}{ }^{17,18}$ for alkylation of 20a following the same reaction pathways led to the acrylic acid derivatives 6 and 7, respectively (scheme S5).
Scheme S5. Synthesis of Marbostat-100 derivatives 6 and 7 with an acryl linker ${ }^{a}$.

${ }^{a}$ Reagents and conditions: (a) DMF, $\mathrm{NaH}, 0^{\circ} \mathrm{C}, 15 \mathrm{~min}$. (b) rt, 1 h .(c) TFA, rt, 30 min . (d) DMF, BOP (25), $\mathrm{NH}_{2} \mathrm{OTHP}$ (26), rt, 2-3 h.(e) $\mathrm{MeOH}, \mathrm{HCl}_{\mathrm{aqu}}$, rt.

Scheme S6. Synthesis of target compounds $\mathbf{8}$ and $\mathbf{9}$ with an angular fused D-ring incorporated into the head group ${ }^{a}$.

${ }^{a}$ Reagents and conditions: (a) DMF, $\mathrm{NaH}, 0^{\circ} \mathrm{C}, 15 \mathrm{~min}$. (b) rt, 1 h .(c) TFA, rt, 30 min . (d) DMF, BOP, $\mathrm{NH}_{2} \mathrm{OTHP}$, rt, 2-3 h.(e) $\mathrm{MeOH}, \mathrm{HCl}_{\text {aqu }}$, rt.

The target compounds $\mathbf{8}$ and $\mathbf{9}$ with an angularly fused D-ring incorporated into the head group were prepared by use of $1,2,3,6,7,12 b$-hexahydroindolo[2,3-a]quinolizin- $4(12 H)$-one (73) ${ }^{10}$ and
tert-butyl 4-(bromomethyl)benzoate (21) or (E)-tert-butyl 3-(4-(bromomethyl)phenyl)acrylate (80) (scheme S5), respectively.

Head group 4 with an angularly fused benzene ring as an E-ring system (scheme S7) was built up starting from 2-methyl-1-nitronaphthalene (94), which was transformed into (E)- N, N-dimethyl-2-(1-nitronaphthalen-2-yl)ethenamine (95) by use of DMFDMA according to Riesgo et al.. ${ }^{19}$ Ring closure by reduction according to Siu et al. ${ }^{20}$ led to 1 H -benzo $[g]$ indole (96). Using the reaction sequence described for the synthesis of Marbostat-100 - addition of methyl 2-acetoxy-3nitropropanoate (77) ${ }^{12,}{ }^{13}$ according to Ballini et al. ${ }^{14}$, reduction, Pictet-Spengler reaction ${ }^{11}$, reaction with 2,5-dioxopyrrolidin-1-yl methylcarbamate and subsequent cyclization yielded $\mathbf{1 0 0}$, which was alkylated by use of $\mathbf{2 1}$ and transformed to the final compound $\mathbf{1 0}$ in 3 steps.

Scheme S7. Synthesis of target compound 10, using head group 4 with an angularly fused benzene ring (E-ring system) incorporated into the head group ${ }^{a}$.

${ }^{a}$ Reagents and conditions: (a) DMFDMA, DMF, $6 \mathrm{~h} 140{ }^{\circ} \mathrm{C}, 26 \mathrm{~h} 25^{\circ} \mathrm{C}$. (b) $\mathrm{Pd} / \mathrm{C}(10 \%), \mathrm{H}_{2}, \mathrm{MeOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, 18 h. (c) $\mathrm{Al}_{2} \mathrm{O}_{3}, 77,2 \mathrm{~h}, 65^{\circ} \mathrm{C}$. (d) $\mathrm{MeOH}, \mathrm{THF}, \mathrm{Zn}, \mathrm{HCl}$. (e) MeOH , formaldehyde (43), 16 h , r. (f) MeCN , $\mathrm{EtN}\left({ }^{\mathrm{i} P r o p}\right)_{2}$, 2,5-dioxopyrrolidin-1-yl methylcarbamate (18), rt, $16 \mathrm{~h} .(\mathrm{g})$ dioxane, $\mathrm{Cs}_{2} \mathrm{CO}_{3}, 110{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$. (h) 2butanone, $\mathrm{K}_{2} \mathrm{CO}_{3}, \Delta$, 16 h.(i) TFA, rt, 30 min . (j) DMF, BOP, $\mathrm{NH}_{2} \mathrm{OTHP}$, rt, $2-3 \mathrm{~h}$. (k) $\mathrm{MeOH}, \mathrm{HCl}_{\text {aqu. }}$, rt.

The enantioselective synthesis of R - and S-Marbostat-100 (R-5a/S-5a) is shown in scheme S 8 .

Scheme S8: Enantioselective synthesis of R - and S-Marbostat-100 (R-5a / S-5a)

57a	58
	a) or b)

$\begin{array}{cc} \\ \text { c } & \mathbf{6 0 b}: S / R \\ >99.5: 0.5\end{array}$

b)

$\mathrm{BAr}_{4} \mathrm{~F}_{24}=$
tetrakis[3,5-bis(trifluoromethyl)phenyl]borate

${ }^{a}$ Reagents and conditions: (a) 2-(((1R,2S)-2-hydroxy-2,3-dihydro-1H-inden-1-yl)carbamothioyl)quinolin-1-ium tetrakis(3,5-bis(trifluoromethyl)phenyl)borate (59a), $\mathrm{CHCl}_{3},-60^{\circ} \mathrm{C}, 16 \mathrm{~h} .(\mathrm{b}) 2-(((1 \mathrm{~S}, 2 \mathrm{R})$-2-hydroxy-2,3-dihydro$1 H$-inden-1-yl)carbamothioyl)quinolin-1-ium tetrakis(3,5-bis(trifluoromethyl)phenyl)borate (59b), $\mathrm{CHCl}_{3},-60^{\circ} \mathrm{C}$, 16 h.(c)) MeOH, THF, Zn , HCl. (d) Formaldehyde (43), $\mathrm{MeOH}, \mathrm{rt}, 24 \mathrm{~h}$.(e) $\mathrm{CH}_{3} \mathrm{NH}_{2}, \mathrm{NaCN}$ (kat), $\mathrm{MeOH}, \mathrm{O}^{\circ} \mathrm{C}$, 5d.(f) Triphosgene, pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$.(g) (21), $\mathrm{K}_{2} \mathrm{CO}_{3}$, 2-butanone, $80^{\circ} \mathrm{C}, 10 \mathrm{~h}$.(h) $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CF}_{3} \mathrm{COOH}$, rt. (i) $\mathrm{NH}_{2} \mathrm{OTHP}$ (26), BOP (25), (iProp) ${ }_{2} \mathrm{NEt}, \mathrm{THF}$, rt, 2 h. (j) $\mathrm{MeOH}, \mathrm{HCl}_{\text {aqu. }}$, rt.

The synthesis of the respective cis-aminoindanol thiourea organocatalysts 59a and 59b used for the enantioselective additions of indole 57a to (E)-ethyl 3-nitroacrylate (58) was performed following literature procedures ${ }^{21}$ as shown in scheme S13. Reaction of 2(chloromethyl)quinoline hydrochloride(103) with sulfur, followed by alkylation with iodomethane resulted in formation of methyl quinoline-2-carbodithioate (104), which was further reacted with $(1 R, 2 S)$-1-amino-2,3-dihydro-1 H-inden-2-ol (105a), respective ($1 S, 2 R$)-1-amino-2,3-dihydro- $1 H$-inden-2-ol (105b) to form the precatalysts106a $(1 R, 2 S)$ and $\mathbf{1 0 6 b}(1 S, 2 R)$. By treatment of the precatalysts with trifluoromethanesulfonic acid and sodium tetrakis[3,5bis(trifluoromethyl)phenyl]borate in CHCl_{3} solution the active thiourea catalysts 59a and 59b were prepared in situ.

Scheme S9: Synthesis of 2-(($(1 R, 2 S)$-2-hydroxy-2,3-dihydro-1H-inden-1-yl)carbamothioyl)quinolin-1-ium-tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (59a) and 2-(((1S,RS)-2-hydroxy-2,3-dihydro-1H-inden-1-yl)carbamothioyl)quinolin-1-ium tetrakis[3,5bis(trifluoromethyl)phenyl]borate (59b) ${ }^{a}$

${ }^{a}$ Reagents and conditions: (a) i) S , NEt_{3}, $\mathrm{DMSO}, 3 \mathrm{~h}$, ii) $\mathrm{CH}_{3} \mathrm{I}$.(b) ($1 R, 2 S$)-1-amino-2,3-dihydro- $1 H$-inden-2-ol (105a), respective $(1 S, 2 R)$-1-amino-2,3-dihydro- $1 H$-inden-2-ol $\quad(\mathbf{1 0 5 b}), \quad \mathrm{CH}_{2} \mathrm{Cl}_{2}, \quad 20^{\circ} \mathrm{C}, \quad 16 \mathrm{~h}$. (c) trifluoromethanesulfonic acid, sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate, $\mathrm{CHCl}_{3}, 20^{\circ} \mathrm{C}$.

Analytical data and preparation of intermediates

3-(Pyrrolidin-3-yl)-1H-indole (65) ${ }^{5,6,22}$

Following the literature ${ }^{5,6}$, indole (57a) (10.0 mmol) and maleimide ($\mathbf{6 3}$) (30.0 mmol) were dissolved in $\mathrm{AcOH}(50.0 \mathrm{~mL})$ under N_{2} and refluxed for 48 h (TLC monitoring). The reaction mixture was concentrated, sat. NaHCO_{3} solution (50.0 mL) was added
and the mixture extracted with EtOAc ($3 \times 50.0 \mathrm{~mL}$). The combined organic layers were dried $\left(\mathrm{NaSO}_{4}\right)$ and concentrated under reduced pressure. The oily residue was purified bycc $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ EtOAc2:1) to obtain $\mathbf{6 4 . 6 4}(9.0 \mathrm{mmol})$ was dissolved whilst stirring in a suspension of LiAlH_{4} ($45.0 \mathrm{mmol}, 5$ equ.) in anhydrous THF ($50 \mathrm{~mL}, 0^{\circ} \mathrm{C}$, Ar). The solution was stirred at $65^{\circ} \mathrm{C}$ for 16 h (TLC monitoring), cooled to rt and quenched with $\mathrm{Na}_{2} \mathrm{SO}_{4} \times 10 \mathrm{H}_{2} \mathrm{O}(15.0 \mathrm{~g})$. Water $(1.0 \mathrm{~mL})$ and EtOAc (150 mL) were added and stirring was continued overnight. The suspension was filtered over Celite, the solvent was evaporated and cc $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{ammonia}\right.$ 3:1:0.1) and crystallization from MeCN yielded $1.10 \mathrm{~g}(5.91 \mathrm{mmol}, 65 \%)$ red-brown solid. mp : $103.1-$ $104.8^{\circ} \mathrm{C}$, lit. ${ }^{22}$: 102.0-104.5 ${ }^{\circ} \mathrm{C}(\mathrm{MeCN}) ;{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d d_{6}): $\delta 10.93(\mathrm{~s}, 1 \mathrm{H}), 7.56$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H}), 7.07(\mathrm{~m}, 1 \mathrm{H}), 6.97(\mathrm{~m}, 1 \mathrm{H}), 3.91$ (bs, $1 \mathrm{H}), 3.45-3.23(\mathrm{~m}, 2 \mathrm{H}), 3.13-2.89(\mathrm{~m}, 2 \mathrm{H}), 2.87-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.95-$ $1.73(\mathrm{~m}, 1 \mathrm{H})$. EI-MS (70 eV) m/z (\%): $186\left[\mathrm{M}^{+}\right]$(100), 144 (92).

3,4,5,10-Tetrahydro-1H-2,5-methanoazepino[3,4-b]indole (66) ${ }^{5}$

Nins
The Pictet-Spengler reaction was carried out in analogy to lit. ${ }^{5}$.3-(Pyrrolidin-3-yl)1 H -indole ($\mathbf{6 5}$) (3.22 mmol) was dissolved in $\mathrm{EtOH}(50.0 \mathrm{~mL}) .1 .0$ equ. TFA and 3 equ. of formaldehyde (43) (36% in water) were added and the mixture was heated to reflux for 3 h .2 equ. methoxyamine hydrochloride and $6.0 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ were added and reflux was continued for 2 h . The mixture wasconcentrated under reduced pressure and extracted with EtOAc (3 x 50.0 mL). The organic phase was washed with sat. NaHCO_{3} solution and dried over sodium sulfate. Crystallization from EtOH overnight afforded $0.41 \mathrm{~g}(2.10 \mathrm{mmol}, 65 \%)$ colorless crystals from EtOAc. mp: 261.8-262. $6^{\circ} \mathrm{C}$, lit. ${ }^{5}: 262-263{ }^{\circ} \mathrm{C}$ (EtOAc). ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d ${ }_{6}$): δ $10.61(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.01-6.87(\mathrm{~m}, 2 \mathrm{H}), 4.31(\mathrm{~d}, J=16.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.30-3.22(\mathrm{~m}, 1 \mathrm{H}), 3.20-3.05(\mathrm{~m}, 1 \mathrm{H}), 2.90(\mathrm{~d}, J=10.6$ Hz, 1H), $2.83-2.65$ (m, 2H), 1.98 - 1.80 (m, 2H). ESI-MS m/z (\%): 239 [MH $\left.{ }^{+}+\mathrm{MeCN}\right]$ (100), $198\left[\mathrm{MH}^{+}\right]$(40).

Methyl 2-(1H-indol-3-yl)-3-nitropropanoate (78a) ${ }^{14}$

78a was prepared as described by Ballini et al..$^{14}{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}): δ 11.22 (s, 1H), 7.63 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.39 (dd, $J=5.3,2.7 \mathrm{~Hz}, 2 \mathrm{H}$), $7.22-7.08$ $(\mathrm{m}, 1 \mathrm{H}), 7.08-6.98(\mathrm{~m}, 1 \mathrm{H}), 5.30(\mathrm{dd}, J=14.9,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{dd}, J=14.9$, $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{dt}, J=12.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H})$.

Methyl 2-(5-methoxy-1H-indol-3-yl)-3-nitropropanoate (78b)

Preparation according to Ballini et al.. ${ }^{14}$ Yield 4.56 g (82 \%) yellow crystals. IR (KBr): 3375, $1726 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.24(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{dd}, J=5.1,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{dd}, J=8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.20(\mathrm{dd}, J=14.2,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{dd}, J=9.7,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{dd}, J=14.2$, $5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H})$. ESI-MS m/z (\%): $218.08\left[\mathrm{MH}^{+}-\mathrm{CH}_{3} \mathrm{NO}_{2}\right]$ (100), $279.09\left[\mathrm{MH}^{+}\right]$(99). Anal. calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{5}$: C 56.11; H 5.07; N 10.07; found: C 55.58; H 5.06; N 9.67.

Methyl 2-(5-(benzyloxy)-1H-indol-3-yl)-3-nitropropanoate (78c) ${ }^{23}$. was prepared according to Ballini et al.. ${ }^{14}$

Yield $8,70 \mathrm{~g}(73 \%)$ brown oil. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 11.08$ (d, J $=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.23(\mathrm{~m}, 6 \mathrm{H}), 6.84(\mathrm{dd}, J=8.8$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{dd}, J=15.0,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 4.91(\mathrm{dd}, J=$ $15.1,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{dd}, J=10.5,4.8 \mathrm{~Hz}, 1 \mathrm{H})$.

Methyl 2-(6-methoxy-1H-indol-3-yl)-3-nitropropanoate (78d) was prepared according to
 Ballini et al. ${ }^{14}$. Yield $5.10 \mathrm{~g}(52 \%)$ brown oil. IR (KBr): 3424, 2924, 1733, 1627 cm^{-1}. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 10.99$ ($\mathrm{s}, 1 \mathrm{H}$), $7.49(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.23(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{dd}, J=8.7,2.3 \mathrm{~Hz}, 1 \mathrm{H})$, 5.26 (dd, $J=14.9,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.92$ (dd, $J=14.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.69$ (dd, $J=$ $10.4,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76$ (s, 3H). ESI-MS m/z (\%): $278.9\left[\mathrm{MH}^{+}\right](100),\left[\mathrm{MH}^{+}+\mathrm{CH}_{3} \mathrm{CN}\right] 320.0$ (70). Anal. calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 56.11 ; H, 5.07 ; N, 10.07; found: C 56.16 ; H 5.21; N 10.04.

Methyl 3-amino-2-(1H-indol-3-yl)propanoate hydrochloride (79a) ${ }^{11}$

To a solution of methyl 2-(1 H -indol-3-yl)-3-nitropropanoate (78a) (6.20 g ; 25.0 $\mathrm{mmol})$ in THF $(155 \mathrm{~mL})$ and $\mathrm{MeOH}(155 \mathrm{~mL})$ were added zinc dust $(31.0 \mathrm{~g})$ and $\mathrm{CuSO}_{4}(0.62 \mathrm{~g})$. The solution was stirred and $\mathrm{HCl}(3 \mathrm{~N}, 310 \mathrm{~mL})$ was added dropwise in a rate, that the solution heated to reflux. The solution was stirred for 2 h , filtrated and then adjusted to pH 14 with NH_{3} conc. The product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 100 \mathrm{~mL}$). The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The residue was dissolved in THF (60 mL) and $\mathrm{HCl}(6 \mathrm{~N}$ in dioxane) was added with stirring. The colorless product was filtered off, washed with THF and $\mathrm{Et}_{2} \mathrm{O}$ and dried. Yield 5.30 g (83%) colorless crystals. mp: 199.5-199.7 ${ }^{\circ} \mathrm{C}$. IR (KBr): 3312, 3022, 2977, $1732 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, DMSO- d_{6}): $\delta 11.28(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~s}, 3 \mathrm{H}), 7.57(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34$ $(\mathrm{d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-6.98(\mathrm{~m}, 2 \mathrm{H}), 4.35(\mathrm{dd}, J=7.9,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$, 3.49 (s, 1H), 3.17 (s, 1H). ESI-MS m/z (\%): $219\left[\mathrm{MH}^{+}\right]$(100).

Methyl 3-amino-2-(5-methoxy-1H-indol-3-yl)propanoate hydrochloride (79b) ${ }^{24}$

As described for 79a from methyl 2-(5-methoxy-1H-indol-3-yl)-3nitropropanoate ($\mathbf{7 8 b}$) ($7.18 \mathrm{~g} ; 25.00 \mathrm{mmol}$). Yield $5.96 \mathrm{~g}(84 \%)$ colorless crystals. mp: 213.7-214. $0^{\circ} \mathrm{C}$ (THF), lit. ${ }^{24}: 212-214^{\circ} \mathrm{C}$ (MeOH / ETOAC). ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 11.12(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~s}, 3 \mathrm{H})$, $7.28(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{dd}, J=8.8,2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.33$ (dd, $J=8.1,6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.76 (s, 3H), 3.64 (s, 3 H), 3.46 (dd, $J=12.7,8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.13$ (dd, $J=12.7,6.3 \mathrm{~Hz}, 1 \mathrm{H})$. ESI-MS m / z (\%): $285\left[\mathrm{MH}^{+}\right]$(100).

Methyl 3-amino-2-(5-(benzyloxy)-1H-indol-3-yl)propanoate (79c) ${ }^{25}$

79c was prepared from methyl 2-(5-(benzyloxy)-1H-indol-3-yl)-3nitropropanoate (78 c) $(18.58 \mathrm{~g} ; 52.4 \mathrm{mmol})$ as described for 79a. Yield $14.98 \mathrm{~g} ; 79 \%$ colorless crystals. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, ~ D M S O-d_{6}$): δ $11.10(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~s}, 3 \mathrm{H}), 7.53-7.23(\mathrm{~m}, 7 \mathrm{H}), 7.17(\mathrm{~d}, J=$ $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{dd}, J=8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{dd}, J=8.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{dd}$, $J=12.7,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{dd}, J=12.7,6.4 \mathrm{~Hz}, 1 \mathrm{H})$.

As described for 79a from methyl 2-(6-methoxy-1H-indol-3-yl)-3nitropropanoate (78d). Yield $3.80 \mathrm{~g} ; 13.30 \mathrm{mmol}$ (67%) colorless crystals. IR (KBr): 1724, $3414 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 11.06(\mathrm{~d}, J=$ $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.19$ (s, 3H), 7.44 (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.18$ (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.89(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{dd}, J=8.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{dd}, J=8.1,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}$, $3 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.54-3.39(\mathrm{~m}, 1 \mathrm{H}), 3.14(\mathrm{~s}, 1 \mathrm{H})$. ESI-MS m/z (\%): $249\left[\mathrm{MH}^{+}\right]$(100).

Methyl 6-methoxy-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-4-carboxylate hydrochloride (16b) ${ }^{26}$

As described for 16a from methyl 3-amino-2-(5-methoxy-1H-indol-3yl)propanoate hydrochloride (79b). Yield $2.58 \mathrm{~g}(87 \%)$ colorless crystals. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 11.21(\mathrm{~s}, 1 \mathrm{H}), 10.26(\mathrm{~s}, 1 \mathrm{H}), 9.21(\mathrm{~s}, 1 \mathrm{H})$, $7.29(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{dd}, J=8.8,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.39-4.26(\mathrm{~m}, 2 \mathrm{H}), 4.22(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~d}, J=4.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.52$ (dd, $J=12.8,5.2 \mathrm{~Hz}, 1 \mathrm{H})$.

Methyl 6-(benzyloxy)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-4-carboxylate hydrochloride (16c)

As described for 16a from methyl 3-amino-2-(5-(benzyloxy)-1 H -indol-3yl)propanoate hydrochloride (79c). Yield $11.2 \mathrm{~g} ; 30.0 \mathrm{mmol}$ (77 \%) colorless crystals. $\mathrm{mp}: 254.1-254.3^{\circ} \mathrm{C}$. IR (KBr): $3442,3195,1732 \mathrm{~cm}^{-}$ ${ }^{1} .{ }^{1}{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 11.23$ (s, 1H), 9.72 (s, 2H), $7.54-$ $7.24(\mathrm{~m}, 6 \mathrm{H}), 7.08(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{dd}, J=8.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 4.35(\mathrm{~d}, J=$ $16.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{dd}, J=12.1,3.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.65(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{dd}, J=12.9,5.3 \mathrm{~Hz}, 1 \mathrm{H})$. ESI-MS $m / z(\%): 337.15\left[\mathrm{MH}^{+}\right]$(100). Anal. calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{O}_{3}$: C 64.43; H 5.86; N 7.51; found: C 65.63; H 5.84; N 7.46.

Methyl 7-methoxy-2,3,4,9-tetrahydro-1H-pyrido[3,4-b] indole-4-carboxylate hydrochloride (16d)

As described for 16a from methyl 3-amino-2-(6-methoxy-1H-indol-3yl)propanoate hydrochloride ($\mathbf{7 9 d}$). Yield $3.53 \mathrm{~g} ; 11.90 \mathrm{mmol}$ (89%) colorless crystals. mp: $233.1-235.2^{\circ} \mathrm{C}$. IR (KBr): $3426,3154,1733 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 11.20(\mathrm{~s}, 1 \mathrm{H}), 10.31(\mathrm{~s}, 1 \mathrm{H}), 9.25(\mathrm{~s}, 1 \mathrm{H})$, $7.39(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{dd}, J=8.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.39-4.24(\mathrm{~m}$, $2 \mathrm{H}), 4.21(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s},, 3 \mathrm{H}), 3.66(\mathrm{dd}, J=12.9,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.55-$ $3.46(\mathrm{~m}, 1 \mathrm{H})$. ESI-MS m/z (\%): $261\left[\mathrm{MH}^{+}\right]$(100). Anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}_{3}:$ C 56.66; H 5.77; N 9.44; found: C 56.70; H 5.85; N 9.16.

Methyl 6-methoxy-2-(methylcarbamoyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-4carboxylate (19b)

As described for 19a from methyl methyl 6-methoxy-2,3,4,9-tetrahydro- $1 H$ -pyrido[3,4-b]indole-4-carboxylate hydrochloride (16b) ($0.75 \mathrm{~g} ; 2.53 \mathrm{~mol}$) and

crystals 0.61 g ($1.92 \mathrm{mmol} ; 76 \%$); mp: $233.5-234.2^{\circ} \mathrm{C}$. IR (KBr): 3345, $1730,1634 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 10.88(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.69(\mathrm{dd}, J=8.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{q}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J$ $=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J=13.1,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.78-3.67(\mathrm{~m}, 4 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 2.60(\mathrm{~d}, J=$ $4.2 \mathrm{~Hz}, 3 \mathrm{H})$. ESI-MS m$/ \mathrm{z}$ (\%): $635\left[2 \mathrm{M}+\mathrm{H}^{+}\right]$(100), $318\left[\mathrm{MH}^{+}\right]$(62). Anal. calcd for $\left(\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4}\right)$: C 60.56; H 6.03; N 13.24; found: C 60.66; H 6.08; N 13.32.

Methyl 6-(benzyloxy)-2-(methylcarbamoyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-4carboxylate (19c)

As described for 19a from methyl 6-(benzyloxy)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-4-carboxylate hydrochloride (16c) and N -succinimidyl- N -methyl-carbamate (18). Colorless crystals $10.69 \mathrm{~g}(27.17$ mmol; 99%). IR (KBr): 3418, 1730, 1635, 1612, $1593 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 10.90(\mathrm{~s}, 1 \mathrm{H}), 7.52-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.22(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J$ $=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{dd}, J=8.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 2 \mathrm{H}), 4.57(\mathrm{~d}, J=$ $16.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J=13.3,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.69(\mathrm{dd}, J=13.3,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 3 \mathrm{H})$. ESI-MS m/z (\%): $394.17\left[\mathrm{MH}^{+}\right]$(100). Anal. calcd for $\left(\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4}\right)$: C 67.16; H 5.89; N 10.68; found: C 67.13; H 5.91; N 10.65.

Methyl 7-methoxy-2-(methylcarbamoyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-4carboxylate (19d)

As described for 19a from methyl methyl 7-methoxy-2,3,4,9-tetrahydro- 1 H -pyrido[3,4-b]indole-4-carboxylate hydrochloride (16d) ($3.45 \mathrm{~g} ; 11.63 \mathrm{mmol}$) and N-succinimidyl- N -methyl-carbamate (18) (2.40 g ; 13.95 mmol). Colorless crystals 2.90 g ($9.13 \mathrm{mmol} ; 79 \%$); mp: $237.0-239.2^{\circ} \mathrm{C}$. IR (KBr): 3241,1728 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 10.86(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.71-6.46(\mathrm{~m}, 2 \mathrm{H}), 4.54(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-3.80$ $(\mathrm{m}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.74-3.67(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 2.60(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 3 \mathrm{H})$. ESI-MS m/z (\%): $635\left[2 \mathrm{M}+\mathrm{H}^{+}\right]$(100), $318\left[\mathrm{MH}^{+}\right]$(62). Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4}$: C 60.56 ; H 6.03; N 13.24; found: C 60.34; H 6.00; N 13.09 .

8-Methoxy-4-methyl-6,11-dihydro-2,6-methano[1,3]diazocino[5,6-b]indole-3,5(1H,4H)dione (20b)

As described for 20a from methyl 6-methoxy-2-(methylcarbamoyl)-2,3,4,9-tetrahydro-1 H -pyrido[3,4-b]indole-4-carboxylate (19b). Yield 0.52 g (1.82 $\mathrm{mmol} ; 67 \%)$ colorless crystals from EtOAc after cc $\left(\mathrm{SiO}_{2} ; \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{EtOAc}\right.$; 1:1); mp: 253.0-253.6 ${ }^{\circ} \mathrm{C}$. IR (KBr): 3287, 1718, $1687 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 11.02$ (s, 1H), 7.24 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.94 (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 6.73 (dd, $J=8.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~s}, 2 \mathrm{H}), 3.93-3.83(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}$, $3 \mathrm{H}), 3.42(\mathrm{dd}, J=13.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}): $\delta: 173.21$ (s, 1C, quat.), 160.96 (s, 1C, quat.), 153.48 ($\mathrm{s}, 1 \mathrm{C}$, quat.), 133.59 ($\mathrm{s}, 1 \mathrm{C}$, quat.), 130.45 (s, 1C, quat.), 126.10 (s, 1C, quat), 112.22 (s, 1C, CH), 111.12 (s, 1C, CH), 104.50 (s, 1C, quat), 99.31 ($\mathrm{s}, 1 \mathrm{C}, \mathrm{CH}$), $55.21\left(\mathrm{~s}, 1 \mathrm{C}, \mathrm{OCH}_{3}\right), 49.58\left(\mathrm{~s}, 1 \mathrm{C}, \mathrm{CH}_{2}\right), 46.40\left(\mathrm{~s}, 1 \mathrm{C}, \mathrm{CH}_{2}\right), 35.96(\mathrm{~s}, 1 \mathrm{C}, \mathrm{CH})$,
$27.23\left(\mathrm{~s}, 1 \mathrm{C}, \mathrm{CH}_{3}\right) . \mathrm{CI}-\mathrm{MS}\left(\mathrm{NH}_{3}\right) \mathrm{m} / \mathrm{z}(\%): 303\left[\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right]$(100), $286\left[\mathrm{MH}^{+}\right]$(24). Anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}$: C 63.15; H 5.30; N 14.83; found: C 63.03; H 5.40; N 14.93 .

8-(Benzyloxy)-4-methyl-6,11-dihydro-2,6-methano[1,3]diazocino[5,6-b]indole-3,5(1H,4H)dione (20c)

As described for 20a from methyl 6-(benzyloxy)-2-(methylcarbamoyl)-2,3,4,9-tetrahydro-1 H -pyrido[3,4-b]indole-4-carboxylate (19c). Yield 3.87 g ($10.7 \mathrm{mmol} ; 42 \%$); mp: 224.1-224.3 ${ }^{\circ} \mathrm{C}$. IR (KBr): 3278, 1721, $1684 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 11.00(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{dd}, J=$ $8.1,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.24(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.81$ (dd, $J=8.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~s}, 2 \mathrm{H}), 3.88$ (dd, $J=13.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.77(\mathrm{~s}, 1 \mathrm{H}), 3.43(\mathrm{dd}, J=13.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{~s}, 3 \mathrm{H})$. ESI-MS m / z (\%): $362.15[\mathrm{MH}]^{+}(100)$. Anal. calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$: C 69.79; H 5.30; N 11.63; found: C 69.64; H 5.36; N 11.48.

9-Methoxy-4-methyl-6,11-dihydro-2,6-methano[1,3]diazocino[5,6-b]indole-3,5(1H,4H)dione (20d)

As described for 20a from methyl 7-methoxy-2-(methylcarbamoyl)-2,3,4,9-tetrahydro- 1 H -pyrido[3,4-b]indole-4-carboxylate (19d). Yield 1.52 g (5.33 mmol; $63 \%)$ colorless crystals after silica gel chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, EtOAc; 1:1); mp: 223.1-225.3 ${ }^{\circ} \mathrm{C} . \mathrm{IR}(\mathrm{KBr}): 3306,1724 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 10.93$ ($\mathrm{s}, 1 \mathrm{H}$), 7.32 (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}$), 6.85 (d, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 6.68 (dd, $J=8.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~d}, J=13.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.75(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{dd}, J=13.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{~s}, 3 \mathrm{H})$. ESI-MS m/z (\%): 327 [MH $\left.{ }^{+}+\mathrm{MeCN}\right]$ (100), $571\left[2 \mathrm{MH}^{+}\right](61), 286\left[\mathrm{MH}^{+}\right]$(14). Anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}$: C 63.15; H 5.30; N 14.73; found: C 63.22; H 5.28; N 14.73 .

Methyl 5-((2-(1H-indol-3-yl)ethyl)amino)-5-oxopentanoate (70) ${ }^{7}$

According to lit. ${ }^{7}$: tryptamine (67) (31.3 mmol) was dissolved in THF (100.0 mL), glutaric anhydride ($\mathbf{6 8}$) (31.3 mmol in 10.0 mL THF) was added and the mixture stirred for 20 min . at rt . The solvent was evaporated and the residue dissolved in $\mathrm{MeOH}(40.0 \mathrm{~mL}) . \mathrm{SOCl}_{2}(37.5 \mathrm{mmol})$ was added dropwise and stirring at rt was continued for 3 h . The solvent was removed and the product 70 purified by cc (EtOAc / MeOH 20:1). Yield 8.10 g ($28 \mathrm{mmol}, 89 \%$ over 2 steps) colorless crystals; mp: 102.3-103.8 ${ }^{\circ} \mathrm{C}$ (EtOAc); lit. ${ }^{7}: 101-102{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 7.58-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.28$ (m, $1 \mathrm{H}), 7.11-7.03(\mathrm{~m}, 2 \mathrm{H}), 7.03-6.95(\mathrm{~m}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.93(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.17(\mathrm{t}, 2 \mathrm{H}), 1.92-1.77(\mathrm{~m}, 2 \mathrm{H})$.

Methyl 4-(4,9-dihydro-3H-pyrido[3,4-b]indol-1-yl)butanoate (71) ${ }^{7}$

70 (22.5 mmol) was dissolved in toluene (160.0 mL). MeCN (70.0 mL) and 3.0 equ. $\mathrm{POCl}_{3}(66.0 \mathrm{mmol})$ were added and the mixture was refluxed for 5 h . The solvent was removed and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(400.0 \mathrm{~mL})$. The solution was washed with $1 \mathrm{M} \mathrm{NaHCO}_{3(\text { aq })}(300.0 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Yield $4.80 \mathrm{~g}(17.0 \mathrm{mmol} ; 80 \%)$ red crystals from $\mathrm{CH}_{2} \mathrm{Cl}_{2} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.79$
$(\mathrm{s}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.13(\mathrm{~m}$, $1 \mathrm{H}), 3.88$ (br t, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), $3.76(\mathrm{~s}, 3 \mathrm{H}), 2.92-2.84(\mathrm{~m}, 2 \mathrm{H}), 2.68(\mathrm{~m}, 2 \mathrm{H}), 2.51(\mathrm{~m}, 2 \mathrm{H})$, $2.09-1.96(\mathrm{~m}, 2 \mathrm{H})$.

1,2,3,6,7,12b-Hexahydroindolo[2,3-a]quinolizin-4(12H)-one (73) ${ }^{10}$

According to lit. ${ }^{10} 71(20.0 \mathrm{mmol})$ was dissolved in $\mathrm{MeOH}(100.0 \mathrm{~mL})$ and NaBH_{4} (20.0 mmol) was added. The mixture was stirred for 1 h at rt . The mixture was acidified with $10 \% \mathrm{HCl}_{(\mathrm{aq})}$, stirred for 1 h and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times$ 200.0 mL). The combined organic layers were dried over sodium sulfate and purified by cc (EtOAc / MeOH 2:1). Yield $2.82 \mathrm{~g}(11.70 \mathrm{mmol}, 58 \%)$ crystals from $\mathrm{CH}_{2} \mathrm{Cl}_{2} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d6): 10.93 (s, 1H), $7.40(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-$ $7.02(\mathrm{~m}, 1 \mathrm{H}), 7.01-6.93(\mathrm{~m}, 1 \mathrm{H}), 5.01-4.85(\mathrm{~m}, 1 \mathrm{H}), 4.85-4.61(\mathrm{~m}, 1 \mathrm{H}), 2.86-2.52(\mathrm{~m}$, 4H), $2.44-2.17(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.53(\mathrm{~m}, 3 \mathrm{H}) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.51$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.08(\mathrm{~m}, 1 \mathrm{H}), 5.24-5.11$ $(\mathrm{m}, 1 \mathrm{H}), 4.83-4.74(\mathrm{~m}, 1 \mathrm{H}), 2.94-2.73(\mathrm{~m}, 3 \mathrm{H}), 2.65-2.33(\mathrm{~m}, 3 \mathrm{H}), 2.05-1.70(\mathrm{~m}, 3 \mathrm{H})$. ESI-MS $m / z(\%): 241\left[\mathrm{MH}^{+}\right]$(100), $481\left[2 \mathrm{M}+\mathrm{H}^{+}\right]$(18).

General procedure 1. Modification a (GP1a): Under nitrogen a solutionof the carboline derivative (2.00 mmol) in DMF (10.0 mL) was cooled to $0^{\circ} \mathrm{C}$. After addition of $\mathrm{NaH}(2.20$ $\mathrm{mmol} ; 60 \%$ in paraffin) the mixture was stirred for 10 min . The alkylating agent (2.20 mmol) was added and stirring at rt continued until completion of the reaction (TLC). The mixture was poured into water. The crude product was isolated by filtration or extraction of the aqueous phase with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 50.0 \mathrm{~mL})$. In both cases silica gel chromatography afforded the desired product.

Modification b (GP1b): A mixtureof the β-carboline derivative (2.00 mmol) in 2-butanone $(40.0 \mathrm{~mL})$, of the alkylating agent $(2.20 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(20.0 \mathrm{mmol})$ was stirred at reflux overnight. The mixture was filtered off, the solvent removed under reduced pressure and the product purified by cc $\left(\mathrm{SiO}_{2} ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, $\left.\mathrm{EtOAc} 2: 1\right)$ and crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ by addition of light petrol.
tert-Butyl-4-((4,5-dihydro-1H-2,5-methanoazepino[3,4-b]indol-10(3H)-yl)methyl)benzoate (74)

According to GP1a from 3,4,5,10-tetrahydro-1H-2,5-methanoazepino[3,4b]indole (66) and tert-butyl 4 -(bromomethyl)benzoate (21). Yield 0.30 g ($0.80 \mathrm{mmol}, 38 \%$) colorless crystals after cc (EtOAc / MeOH 2:1) from EtOAc; mp: 149.3-150.1 ${ }^{\circ} \mathrm{C}$. IR (KBr): 1713, 1684, $1652 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 7.82(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.54-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.09$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.04-6.94(\mathrm{~m}, 2 \mathrm{H}), 5.37-5.22(\mathrm{~m}, 2 \mathrm{H}), 4.20(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~d}$, $J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.75-2.66(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.51(\mathrm{~s}$, 9H). ESI-MS m / z (\%): $389\left[\mathrm{MH}^{+}\right]$(100). Anal. calcd for $\left.\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2} \times 1 / 4 \mathrm{EtOAc}\right)$: C 76.07; H 7.37; N 6.82; found: C 76.18; H 7.10; N 7.06.
tert-Butyl 4-((8-methoxy-4-methyl-3,5-dioxo-3,4,5,6-tetrahydro-2,6-methano[1,3]diazocino[5,6-b]indol-11(1H)-yl)methyl)benzoate (22b)

According to GP1a from 8-methoxy-4-methyl-6,11-dihydro-2,6-methano[1,3]diazocino[5,6-b]indole-3,5(1H,4H)-dione (20b) and tert-butyl 4-(brommethyl)benzoate (21) ${ }^{27}$. Yield $0.50 \mathrm{~g}(1.05 \mathrm{mmol} ; 45 \%)$ colorless crystals after cc $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 10: 1\right) . \mathrm{mp}: 241.0-242.5^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (KBr): 2934, $1674 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.91$ (d, $J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{dd}, J$ $=8.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=16.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.25(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.94-3.84(\mathrm{~m}, 5 \mathrm{H}), 3.37-3.28(\mathrm{~m}, 1 \mathrm{H}), 3.07(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~s}$, 9H). ESI-MS m/z (\%): $476\left[\mathrm{MH}^{+}\right]$(28), $420\left[\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{8}\right]$ (100). Anal. calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{5}$: C 68.19; H 6.15; N 8.84; found: C 67.90; H 6.11; N 8.79.

tert-Butyl 4-((8-(benzyloxy)-4-methyl-3,5-dioxo-3.4.5.6-tetrahydro-2.6methano $[1,3]$ diazocino $[5,6-b]$ indol-11(1H)-yl)methyl)benzoate(22c)

According to GP1a from 8-(benzyloxy)-4-methyl-6.11-dihydro-2,6-methano[1,3]diazocino[5,6-b]indole-3,5(1H.4H)-dione (20c) and tertbutyl 4-(brommethyl)benzoate (21). Yield 12.4 g ($22.48 \mathrm{mmol} ; 88 \%$) colorless crystals after chromatography over silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \operatorname{EtOAc}(9: 1) ; \mathrm{mp}: 238.4-239.5^{\circ} \mathrm{C}$. IR (KBr): 3442, 2966, 1698, $1682 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 7.81(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.28(\mathrm{~m}, 6 \mathrm{H}), 7.14$ $(\mathrm{d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{dd}, J=8.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{~s}, 2 \mathrm{H}), 5.08(\mathrm{~s}$, $2 \mathrm{H}), 4.80(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{dd}, J=$ 13.1, $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H})$. ESI-MS $m / z(\%): 496.19\left[\mathrm{MH}^{+}-\mathrm{C}_{4} \mathrm{H}_{8}\right]$ (100), $552.25\left[\mathrm{MH}^{+}\right]$(38.95), $569.28\left[\mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right]$(31.5), $1125.48\left[2 \mathrm{M}+\mathrm{Na}^{+}\right]$(15.21). Anal. calcd for $\mathrm{C}_{33} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{5}$: C 71.85; H 6.03; N 7.62; found: C 71.49; H 5.99; N 7.50.

tert-Butyl 4-((9-methoxy-4-methyl-3,5-dioxo-3,4,5,6-tetrahydro-2,6-methano[1,3]diazocino[5,6-b]indol-11(1H)-yl)methyl)benzoate (22d)

According to GP1a from 9-methoxy-4-methyl-6,11-dihydro-2,6-methano[1,3]diazocino[5,6-b]indole-3,5(1H,4H)-dione (20d) (1.40 g; 4.90 $\mathrm{mmol})$ and tert-butyl 4-(brommethyl)benzoate (21) ${ }^{27}$. Yield 1.50 g (3.16 $\mathrm{mmol} ; 64 \%)$ colorless crystals after cc $\left(\mathrm{SiO}_{2} ; \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{EtOAc} ; 20: 1\right)$ from EtOAc, mp: 210.3-213.7 ${ }^{\circ} \mathrm{C}$. IR (KBr): 3452, 1729, 1704, $1683 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 7.82(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{dd}, J=8.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H})$, $5.38(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~d}, J=13.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{dd}, J=13.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H})$. ESI-MS $m / z(\%): 476\left[\mathrm{MH}^{+}\right]$(100). Anal. calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{5}$: C, 68.19; H, 6.15; N, 8.84; found: C 67.50; H 6.30; N 8.47 .
tert-Butyl 4-((8-hydroxy-4-methyl-3,5-dioxo-3,4,5,6-tetrahydro-2.6-methano[1,3]diazocino[5,6-b]indol-11(1H)-yl)methyl)benzoate(22e)

tert-Butyl 4-((8-(benzyloxy)-4-methyl-3.5-dioxo-3.4.5.6-tetrahydro-2.6-methano[1,3]diazocino[5.6-b]indol-11(1H)-yl)methyl)benzoate (22c) $0.52 \mathrm{~g}(0.94 \mathrm{mmol})$ and $0.22 \mathrm{~g} \mathrm{PdC}(10 \% \mathrm{Pd})$ were dissolved in tetrahydrofuran $(65 \mathrm{ml})$. The mixture was stirred under hydrogen at rt until completion of the reaction was observed by TLC ($\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}(10: 1)\right)$. The mixture was filtered over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and tetrahydrofuran was removed under reduced pressure. The product was obtained as colorless crystals. Yield 0.42 g ($0.91 \mathrm{mmol} ; 97 \%$) mp: 201.2$205.1^{\circ} \mathrm{C}$. IR (KBr): 2969, 2933, 1727, 1715, 1684, $1663 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 8.89(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{t}, J=8.2 \mathrm{~Hz}, 3 \mathrm{H}), 6.86(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.58$ (dd, $J=8.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~s}, 2 \mathrm{H}), 4.78(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.86$ (d, $J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 1 \mathrm{H}), 3.42(\mathrm{dd}, 1 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H})$. ESI-MS m/z (\%): $406.14\left[\mathrm{MH}^{+}-\mathrm{C}_{4} \mathrm{H}_{8}\right]$ (100), $462.20\left[\mathrm{MH}^{+}\right]$(16.77), $479.23\left[\mathrm{MNH}_{4}+\right]$ (39.69), $945.38\left[\mathrm{M}+\mathrm{Na}^{+}\right]$ (4.89). Anal.calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{5}$: C 67.66; H 5.90; N 9.10; found: C 67.41; H 5.98; N 8.84.
tert-Butyl 4-((4-methyl-8-(2-morpholinoethoxy)-3,5-dioxo-3,4,5,6-tetrahydro-2,6-methano[1,3]diazocino[5,6-b]indol-11(1H)-yl)methyl)benzoate (22f)

A stirred mixture of 22e $(0.28 \mathrm{~g}, \quad 0.61 \mathrm{mmol})$, 4-(2chloroethyl)morpholine hydrochloride ($0.15 \mathrm{~g}, 0.81 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.42 \mathrm{~g}, 3.0 \mathrm{mmol})$ in 2-butanone (30.0 mL) was heated till reflux for 4 d . The mixture was cooled to rt , the solid was filtered off and the solvent removed under reduced pressure. After purification by cc $\left(\mathrm{SiO}_{2} ; \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{MeOH} 10: 1\right)$ and removal of the solvent under reduced pressure the product $(0.24 \mathrm{~g}, 0.42 \mathrm{mmol}, 68 \%)$ was obtained as a colorless solid. $\mathrm{mp}: 204.7-208.0^{\circ} \mathrm{C}$; IR (KBr): 2857, 1714, $1687 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.15 (d, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{dd}, J=8.9,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.34-5.22(\mathrm{~m}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=15.7$ $\mathrm{Hz}, 3 \mathrm{H}), 3.89(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 5 \mathrm{H}), 3.32(\mathrm{dd}, J=13.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.06$ $(\mathrm{s}, 3 \mathrm{H}), 2.93(\mathrm{~s}, 2 \mathrm{H}), 2.72(\mathrm{~s}, 4 \mathrm{H}), 1.56(\mathrm{~s}, 9 \mathrm{H})$. ESI-MS $m / z(\%): 575.29\left[\mathrm{MH}^{+}\right](100), 1171.55$ [2MNa+] (0.3). Anal.calcd for $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{6} \times 0.25 \mathrm{H}_{2} \mathrm{O}$: C 66.36; H 6.70; N 9.67; found: C 65.98; H 6.58; N 9.43.

General procedure 2. (GP2): Deprotection of tert-butyl carbamates. A solution of the tert-butyl carbamate (0.50 mmol) in trifluoroacetic acid (5.0 mL) was stirred for 15 min at rt . After completion of the reaction (TLC monitoring) the mixture was poured into water. The carboxylic acid was collected by filtration und dried. If the molecule contains an amino group, the excess of trifluoroacetic acid was removed under reduced pressure and the product was obtained as its trifluoroacetic acid salt.

4-((4,5-Dihydro-1H-2,5-methanoazepino[3,4-b]indol-10(3H)-yl)methyl)benzoic acid 2,2,2trifluoroacetate (75)

According to GP2 from tert-Butyl-4-((4,5-dihydro-1H-2,5-methanoazepino[3,4-b]indol-10(3H)-yl)methyl)benzoate (74). Yield 0.25 g (0.64 mmol ; 97%) red crystals; mp: 149.3-150.1 ${ }^{\circ} \mathrm{C}$ (decomp.). IR (KBr): $1699,1612 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 10.90(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.67-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.06(\mathrm{~m}$, $4 \mathrm{H}), 5.50(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=$ $15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.70(\mathrm{~m}, 2 \mathrm{H}), 3.63(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.58-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.43-3.26$ $(\mathrm{m}, 1 \mathrm{H}), 2.44-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.11(\mathrm{~m}, 1 \mathrm{H})$. ESI-MS m/z (\%): $374\left[\mathrm{MH}^{+}+\mathrm{MeCN}\right](100)$, $332\left[\mathrm{M}^{+}\right]$(51). Anal. calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$ X TFA x $1 / 2 \mathrm{H}_{2} \mathrm{O}$: C 60.66 ; H 4.87; N 6.15; found: C 60.48; H 4.92; N 6.18.

4-((8-Methoxy-4-methyl-3,5-dioxo-3,4,5,6-tetrahydro-2,6-methano[1,3]diazocino[5,6-b]indol-11(1H)-yl)methyl)benzoic acid (24b).

According to GP2 from tert-butyl 4-((8-methoxy-4-methyl-3,5-dioxo-3,4,5,6-tetrahydro-2,6-methano[1,3] diazocino[5,6-b]indol-11(1H)yl)methyl)benzoate ($\mathbf{2 2 b}$) $(0.30 \mathrm{~g} ; 0.63 \mathrm{mmol})$. Colorless crystalls $(0.26 \mathrm{~g}$, 0.62 mmol ; 98%). mp: $275.0-275.4^{\circ} \mathrm{C}\left(\mathrm{H}_{2} \mathrm{O}\right)$. IR (KBr): $3450,1711,1656$ $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}): $\delta 12.95(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=$ $8.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{~s}, 2 \mathrm{H}), 4.80(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-3.80$ (m, 2H), $3.76(\mathrm{~s}, 3 \mathrm{H}), 3.51-3.37(\mathrm{~m}, 1 \mathrm{H}), 2.90(\mathrm{~s}, 3 \mathrm{H})$. ESI-MS m/z (\%): $420\left[\mathrm{MH}^{+}\right]$(100). Anal. calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{5}$: C 65.86; H 5.05; N 10.02; found: C 65.77; H 5.05; N 9.87.

4-((8-(Benzyloxy)-4-methyl-3,5-dioxo-3,4,5,6-tetrahydro-2.6-methano[1,3]diazocino[5.6-b]indol-11(1H)-yl)methyl)benzoic acid (24c)

According to GP2 from tert-butyl 4-((8-(benzyloxy)-4-methyl-3.5-dioxo-3,4,5,6-tetrahydro-2.6-methano[1,3]diazocino[5,6-b]indol-11(1H)yl)methyl)benzoate (22c). Yield $0.59 \mathrm{~g}(1.19 \mathrm{mmol} ; 88 \%)$ colorless crystals; mp: 186.9-188.3 ${ }^{\circ} \mathrm{C}$. IR (KBr): $3432,1726,1700 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO): $\delta 12.95(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.40(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.01-6.96(\mathrm{~m}, 2 \mathrm{H})$, $6.64(\mathrm{dd}, J=5.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{~s}, 2 \mathrm{H}), 5.24(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.82(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.49(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{dd}, 1 \mathrm{H}), 2.93(\mathrm{~s}, 3 \mathrm{H})$. ESI-MS m/z (\%): 496.19 [$\left.\mathrm{MH}^{+}\right]$(100). Anal.calcd for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{5}$ x $0.33 \mathrm{H}_{2} \mathrm{O}$: C 69.44; H 5.16; N 8.38; found: C 69.70; H 5.23; N 8.40 .

4-((9-Methoxy-4-methyl-3,5-dioxo-3,4,5,6-tetrahydro-2,6-methano[1,3]diazocino[5,6-b]indol-11(1H)-yl)methyl)benzoic acid (24d)

According to GP2 from tert-butyl 4-((9-methoxy-4-methyl-3,5-dioxo-3,4,5,6-tetrahydro-2,6-methano[1,3]diazocino[5,6-b]indol-11(1H)yl)methyl)benzoate ($\mathbf{2 2 d}$) $(1.10 \mathrm{~g} ; 2.31 \mathrm{mmol}) .0 .96 \mathrm{~g}(2.29 \mathrm{mmol} ; 99 \%)$ colorless crystals; mp: 270.3-274.2 ${ }^{\circ} \mathrm{C} . \mathrm{IR}$ (KBr): 2997, 1736, $1700 \mathrm{~cm}-1$.

1H NMR (300 MHz, DMSO-d d_{6}): $\delta 12.95(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=8.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~d}, J$ $=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.86(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~d}, J=19.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.89$ (s, 3H). ESI-MS m/z (\%): $461\left[\mathrm{MH}^{+}+\mathrm{CH}_{3} \mathrm{CN}\right]$ (90), $420[\mathrm{MH}+]$ (100). Anal.calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{5}$: C 65.86; H 5.05; N 10.02; found: C 65.57; H 5.25; N 9.68.

4-((8-Hydroxy-4-methyl-3,5-dioxo-3,4,5,6-tetrahydro-2.6-methano[1,3]diazocino[5.6-b]indol-11(1H)-yl)methyl)benzoic acid (24e)

According to GP2 from tert-butyl 4-((8-hydroxy-4-methyl-3,5-dioxo-3,4,5,6-tetrahydro-2,6-methano[1,3]diazocino[5,6-b]indol-11(1H)-
yl)methyl)benzoate(22e). Yield $0.33 \mathrm{~g}(0.81 \mathrm{mmol} ; 75 \%)$. The crude product was isolated by extraction of the aqueous layer with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 50.0 \mathrm{~mL})$ and a slightly brown solid was obtained after crystallization from EtOAc; mp: 270.5$273.4^{\circ} \mathrm{C}$.IR (KBr): 2924, 2853, 1710, 1676, $1646 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 12.91$ $(\mathrm{s}, 1 \mathrm{H}), 8.90(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{dd}, J=14.5,8.5 \mathrm{~Hz}, 3 \mathrm{H}), 6.86(\mathrm{~d}, J=2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.59$ (dd, $J=8.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.35$ (s, 2H), 4.78 (d, $J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.50$ (d, $J=16.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.86(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 1 \mathrm{H}), 3.42(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H})$. ESI-MS $m / z(\%): 406.14\left[\mathrm{MH}^{+}\right](100), 833.25\left[2 \mathrm{M}+\mathrm{Na}^{+}\right]$(3.23). Anal.calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{5}$: C 65.18; H 4.72; N 10.37, found: C 64.86; H 4.85; N 10.10 .

4-(2-((11-(4-Carboxybenzyl)-4-methyl-3,5-dioxo-1,3,4,5,6,11-hexahydro-2,6-methano[1,3]diazocino[5,6-b]indol-8-yl)oxy)ethyl)morpholin-4-ium 2,2,2-trifluoroacetate (24f)

tert-Butyl 4-((4-methyl-8-(2-morpholinoethoxy)-3,5-dioxo-3,4,5,6-tetrahydro-2,6-methano[1,3]diazocino[5,6-b]indol-11(1H)-
yl)methyl)benzoate ($\mathbf{2 2 f}$) $(0.82 \mathrm{~g}, 1.43 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ and trifluoro acetic acid $(10.0 \mathrm{~mL})$ was added. The mixture was stirred at $\mathrm{rt}(2 \mathrm{~h})$ and the solvent and excess of trifluoro acetic acid removed under reduced pressure. Yield $0.90 \mathrm{~g}(1.42 \mathrm{mmol}, 99 \%)$ slightly yellow crystals; mp: 182.9-184.0 ${ }^{\circ} \mathrm{C}$. IR (KBr): $3441,1642 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): δ $12.98(\mathrm{~s}, 1 \mathrm{H}), 9.95(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.10(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{dd}, J=8.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~s}, 2 \mathrm{H}), 4.82(\mathrm{~d}, J=16.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.54(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~s}, 2 \mathrm{H}), 3.99(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.83(\mathrm{~s}, 1 \mathrm{H}), 3.71(\mathrm{t}, J=11.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.64-3.49(\mathrm{~m}, 4 \mathrm{H}), 3.45(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~s}$, 2H), 2.90 (s, 3H). ESI-MS $m / z(\%): 519.23\left[\mathrm{MH}^{+}\right](100), 1059.42\left[2 \mathrm{MNa}^{+}\right]$(0.03). Anal.calcd for $\mathrm{C}_{30} \mathrm{H}_{31} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{8}$: C 56.96; H 4.94; N 8.86; found: C 56.88; H 5.05; N 8.56.

General procedure 3. (GP3): The carboxylic acid (0.50 mmol) was dissolved in DMF $(5.00 \mathrm{~mL})$. After addition of benzotriazol-1-yloxy-tris (dimethylamino) phosphonium hexafluorophosphate ($\mathbf{2 5}, \mathrm{BOP}$) $(0.50 \mathrm{mmol})$, triethylamine $(1.50 \mathrm{mmol})$ and O-(tetrahydro- 2 H -pyran-2-yl)hydroxylamine (26) (2.00 mmol) the mixture was stirred at rt until the reaction was completed (TLC monitoring). If the product crystallized, it was filtered off anddried in vacuo. Alternatively, the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 25.0 \mathrm{~mL})$, the combined organic phases were washed with brine (25.0 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed and the
residue dried in vacuo. Purification by chromatography onsilica gel using $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{EtOAc}(1: 2)\right)$ or theindicatedeluent.

4-((8-Methoxy-4-methyl-3,5-dioxo-3,4,5,6-tetrahydro-2,6-methano[1,3]diazocino[5,6-b]indol-11(1H)-yl)methyl)- N -((tetrahydro-2H-pyran-2-yl)oxy)benzamide (27b)

According to GP3 from4-((8-methoxy-4-methyl-3,5-dioxo-3,4,5,6-tetrahydro-2,6-methano[1,3]diazocino[5,6-b]indol-11(1H)-yl)methyl)benzoic acid (24b) $(0.26 \mathrm{~g}, 0.62 \mathrm{mmol})$. Colorless oil $(0.16 \mathrm{~g}, 0.31 \mathrm{mmol}, 50 \%)$. IR (KBr): 2953, 1728, $1685 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.88$ (s, $1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $2 \mathrm{H}), 7.04(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{dd}, J=8.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.29-5.02(\mathrm{~m}$, $3 \mathrm{H}), 4.82(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.85(\mathrm{~m}, 5 \mathrm{H}), 3.70-3.57(\mathrm{~m}$, $1 \mathrm{H}), 3.32(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{~s}, 3 \mathrm{H}), 1.90-1.80(\mathrm{~m}, 3 \mathrm{H}), 1.72-1.57(\mathrm{~m}, 3 \mathrm{H})$. ESI-MS $m / z(\%): 519\left[\mathrm{MH}^{+}\right](11), 435\left[\mathrm{MH}^{+}-\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}\right]$ (100). HRMS (ESI) m / z : Calcd. 519.2238, found 519.2235.

4-((8-(Benzyloxy)-4-methyl-3,5-dioxo-3.4.5.6-tetrahydro-2.6-methano[1,3]diazocino[5.6-b]indol-11(1H)-yl)methyl)- N -((tetrahydro-2H-pyran-2-yl)oxy)benzamide (27c)

According to GP3 from 4-((8-(benzyloxy)-4-methyl-3.5-dioxo-3.4.5.6-tetrahydro-2.6-methano[1,3]diazocino[5.6-b]indol-11(1H)-
yl)methyl)benzoic acid (24c). Yield $0.65 \mathrm{~g}(1.09 \mathrm{mmol} ; 54 \%)$ colorless crystals after chromatography; mp: 162.1-165.4 ${ }^{\circ} \mathrm{C}$. IR (KBr): 3433, $1700,1696 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 11.60(\mathrm{~s}, 1 \mathrm{H}), 7.67$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.48(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.13$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{dd}, J=8.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~s}, 2 \mathrm{H}), 5.14-$ $5.01(\mathrm{~m}, 2 \mathrm{H}), 4.83(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.93-3.79(\mathrm{~m}, 2 \mathrm{H}), 3.47(\mathrm{t}, J$ $=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.89(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.85-1.13(\mathrm{~m}, 9 \mathrm{H})$. ESI-MS $m / z(\%): 511.20\left[\mathrm{MH}^{+}-\right.$ 3,4-dihydro-2H-pyran] (100), $595.26\left[\mathrm{MH}^{+}\right]$(9.14), $617\left[\mathrm{MNa}^{+}\right]$(7.96). Anal.calcd for $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{6}$: C 68.67; H 5.76; N 9.42, found: C 68.40; H 5.79; N 9.39.

4-((9-Methoxy-4-methyl-3,5-dioxo-3,4,5,6-tetrahydro-2,6-methano[1,3]diazocino[5,6-b]indol-11(1H)-yl)methyl)-N-((tetrahydro-2H-pyran-2-yl)oxy)benzamide (27d)

According to GP3 from 4-((9-methoxy-4-methyl-3,5-dioxo-3,4,5,6-tetrahydro-2,6-methano[1,3]diazocino[5,6-b]indol-11(1H)-yl)methyl)benzoic acid (24d) $(0.55 \mathrm{~g} ; 1.31 \mathrm{mmol})$.Yield $0.56 \mathrm{~g}(1.11 \mathrm{mmol} ; 77 \%)$ colorless foam after silica gel chromatography.;mp: 105.8-108.1 ${ }^{\circ} \mathrm{C}$. IR (KBr): 3440, 2950, 1730, $1683 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d d_{6} : $\delta 11.61$ (s, 1H), 7.69 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.38 (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.16 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.00$ (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{dd}, J=8.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H})$, $5.35(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~s}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.03$ (dd, $J=14.2,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-3.80(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.54-3.37(\mathrm{~m}, 3 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H})$, 1.70 (s, 3H), 1.53 (s, 3H). ESI-MS m/z (\%): $519\left[\mathrm{MH}^{+}\right]$(100).

4-((8-Hydroxy-4-methyl-3.5-dioxo-3.4.5.6-tetrahydro-2.6-methano[1,3]diazocino[5.6-b]indol-11(1H)-yl)methyl)-N-((tetrahydro-2H-pyran-2-yl)oxy)benzamide (27e)

According to GP3 from 4-((8-hydroxy-4-methyl-3.5-dioxo-3.4.5.6-tetrahydro-2.6-methano[1,3]diazocino[5.6-b]indol-11(1H)-yl)methyl)benzoic acid (24e). Yield $0.28 \mathrm{~g}(0.55 \mathrm{mmol} ; 69 \%)$ colorless crystals after chromatography over silica gel with EtOAc and crystallization from MeOH ; mp: 213.6-214.9 ${ }^{\circ} \mathrm{C} . \mathrm{IR}(\mathrm{KBr}): 2954$, 1718, 1667, $1618 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}): $\delta 11.60(\mathrm{~s}, 1 \mathrm{H}), 8.89(\mathrm{~s}$, $1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{dd}, J=12.7,8.5 \mathrm{~Hz}, 3 \mathrm{H}), 6.86(\mathrm{~d}, J=2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.58(\mathrm{dd}, J=8.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~s}, 2 \mathrm{H}), 4.96(\mathrm{~s}, 1 \mathrm{H}), 4.80(\mathrm{~d}, J=16.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.51(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 1 \mathrm{H}), 3.42(\mathrm{~d}, J=$ $11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~d}, J=49.3 \mathrm{~Hz}, 7 \mathrm{H})$. ESI-MS m/z (\%): $421.15\left[\mathrm{MH}^{+}-3,4-\right.$ dihydro-2H-pyran] (100), $505.21\left[\mathrm{MH}^{+}\right]$(8.52), $527.19\left[\mathrm{MNa}^{+}\right]$(11.79), $1031.39\left[2 \mathrm{M}+\mathrm{Na}^{+}\right]$ (12.45). Anal.calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{6} \times 0.5 \mathrm{MeOH}$: C 63.54; H 5.81; N 10.76 ; found: C 63.24; H 5.83; N 10.94 .

4-((4-Methyl-8-(2-morpholinoethoxy)-3,5-dioxo-3,4,5,6-tetrahydro-2,6-methano[1,3]diazocino[5,6-b]indol-11(1H)-yl)methyl)-N-((tetrahydro-2H-pyran-2yl)oxy)benzamide (27f)

A mixture of 4-(2-((11-(4-carboxybenzyl)-4-methyl-3,5-dioxo-1,3,4,5,6,11-hexahydro-2,6-methano[1,3]diazocino[5,6-b]indol-8-yl)oxy)ethyl)morpholin-4-ium 2,2,2-trifluoroacetate ($\mathbf{2 4 f}$) (0.63 g ; $1.00 \mathrm{mmol})$, BOP ($0.53 \mathrm{~g}, 1.20 \mathrm{mmol}$) diisopropylethylamine $(0.52 \mathrm{~mL}, \quad 3.00 \mathrm{mmol})$ and O-(tetrahydro- 2 H -pyran-2yl)hydroxylamine in THF was stirred at room temperature overnight. The mixture was poured into water, extracted with ethyl acetate ($3 \times 50 \mathrm{~mL}$), the combined organic layers dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, the solvent removed and the product purified by cc $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{MeOH} 20: 1\right)$. Yield 0.66 g ($1.00 \mathrm{mmol}, 99 \%$) colorless foam. mp: $135.7-138.0^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}): 3433,1729,1684 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 11.60(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=8.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~s}$, $2 \mathrm{H}), 4.95(\mathrm{~s}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-3.98(\mathrm{~m}, 3 \mathrm{H}), 3.89$ $(\mathrm{d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 1 \mathrm{H}), 3.59(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 3 \mathrm{H}), 3.57(\mathrm{~s}, 2 \mathrm{H}), 3.53-3.39(\mathrm{~m}, 2 \mathrm{H})$, $2.89(\mathrm{~s}, 3 \mathrm{H}), 2.70(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.54(\mathrm{~s}, 2 \mathrm{H}), 1.61(\mathrm{~d}, J=49.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.17(\mathrm{t}, J=7.1 \mathrm{~Hz}$, 1H); ESI-MS m/z (\%): $618.29\left[\mathrm{MH}^{+}\right]$(100).

(E)-tert-Butyl 3-(4-((4-Methyl-3,5-dioxo-3,4,5,6-tetrahydro-2,6-methano[1,3]diazocino[5,6-b]indol-11(1H)-yl)methyl)phenyl)acrylate (82)

According to GP1a from 4-methyl-6,11-dihydro-2,6-methano[1,3]-diazocino[5,6-b]indole-3,5-($1 \mathrm{H}, 4 H$)-dione (20a) and (E)-tert-butyl 3-(4(bromomethyl)phenyl) acrylate (80) ${ }^{16,17}$. Yield 1.24 g ($2.63 \mathrm{mmol} ; 66 \%$) colorless crystals from n-Hexane; mp: 117.0-124.0 ${ }^{\circ} \mathrm{C} . \operatorname{IR}(\mathrm{KBr}): 2977$, $1730,1688 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 7.62(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, 2H), $7.57-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.43(\mathrm{dd}, J=6.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-6.94(\mathrm{~m}, 4 \mathrm{H}), 6.47$ (d, $J=16.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.38(\mathrm{~s}, 2 \mathrm{H}), 4.86(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=12.7 \mathrm{~Hz}$, 2H), 3.45 (d, $J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.89$ (s, 3H), 1.46 (s, 9H). ESI-MS m/z (\%): $489\left[\mathrm{MNH}_{4}{ }^{+}\right]$(17),
$416\left[\mathrm{MH}^{+}-\mathrm{C}_{4} \mathrm{H}_{8}\right]$ (100). Anal. calcd for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{4}$): C 71.32; H 6.20; N 8.91; found: C 71.08; H 6.17; N 8.79.

(E)-tert-Butyl 3-(3-((4-Methyl-3,5-dioxo-3,4,5,6-tetrahydro-2,6-methano[1,3]diazocino[5,6-b]indol-11(1H)-yl)methyl)phenyl)acrylate (83)

According to GP1a from 4-methyl-6,11-dihydro-2,6-methano-[1,3]diazocino[5,6-b]indole-3,5-(1H,4H)-dione (20a) (1.03 g; 2.00 mmol) and (E)-tert-butyl 3-(3-(bromomethyl)phenyl) acrylate (81). ${ }^{17,}{ }^{18}$ Yield 1.56 g ($3.31 \mathrm{mmol} ; 83 \%$) colorless crystals after crystallization from $\mathrm{n}-$ Hexan; mp: 114.0-120.0 ${ }^{\circ} \mathrm{C}$. IR (KBr): 2976, 1730, $1685 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}): $\delta 7.59$ - 7.29 (m, 6H), $7.19-7.00(\mathrm{~m}, 3 \mathrm{H}), 6.44(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}$), $5.36(\mathrm{~s}, 2 \mathrm{H}), 4.89(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-3.76(\mathrm{~m}, 2 \mathrm{H}), 3.49(\mathrm{dd}$, $J=12.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H})$. ESI-MS m/z (\%): $489\left[\mathrm{MNH}_{4}{ }^{+}\right]$(17), $472\left[\mathrm{MH}^{+}\right]$(11), $416\left[\mathrm{MH}^{+}-\mathrm{C}_{4} \mathrm{H}_{8}\right]$ (100). Anal. calcd for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{4}$: C 71.32; H 6.20; N 8.91; found: C 71.17; H 6.17; N 8.88 .

(E)-3-(4-((4-Methyl-3,5-dioxo-3,4,5,6-tetrahydro-2,6-methano[1,3]diazocino[5,6-b]indol$11(1 H)$-yl)methyl)phenyl)acrylic acid (84)

According to GP2 from (E)-tert-butyl 3-(4-((4-methyl-3,5-dioxo-3,4,5,6-tetrahydro-2,6-methano[1,3]diazocino[5,6-b]indol-11(1H)-
yl)methyl)phenyl)acrylate (82). Yield $1.00 \mathrm{~g}(2.41 \mathrm{mmol} ; 99 \%)$ colorless crystals; mp: 266.0-271.0 ${ }^{\circ} \mathrm{C}$. IR (KBr): 1730, $1685 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 12.38$ ($\mathrm{s}, 1 \mathrm{H}$), 7.61 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.57-7.49$ (m, 2H), 7.42 (dd, $J=6.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.02(\mathrm{~m}, 4 \mathrm{H}), 6.48(\mathrm{~d}, J=16.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.46-5.26(\mathrm{~m}, 2 \mathrm{H}), 4.87(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.75$ (m, 2H), 3.45 (d, $J=11.2 \mathrm{~Hz}, 2 \mathrm{H}$), 2.89 (s, 3H). ESI-MS $m / z(\%): 416\left[\mathrm{MH}^{+}\right]$(100). Anal. calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4}$ x 1/3 H2O: C 68.40; H 5.18; N 9.97; found: C 68.48; H 5.25; N 9.72.

(E)-3-(3-((4-Methyl-3,5-dioxo-3,4,5,6-tetrahydro-2,6-methano[1,3]diazocino[5,6-b]indol-11(1H)-yl)methyl)phenyl)acrylic acid (85)

According to GP2 from (E)-tert-butyl 3-(3-((4-methyl-3,5-dioxo-3,4,5,6-tetrahydro-2,6-methano[1,3]diazocino[5,6-b]indol-11(1H)-yl)methyl)phenyl)acrylate (83). Yield $0.40 \mathrm{~g}(0.96 \mathrm{mmol}$; 97%) colorless crystals; mp : 209.1$209.8^{\circ} \mathrm{C}$. IR (KBr): 1726, $1684 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d ${ }_{6}$): ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 12.41$ (s, 1H), $7.61-7.29(\mathrm{~m}, 6 \mathrm{H}), 7.14-$ $7.04(\mathrm{~m}, 3 \mathrm{H}), 6.46(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.90(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.64(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.49(\mathrm{dd}, J=12.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H})$. ESI-MS m/z (\%): $416\left[\mathrm{MH}^{+}\right]$(100). Anal. calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4}$ x 1/3 $\mathrm{H}_{2} \mathrm{O}$: C 68.40; H 5.18; N 9.97; found: C 68.54; H 5.18; N 9.75.
(E)-3-(4-((4-Methyl-3,5-dioxo-3,4,5,6-tetrahydro-2,6-methano[1,3]diazocino[5,6-b]indol-11(1H)-yl)methyl)phenyl)-N-((tetrahydro-2H-pyran-2-yl)oxy)acrylamide (86)

According to GP3 from (E)-3-(4-((4-methyl-3,5-dioxo-3,4,5,6-tetrahydro-2,6-methano[1,3]diazocino[5,6-b]indol-11(1H)-yl)methyl)-
phenyl)acrylic acid (84) ($1.21 \mathrm{~g} ; 2.91 \mathrm{mmol})$. Yield $0.94 \mathrm{~g}(1.83 \mathrm{mmol} ; 63 \%)$ colorless crystals after crystallization fromEtOAc; mp: 226.0-230.1 ${ }^{\circ} \mathrm{C}$. IR (KBr): 3299, 2934, 1718, $1669 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 11.22(\mathrm{~s}, 1 \mathrm{H}), 7.58-7.39(\mathrm{~m}, 5 \mathrm{H}), 7.15-7.02(\mathrm{~m}, 4 \mathrm{H}), 6.45$ (d, $J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~s}, 2 \mathrm{H}), 4.86(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.57(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J$ $=13.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.49(\mathrm{dd}, J=18.7,11.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H})$. ESI-MS m / z (\%): $515\left[\mathrm{MH}^{+}\right](2), 431\left[\mathrm{MH}^{+}-\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}\right]$ (100). Anal. calcd for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{x}$ 1/4 EtOAc: C 66.90; H 6.13; N 10.89; found: C 66.67; H 5.84; N 10.80 .

(E)-3-(3-((4-Methyl-3,5-dioxo-3,4,5,6-tetrahydro-2,6-methano[1,3]diazocino[5,6-b]indol-11(1H)-yl)methyl)phenyl)- N-((tetrahydro-2H-pyran-2-yl)oxy)acrylamide (87)

According to GP3 from (E)-3-(3-((4-methyl-3,5-dioxo-3,4,5,6-tetrahydro-2,6-methano[1,3]diazocino[5,6-b]indol-11(1H)-yl)methyl)phenyl)acrylic acid ($\mathbf{8 5}$) (1.48 g ; 3.56 mmol). Yield $1.07 \mathrm{~g}(19.4 \mathrm{mmol}$; 55%) colorlesssolid; mp: 146.0-151.8 ${ }^{\circ} \mathrm{C}$. IR (KBr): 3240, 2950, 1727, $1684 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 11.24(\mathrm{~s}, 1 \mathrm{H}), 7.55-7.29$ (m, 6H), $7.16-7.02(\mathrm{~m}, 3 \mathrm{H}), 6.45(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~s}, 2 \mathrm{H}), 4.99-4.80(\mathrm{~m}, 2 \mathrm{H}), 4.61$ $(\mathrm{d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 3 \mathrm{H}), 3.58-3.28(\mathrm{~m}, 3 \mathrm{H}), 2.90(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H})$, 1.53 (s, 3H). ESI-MS m/z (\%): $515\left[\mathrm{MH}^{+}\right]$(88), $431\left[\mathrm{MH}^{+}-\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}\right]$ (100). Anal. calcd for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{5}$ X $1 / 4 \mathrm{EtOAc}$: C 66.90; H 6.13; N 10.89; found: C 66.98; H 5.86; N 10.76 .

tert-Butyl 4-((4-oxo-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quinolizin-12(2H)-

 yl)methyl)benzoate (88)

According to GP1a from 1,2,3,6,7,12b-hexahydroindolo[2,3-a]quinolizin-4(12H)-one (73) and tert-butyl4-(brommethyl)benzoate (21). Yield 1.2 g (2.79 mmol, 67 \%) colorlesscrystals after chromatography ($\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 6: 1$) and crystallizationfrom $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O} ; \mathrm{mp}: 145.5-146.4^{\circ} \mathrm{C}$. IR (KBr): 1711, 1634 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 7.83(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.54-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.19-$ $7.13(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.01(\mathrm{~m}, 4 \mathrm{H}), 5.63(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~d}, J=18.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.01-$ $4.81(\mathrm{~m}, 2 \mathrm{H}), 2.81-2.56(\mathrm{~m}, 3 \mathrm{H}), 2.37-2.17(\mathrm{~m}, 3 \mathrm{H}), 1.78-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H})$. ESIMS m / z (\%): $472\left[\mathrm{MH}^{+}+\mathrm{MeCN}\right]$ (100), $431\left[\mathrm{MH}^{+}\right]$(31). Anal. calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3} \times{ }^{1} / 3 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}$ 74.29; H 7,08; N 6,42; found: C 74.24; H 6.83; N 6.52.
(E)-tert-Butyl 3-(4-((4-oxo-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quinolizin-12(2H)yl)methyl)phenyl)acrylate (89)

According to GP1a from 1,2,3,6,7,12b-hexahydroindolo[2,3-a]quinolizin-4(12H)-one (73) and (E)-tert-butyl 3-(4-(bromomethyl)phenyl) acrylate (80) ${ }^{16, ~}{ }^{17}$. Yield 0.71 g ($\left.1.55 \mathrm{mmol} ; 75 \%\right)$ colorless crystals after chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 1: 2\right)$ from EtOAc; mp: $157.7-158,8^{\circ} \mathrm{C}$. IR (KBr): $1699,1662 \mathrm{~cm}^{-1}, 1635 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}): $\delta 7.62(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.53-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.11-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $6.46(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{~m}, 2 \mathrm{H}), 5.01-4.80(\mathrm{~m}, 2 \mathrm{H}), 2.81-2.55(\mathrm{~m}, 3 \mathrm{H}), 2.40-2.18$ $(\mathrm{m}, 3 \mathrm{H}), 1.81-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.39(\mathrm{~m}, 1 \mathrm{H})$. ESI-MS $\mathrm{m} / \mathrm{z}(\%): 457\left[\mathrm{MH}^{+}\right]$(100), $401\left[\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{8}\right]$ (26). Anal. $\left(\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{3} \times{ }^{1} / 6 \mathrm{EtOAc}\right)$: C 75.61; H 7.13; N 5.94; found: C 75.75; H 7.08; N 5.90.

4-((4-Oxo-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quinolizin-12(2H)-yl)methyl)-N-((tetrahydro-2H-pyran-2-yl)oxy)benzamide (92)

According to GP2 from tert-butyl 4-((4-oxo-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quinolizin-12(2H)-yl)methyl)benzoate (88). The crude intermediate 4 -((4-oxo-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quinolizin-12(2H)-yl)methyl)benzoic acid (90) was used in the next step without further purification according to GP3. Yield over 2 steps 0.75 g ($1.60 \mathrm{mmol}, 80 \%$) colorless crystals after cc $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 30: 1\right)$; mp: 219.0-219.3 ${ }^{\circ} \mathrm{C}$ (EtOAc). IR (KBr): 1666, $1606 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.97(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.60-7.51(\mathrm{~m}$, $1 \mathrm{H}), 7.19-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.09-6.98(\mathrm{~m}, 3 \mathrm{H}), 5.44-5.26(\mathrm{~m}, 2 \mathrm{H}), 5.22-5.09(\mathrm{~m}, 1 \mathrm{H}), 5.06(\mathrm{~s}$, $1 \mathrm{H}), 4.69(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.06-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.72-3.56(\mathrm{~m}, 1 \mathrm{H}), 2.94-2.64(\mathrm{~m}, 3 \mathrm{H})$, $2.55(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-2.21(\mathrm{~m}, 2 \mathrm{H}), 1.93-1.48(\mathrm{~m}, 9 \mathrm{H})$. ESI-MS m/z (\%): $474\left[\mathrm{MH}^{+}\right]$(100), $947\left[2 \mathrm{MH}^{+}\right]$(19). Anal. calcd for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{4}$ x $1 / 4$ EtOAc: C 70.28; H 6.71; N 8.48; found: C 69.93; H 6.55; N 8.78.

(()-3-(4-((4-Oxo-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quinolizin-12(2H)-yl)methyl)phenyl)N -((tetrahydro-2H-pyran-2-yl)oxy)acrylamide (93)

According to GP2 from (E)-tert-Butyl 3-(4-((4-oxo-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quinolizin-12(2H)-yl)methyl)phenyl)acrylate
(89). The crude intermediate (E)-3-(4-((4-Oxo-1,3,4,6,7,12b-hexahydroindolo[2,3-a]quinolizin-12(2H)-yl)methyl)phenyl)acrylic acid (91) was used in the next step without further purification according to GP3. Yield $0.16 \mathrm{~g}(0.32$ mmol, 30%) colorless oil after cc ($\mathrm{SiO}_{2} ; \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 20: 1$); IR (KBr): 2926, $1627 \mathrm{~cm}^{-}$ ${ }^{1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.57(\mathrm{~s}, 1 \mathrm{H}), \delta 7.70(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.52(\mathrm{~m}, 1 \mathrm{H})$, $7.45(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.07(\mathrm{~m}, 3 \mathrm{H}), 7.00(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.44-5.23(\mathrm{~m}, 2 \mathrm{H}), 5.22$ - $5.10(\mathrm{~m}, 1 \mathrm{H}), 4.99(\mathrm{~s}, 1 \mathrm{H}), 4.69(\mathrm{br} \mathrm{d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.07-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.73-3.59(\mathrm{~m}$, $1 \mathrm{H}), 2.97-2.64(\mathrm{~m}, 3 \mathrm{H}), 2.63-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.25(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.76(\mathrm{~m}, 4 \mathrm{H}), 1.68-$ 1.58 (m, 6H), ESI-MS m/z (\%): $500\left[\mathrm{MH}^{+}\right](20), 416\left[\mathrm{MH}^{+}-\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}\right]$ (100).

$1 H$-benzo[g]indole (96)

96 was prepared in two steps from 2-methyl-1-nitronaphthalene (94) according to lit. ${ }^{19}$, ${ }^{20} .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 12.03(\mathrm{~s}, 1 \mathrm{H}), 8.36(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J$ $=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.35(\mathrm{~m}, 3 \mathrm{H}), 6.59(\mathrm{dd}, J=$ $3.0,1.9 \mathrm{~Hz}, 1 \mathrm{H})$.

Methyl 2-(1H-benzo[g]indol-3-yl)-3-nitropropanoate (97)

Preparation analogous to lit. ${ }^{14}$ from 1 H -benzo $[\mathrm{g}]$ indole (96). Yield $1.19 \mathrm{~g} ; 4.0$ $\mathrm{mmol}(33 \%)$ beige foam after cc $\left(\mathrm{SiO}_{2} ; \mathrm{CH}_{2} \mathrm{Cl}_{2} ; \mathrm{mp}: 48.0-52.0^{\circ} \mathrm{C}\right.$. IR (KBr): $3421,1733,1635 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}): $\delta 12.18$ (s, 1H), 8.34 (d, J $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.38(\mathrm{~m}$, $4 \mathrm{H}), 5.36$ (dd, $J=15.0,10.4 \mathrm{~Hz}, 1 \mathrm{H}$), 5.01 (dd, $J=15.0,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.84$ (dd, $J=10.4,5.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.63$ (s, 3H). ESI-MS m / z (\%): $299\left[\mathrm{MH}^{+}\right]$(100). Anal. calcd. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}$: C 64.42; H 7.73; N 9.39; found: C 64.49; H 7.59; N 9.32 .

According to 79a from methyl 2-(1H-benzo[$g]$ indol-3-yl)-3-nitropropanoate (97). Yield $1.05 \mathrm{~g} ; 3.45 \mathrm{mmol}(85 \%)$ grey foam; mp: $142.7^{\circ} \mathrm{C}$ (decomp.). IR (KBr): $3423,1718,1631 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 12.25(\mathrm{~s}, 1 \mathrm{H}), 8.39(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~s}, 3 \mathrm{H}), 7.93(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.59-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.35(\mathrm{~m}, 2 \mathrm{H}), 4.42(\mathrm{dd}, J=8.1,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.57-3.48$ $(\mathrm{m}, 1 \mathrm{H}), 3.30-3.14(\mathrm{~m}, 1 \mathrm{H})$. ESI-MS $m / z(\%): 269\left[\mathrm{MH}^{+}\right](100)$. Anal. calcd. for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}_{2}$ x 3/4 H2O: C 60.47; H 5.83; N 8.82; found: C 60.62; H 6.03; N 8.80.

Methyl 8,9,10,11-tetrahydro-7H-benzo[g]pyrido[3,4-b]indole-7-carboxylate hydrochloride (17)

As described for 16a from methyl 3-amino-2-(1H-benzo[g]indol-3-yl)propanoate hydrochloride (98). Yield $0.88 \mathrm{~g} ; 2.78 \mathrm{mmol}(80 \%)$ beige crystals; $\mathrm{mp}: 270.0^{\circ} \mathrm{C}$ (decomp). IR (KBr): 3150, 2943, $1734 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}): δ $12.44(\mathrm{~s}, 1 \mathrm{H}), 10.19(\mathrm{~s}, 1 \mathrm{H}), 9.22(\mathrm{~s}, 1 \mathrm{H}), 8.31(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.39(\mathrm{~m}, 1 \mathrm{H}), 4.59-4.40(\mathrm{~m}$, $2 \mathrm{H}), 4.40-4.32(\mathrm{~m}, 1 \mathrm{H}), 3.83-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.64-3.53(\mathrm{~m}, 1 \mathrm{H})$. ESI-MS m/z (\%): $281\left[\mathrm{MH}^{+}\right]$(100). Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}_{2} \times 1 / 6 \mathrm{H}_{2} \mathrm{O}$: C 63.95; H 5.43; N 8.78; found: C 63.98; H 5.41; N 8.70 .

Methyl 9-(methylcarbamoyl)-8,9,10,11-tetrahydro-7H-benzo[g]pyrido[3,4-b]indole-7carboxylate (99)

As described for 16a from methyl 8,9,10,11-tetrahydro- 7 H -benzo $[g]$ pyrido[3,4b]indole-7-carboxylate hydrochloride (17). Yield $0.90 \mathrm{~g} ; 2.67 \mathrm{mmol}(92 \%)$ beige crystals; $\mathrm{mp}: 266.0^{\circ} \mathrm{C}$ (decomp.). IR (KBr): $3266,1725,1615 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 11.96(\mathrm{~s}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.90$ $(\mathrm{d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.31(\mathrm{~m}, 4 \mathrm{H}), 6.68(\mathrm{q}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{q}, J=16.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.07$ $-3.97(\mathrm{~m}, 2 \mathrm{H}), 3.84-3.71(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 2.62(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 3 \mathrm{H})$. ESI-MS m/z (\%): $338\left[\mathrm{MH}^{+}\right]$(100). Anal. calcd. for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3} \times 1 / 2 \mathrm{H}_{2} \mathrm{O}$: C 65.90; H 5.78; N 12.13; found: C 65.83; H 5.50; N 12.04.

9-Methyl-12,13-dihydro-7,11-methanobenzo $[g][1,3]$ diazocino $[5,6-b]$ indole-8,10(7H,9H)dione (100)

As described for 20a frommethyl 9-(methylcarbamoyl)-8,9,10,11-tetrahydro-7H-benzo[g]pyrido[3,4-b]indole-7-carboxylate (99). Yield $0.60 \mathrm{~g} ; 1.97 \mathrm{mmol}(73 \%)$ colorless crystals after silica gel chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}(1: 1 \%)$; $\mathrm{mp}: 345.5-347.9^{\circ} \mathrm{C}$ (decomp.). IR (KBr): 3334, $1721,1681 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 12.08(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.62$ (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.35(\mathrm{~m}, 1 \mathrm{H}), 4.78(\mathrm{~s}, 2 \mathrm{H}), 3.99-3.88(\mathrm{~m}, 2 \mathrm{H})$, $3.56-3.43(\mathrm{~m}, 1 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H})$. ESI-MS m/z (\%): $306\left[\mathrm{MH}^{+}\right]$(100). Anal. calcd. for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}$: C 70.80; H 4.95; N 13.76; found: C 70.61; H 5.02; N 13.56.
tert-Butyl 4-((9-methyl-8,10-dioxo-7,9,10,12-tetrahydro-7,11methanobenzo $[g][1,3]$ diazocino $[5,6-b]$ indol-13($8 H$)-yl)methyl)benzoate (101)

According to GP1b from 9-methyl-12,13-dihydro-7,11methanobenzo $[g][1,3]$ diazocino $[5,6-b]$ indole- $8,10(7 H, 9 H)$-dione (100) and tert-butyl-4-(brommethyl)benzoate (21). Yield $0.66 \mathrm{~g} ; 1.33 \mathrm{mmol}$ (95%) colorless crystals after cc $\left(\mathrm{SiO}_{2} ; \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 2\right.$: 1); mp: 239.3 $240.9^{\circ} \mathrm{C}$. IR (KBr): 2977, $1712,1688 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}): $\delta 8.13-8.00(\mathrm{~m}$, $1 \mathrm{H}), 7.98-7.88(\mathrm{~m}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.38-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.88(\mathrm{~s}, 2 \mathrm{H}), 4.89(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.66$ $(\mathrm{d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~s}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{~s}$, 3H), 1.48 (s, 9H). ESI-MS m/z (\%): $496\left[\mathrm{MH}^{+}\right]$(23), 440 (100). Anal. calcd. for $\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{x}$ 1/5 EtOAc: C 72.10; H 5.97; N 8.19; found: C 72.15; H 5.94; N 8.33.

4-((9-Methyl-8,10-dioxo-7,9,10,12-tetrahydro-7,11-methanobenzo $[g][1,3]$ diazocino[5,6-

 b]indol-13(8 H)-yl)methyl)benzoic acid (102)

According to GP2 from tert-butyl 4-((9-methyl-8,10-dioxo-7,9,10,12-tetrahydro-7,11-methanobenzo $[g][1,3]$ diazocino $[5,6-b]$ indol-13($8 H$)yl)methyl)benzoate (101). Yield $0.50 \mathrm{~g} ; 1.14 \mathrm{mmol}(91 \%)$ beige crystals; mp : $191.0-194.0^{\circ} \mathrm{C}$. IR (KBr): 3443, 1729, $1682 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}): $\delta 12.92(\mathrm{~s}, 1 \mathrm{H}), 8.12-8.03(\mathrm{~m}, 1 \mathrm{H}), 7.97-7.89(\mathrm{~m}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, $7.72(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $5.89(\mathrm{~s}, 2 \mathrm{H}), 4.90(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~s}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=13.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.55(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{~s}, 3 \mathrm{H})$. ESI-MS $m / z(\%): 440\left[\mathrm{MH}^{+}\right]$(100). Anal. calcd. for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4} \times 5 / 4 \mathrm{H}_{2} \mathrm{O}$: C 67.61; H 5.09; N 9.10; found: C 67.61; H 5.07; N 8.77.

N -Methyl-2,3,4,9-tetrahydro-1 H -pyrido[3,4-b]indole-4-carboxamide hydrochloride (37a)

Based on the procedure of Perez-Alvarez et al. ${ }^{25} 1.0 \mathrm{~g}$ (3.75 mmol) 16a was dissolved in 18 mL methylamine (40% in MeOH). After three days of stirring at rt the solvent was removed in vacuo and the residue purified by cc $\left(\mathrm{SiO}_{2}\right.$, EtOAc/MeOH, 1:1). Yield $0.77 \mathrm{~g}(2.90 \mathrm{mmol} ; 77 \%)$ colorless crystals; mp: $187{ }^{\circ} \mathrm{C}$ (decomp.). IR (KBr): 3293, 2931, 1726, $1643 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) δ $11.29(\mathrm{~s}, 1 \mathrm{H}), 9.57(\mathrm{~s}, 2 \mathrm{H}), 8.76(\mathrm{q}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.15-6.96(\mathrm{~m}, 2 \mathrm{H}), 4.49-4.24(\mathrm{~m}, 2 \mathrm{H}), 4.06-3.96(\mathrm{~m}, 1 \mathrm{H}), 3.60-3.39(\mathrm{~m}, 2 \mathrm{H}), 2.66(\mathrm{~d}$, $J=4.4 \mathrm{~Hz}, 3 \mathrm{H})$. ESI-MS m / z (\%): $230[\mathrm{MH}]^{+}(100)$. Anal. calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{ClN}_{3} \mathrm{O} \times 0.33$ $\mathrm{CH}_{3} \mathrm{OH}: \mathrm{C} 57.94$; H 6.32; N 15.21; found: C 57.79; H 6.56; N 15.37 .

6-Methoxy- N -methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-4-carboxamide hydrochloride (37b)

$9.75 \mathrm{~g}(32.86 \mathrm{mmol})$ of $\mathbf{1 6 b}$ were dissolved in 140.0 mL of methylamine (40 \% in MeOH). After three days of stirring at rt (TLC: $\mathrm{SiO}_{2}, \mathrm{EtOAc} / \mathrm{MeOH}$, 1:1). the solvent was removed in vacuo and the residue purified by cc. 7.65 g ($25.87 \mathrm{mmol}, 79 \%$) colorless powder after cc $\left(\mathrm{SiO}_{2}, \mathrm{EtOAc} / \mathrm{MeOH}, 1: 1\right)$; mp: 110-112 ${ }^{\circ} \mathrm{C}$. IR (KBr): 3254 , 2937, 2812, $1648 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): δ $11.14(\mathrm{~s}, 1 \mathrm{H}), 9.57(\mathrm{~s}, 2 \mathrm{H}), 8.86(\mathrm{q}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=2.4 \mathrm{~Hz}$,
$1 \mathrm{H}), 6.74$ (dd, $J=8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.44-4.22(\mathrm{~m}, 2 \mathrm{H}), 4.03-3.93(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.58-$ $3.39(\mathrm{~m}, 2 \mathrm{H}), 2.67$ (d, $J=4.4 \mathrm{~Hz}, 3 \mathrm{H})$. ESI-MS $m / z(\%): 260[\mathrm{MH}]^{+}$(100).). Anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{ClN}_{3} \mathrm{O}_{2} \times 0.66 \mathrm{CH}_{3} \mathrm{OH} \times 1.25 \mathrm{H}_{2} \mathrm{O}$: C 51.87; H 6.87; N 12.38; found: C 51.95 ; H 6.40; N 12.10.

N-Methyl-1-(2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indol-4-yl)methanamine (38)

Based on Van et al. ${ }^{26}(1981) 5.0 \mathrm{~g}(21.81 \mathrm{mmol})$ of $\mathbf{3 7}$ a were dissolved in 200 mL of THF and cooled to $0{ }^{\circ} \mathrm{C} .2 .5 \mathrm{~g}(65.88 \mathrm{mmol})$ of LiAlH_{4} were added in portions at rt followed by 3 h stirring at rt and heating to reflux for 16 h . After cooling to $0^{\circ} \mathrm{C}$ 50 mL of sat. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ solution were added dropwise and stirring at rt continued for 2 h . The salts are filtered off and washed three times with 100 mL EtOAc. The aqueous phase is separated and extracted with EtOAc ($3 \times 50.0 \mathrm{~mL}$). After drying and removal of the solvent the residue was purified by cc. ($3.16 \mathrm{~g} ; 14.70 \mathrm{mmol} ; 67 \%$) beige foam after cc $\left(\mathrm{SiO}_{2}, 7 \mathrm{~N} \mathrm{NH} 33\right.$ in Methanol/Methanol; 1:10); mp: 157-159 ${ }^{\circ} \mathrm{C}$. IR (KBr): 3390, 3315, 3045, 2931, $2857 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 10.67(\mathrm{~s}, 1 \mathrm{H}), 7.48-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{dd}, J=7.4,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.02-6.86(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 2 \mathrm{H}), 3.13-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.91-2.78(\mathrm{~m}, 3 \mathrm{H}), 2.69(\mathrm{dd}, \mathrm{J}=$ $11.4,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H})$. ESI-MS m/z (\%): $216[\mathrm{MH}]^{+}$(53), 156 (100). Anal. calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{3} \times 0.25 \mathrm{H}_{2} \mathrm{O}$: C 71.04; H 8.03; N 19.12; found: C 70.95; H 8.01; N 19.05 .

4-Methyl-4,5,6,11-tetrahydro-2,6-methano[1,3]diazocino[5,6-b]indole-3(1H)-one (39)

$1.40 \mathrm{~g}(8.4 \mathrm{mmol})$ of CDI were added in portions to a solution of $1.51 \mathrm{~g}(7.0 \mathrm{mmol})$ of $\mathbf{3 8}$ in 35 mL of THF. The mixture was stirred at rt for 3 h and at reflux for 18 h . The solvent was removed under reduced pressure and the residue purified by cc. Yield $1.05 \mathrm{~g}(4.35 \mathrm{mmol} ; 62 \%)$ colorless crystals after cc ($\left.\mathrm{SiO}_{2}, \mathrm{EtOAc}\right)$; mp: 223$225{ }^{\circ} \mathrm{C}$. IR (KBr): 2909, $1639 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}): $\delta 10.87$ (s, $1 \mathrm{H}), 7.52-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.10-6.92(\mathrm{~m}, 2 \mathrm{H}), 4.50(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.31-4.13(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=10.9,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.43-3.26(\mathrm{~m}, 3 \mathrm{H}), 3.20-3.01(\mathrm{~m}, 1 \mathrm{H})$, 2.69 (s, 3H). ESI-MS $m / z(\%): 242[\mathrm{MH}]^{+}(100)$. Anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}:$ C 69.69; H 6.27; N 17.41; found: C 69.22; H 6.19; N 17.55 .
tert-Butyl 4-((4-methyl-3-oxo-3,4,5,6-tetrahydro-2,6-methano[1,3]diazocino-[5,6-b]indol-11(1H)-yl)methyl)benzoate (40)

0.50 g ($2: 07 \mathrm{mmol}$) of $\mathbf{3 9}$ were dissolved in 40 mL of THF and the mixture cooled to $0^{\circ} \mathrm{C}$. After adding 92.0 mg of sodium hydride ($2.30 \mathrm{mmol}, 60 \%$ in paraffine) the mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$. A solution of 0.62 g (2.30 mmol) tert-butyl 4-(bromomethyl) benzoate (21) in 5.0 mL of DMF was added dropwise and the mixture stirred at rt for 2 h . The mixture was poured into 100 mL of water and extracted with EtOAc. After drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ the solvent was removed and the residue purified by cc. Yield $0.58 \mathrm{~g}(1.34 \mathrm{mmol} ; 65 \%)$ beige powder after cc $\left(\mathrm{SiO}_{2}, \mathrm{EtOAc} /\right.$ Methanol 10:1); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $7.85-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.59-$ $7.51(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.11-6.97(\mathrm{~m}, 2 \mathrm{H}), 5.48-5.27(\mathrm{~m}$, $2 \mathrm{H}), 4.65(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{dd}, J=10.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.41$ $(\mathrm{d}, J=12.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.33-3.24(\mathrm{~m}, 1 \mathrm{H}), 3.15(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H})$. Anal.calcd for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{3} \times 0.15$ EtOAc: C 71.82; H 6.85; N 9.45; found: C 71.99; H 6.83; N 9.27 .

4-((4-Methyl-3-oxo-3,4,5,6-tetrahydro-2,6-methano[1,3]diazocino[5,6-b]indol-11(1H)yl)methyl)benzoic acid (41)

A solution of $40(0.33 \mathrm{~g} ; 0.76 \mathrm{mmol})$ in 5.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 3.0 mL of $\mathrm{CF}_{3} \mathrm{COOH}$ was stirred at rtfor 3.5 h . The mixture was poured into 50 mL icewater and extracted with 30 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was dried and the solvent removed. The residue was digested with a small amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and diethyl ether, the solid filtered off and dried. Yield $0.25 \mathrm{~g}(0.67 \mathrm{mmol}, 88$ \%) light beige powder; mp: $160.5^{\circ} \mathrm{C}$ (decomp.). IR (KBr): 3432, 2909, $1702 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}): $\delta 7.96-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{dd}, J=7.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.32(\mathrm{~m}, 1 \mathrm{H})$, $7.22-6.98(\mathrm{~m}, 4 \mathrm{H}), 5.49-5.27(\mathrm{~m}, 2 \mathrm{H}), 4.65(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.72(\mathrm{dd}, J=11.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.48-3.23(\mathrm{~m}, 3 \mathrm{H}), 3.15(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~s}, 3 \mathrm{H})$. ESIMS m/z (\%): $376[\mathrm{MH}]^{+}$(100). Anal. calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3} \times 0.66 \mathrm{CH}_{2} \mathrm{Cl}_{2}$: C 63.08; H 5.21; N 9.74; found: C 62.97; H 5.45; N 9.44.

4-((4-Methyl-3-oxo-3,4,5,6-tetrahydro-2,6-methano[1,3]diazocino[5,6-b]indol-11(1H)-yl)methyl)- N -((tetrahydro-2H-pyran-2-yl)oxy)benzamide (42)

0.25 g (0.67 mmol) of 41 were dissolved in 10 mL of THF. After addition ofbenzotriazol-1-yloxy-tris (dimethylamino) phosphonium hexafluorophosphate (BOP) $(0.33 \mathrm{~g}, 0.74 \mathrm{mmol})$, O -(tetrahydro- $2 H$-pyran-2-yl) hydroxylamine ($0.17 \mathrm{~g}, 1.40 \mathrm{mmol}$) and 0.25 mL of triethylamine the mixture was stirred at rt for 16 h . The mixture was poured into 50 mL water and extracted with EtOAc. After drying of the organic layer $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ the solvent was removed and the residue purified by cc. $\left(\mathrm{SiO}_{2}, \mathrm{EtOAc} / \mathrm{MeOH} 10: 1\right)$. Yield $0.20 \mathrm{~g}(0.42 \mathrm{mmol}, 63 \%)$ colorless foam; mp: 193-196 ${ }^{\circ} \mathrm{C}$. IR (KBr): $3435,2943,1619 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO$\left.d_{6}\right): \delta 11.59(\mathrm{~s}, 1 \mathrm{H}), 7.76-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{dd}, J=6.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.23$ $-6.94(\mathrm{~m}, 4 \mathrm{H}), 5.49-5.20(\mathrm{~m}, 2 \mathrm{H}), 4.95(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-$ $3.94(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{dd}, J=11.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.56-3.23(\mathrm{~m}, 4 \mathrm{H}), 3.15(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.71(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.52(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$. ESI-MS m/z (\%): $475[\mathrm{MH}]^{+}$ (100), 391 (79). Anal. calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{4} \times 0.66 \mathrm{CH}_{3} \mathrm{OH}$: C 67.02 ; H 6.64; N 11.30; found: C 66.93; H 6.75; N 11.49.

4-Methyl-3,4,6,11-tetrahydro-2,6-methano[1,3]diazocino[5,6-b]indole-5(1H)-one (44a)

Based on the procedure of Perez-Alvarez et al. ${ }^{25} 0.46 \mathrm{~g}(2.0 \mathrm{mmol})$ of $\mathbf{3 7 a}$ were dissolved in 20.0 mL of MeOH . After addition of 0.6 mL formaldehyde (43) (36% in water) the mixture was stirred at $70^{\circ} \mathrm{C}$ for 2 h . The solvent was removed and the residue purified by cc (SiO_{2}, $\mathrm{EtOAc} / \mathrm{MeOH} 1: 1$). Yield $0.43 \mathrm{~g}(1.78 \mathrm{mmol}, 89 \%)$ yellow solid; mp: $165{ }^{\circ} \mathrm{C}$ (decomp.). IR (KBr): 3249, 2932, $1641 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}): $\delta 10.92(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{dd}, J=7.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.04-6.91(\mathrm{~m}$, $2 \mathrm{H}), 4.58-4.40(\mathrm{~m}, 2 \mathrm{H}), 4.24(\mathrm{dd}, J=12.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.55-3.37$ ($\mathrm{m}, 2 \mathrm{H}$), $3.11(\mathrm{dt}, J=12.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H})$. ESI-MS $\mathrm{m} / \mathrm{z}(\%): 242[\mathrm{MH}]^{+}$(98). Anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O} \times 0.33 \mathrm{CH}_{3} \mathrm{OH} \times 0.75 \mathrm{H}_{2} \mathrm{O}$: C 64.86; H 6.77; N 15.83; found: C 64.94; H 6.39; N 15.42 .

8-Methoxy-4-methyl-3,4,6,11-tetrahydro-2,6-methano[1,3]diazocino[5,6-b]indole-5(1H)-one

 (44b)
$2.07 \mathrm{~g}(8.0 \mathrm{mmol})$ of $\mathbf{3 7 b}$ were dissolved in 80 mL of MeOH . After addition of 2.4 mL formaldehyde $\mathbf{4 3}$ (36% in water) the mixture was stirred at $70^{\circ} \mathrm{C}$ for 2 h . On evaporation of the solvent under reduced pressure a yellowish solid precipitated. The product was filtered off, washed with MeOH and dried. Yield $1.60 \mathrm{~g}(5.90 \mathrm{mmol}, 74 \%)$ yellow solid; mp: 268.0-268.5 ${ }^{\circ} \mathrm{C}$. IR (KBr): 3188, 2935, 2871, 1622 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}): $\delta 10.71(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.64(\mathrm{dd}, J=8.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.56-4.37(\mathrm{~m}, 2 \mathrm{H}), 4.22(\mathrm{dd}, J=11.9,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.03(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{dd}, J=13.0,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H})$, 3.09 (dt, $J=13.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H})$. ESI-MS $m / z(\%): 272[\mathrm{MH}]^{+}$(100). Anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2} \times 0.25 \mathrm{CH}_{3} \mathrm{OH}: \mathrm{C} 65.57$; H 6.50; N 15.04; found: C 65.60; H 6.31; N 15.10.

Methyl 4-((4-methyl-5-oxo-3,4,5,6-tetrahydro-2,6-methano[1,3]diazocino[5,6-b]indol-11(1H)-yl)methyl) benzoate (96a)

$3.34 \mathrm{~g}(13.83 \mathrm{mmol})$ of $\mathbf{4 4 a}$ were dissolved in DMF $(100 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$. After addition of $0.66 \mathrm{~g}(16.31 \mathrm{mmol})$ of $\mathrm{NaH}(60 \%$ in paraffine) the mixture was stirred for 30 min at $0^{\circ} \mathrm{C} .4 .26 \mathrm{~g}(15.71 \mathrm{mmol})$ of methyl 4(bromomethyl)benzoate (45) in 20.0 mL of DMF were added dropwise and the mixture was stirred at rt for 3 h . The mixture was poured into 500 mL of water and extracted with EtOAc ($3 \times 200 \mathrm{~mL}$). The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, the solvent removed and the residue purified by cc $\left(\mathrm{SiO}_{2}, \mathrm{EtOAc} / \mathrm{MeOH} 10: 1\right)$. Yield $2.96 \mathrm{~g}(7.60 \mathrm{mmol}, 55 \%)$ colorless foam; mp: $66.8^{\circ} \mathrm{C}$ (decomp.). IR (KBr): 3422, 2952, 1718, $1652 \mathrm{~cm}^{-1} .^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $87.94-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.40-$ $7.29(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.09-6.97(\mathrm{~m}, 2 \mathrm{H}), 5.52-5.26(\mathrm{~m}, 2 \mathrm{H}), 4.53(\mathrm{~d}, J=12.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=17.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.23-4.07(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.57-3.44(\mathrm{~m}, 2 \mathrm{H}), 3.11$ $(\mathrm{d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H})$. ESI-MS m/z (\%): $390[\mathrm{MH}]{ }^{+}$(100). Anal. calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3} \times \mathrm{H}_{2} \mathrm{O}$: C 67.80; H 6.18; N 10.31; found: C 67.43; H 6.07; N 9.92.

Methyl 4-((8-methoxy-4-methyl-5-oxo-3,4,5,6-tetrahydro-2,6-methano[1,3]diazocino[5,6-b]indol-11(1H)-yl)methyl)benzoate (96b)

$0.40 \mathrm{~g}(1.50 \mathrm{mmol})$ of $\mathbf{4 4 b}$ were dissolved in 10 mL DMSO by heating and then cooled to rt. After addition of $66.0 \mathrm{mg}(1.65 \mathrm{mmol})$ of NaH (60% in paraffine) the mixture was stirred for 30 min at $0^{\circ} \mathrm{C} .0 .40 \mathrm{~g}(1.7$ mmol) of methyl 4-(bromomethyl)benzoate (45) were added and the mixture was stirred at rt for 3 h . The mixture was poured into 120 mL of water. A yellowish solid precipitates, which was filtered off, dried and purified by cc (SiO_{2}, EtOAc / MeOH 5:1). Yield $0.32 \mathrm{~g}(0.76 \mathrm{mmol}, 51 \%)$ yellowish foam; mp: 82.0-85.8 ${ }^{\circ} \mathrm{C}$. IR (KBr): 3416, 2943, 1720, $1648 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 7.93-7.83(\mathrm{~m}, 2 \mathrm{H})$, $7.23(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.08(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{dd}, J=8.9,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.48-5.21(\mathrm{~m}, 2 \mathrm{H}), 4.52(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=17.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.21-4.05(\mathrm{~m}$, $2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.55-3.42(\mathrm{~m}, 2 \mathrm{H}), 3.10(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H})$. ESIMS m / z (\%): $420[\mathrm{MH}]^{+}(100)$. Anal. calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4}$ x 0.60 EtOAc : C 67.13; H 6.36; N 8.90; found: C 66.82; H 6.27; N 9.31.

Methyl 2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-4-carboxylate hydrochloride (16a) ($5.32 \mathrm{~g} ; 20.0 \mathrm{mmol}$) was dissolved in a mixture of $\mathrm{MeOH}(40 \mathrm{~mL})$, THF $(40.0 \mathrm{~mL})$ and water $(20 \mathrm{~mL}) . \mathrm{LiOH}(1.01 \mathrm{~g}, 42.0 \mathrm{mmol})$ was added and the mixture stirred over night at rt . The solution was heated till reflux for 2 h and the organic solvents removed under reduced pressure. Water was added (30 mL) and the solution acidified untill $\mathrm{pH}=6$ with acetic acid. The precipitating colorless crystals were collected by filtration, washed with a small amount of water and dried. Yield $3.98 \mathrm{~g}(18.4 \mathrm{mmol}, 92 \%)$. IR (KBr): $3424,1625,1583,1478 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 10.93(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-6.91(\mathrm{~m}, 2 \mathrm{H}), 4.70(\mathrm{~s}, 2 \mathrm{H}), 4.06(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.00(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.43-3.26(\mathrm{~m}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J=12.5,3.8$ $\mathrm{Hz}, 1 \mathrm{H})$. ESI-MS $m / z(\%): 217.09[\mathrm{MH}]^{+}(100)$. Anal. calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \times 1 / 3 \mathrm{H}_{2} \mathrm{O}$: C 64.85; H 5.74; N 12.60; found: C 64.48; H 5.67; N 12.50.

2-(Methylcarbamothioyl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-4-carboxylic acid (48)

2,3,4,9-Tetrahydro-1H-pyrido[3,4-b]indole-4-carboxylic acid (47) (1.15 g; 5.00 mmol) was suspended in a mixture of aceton (17.5 mL) and DMSO (17.5 mL). Methylisothiocyanate $(0.37 \mathrm{~g} ; 5.00 \mathrm{mmol})$ was added and the mixture heated to reflux for 2 h . The resulting solution was poured onto water (200 mL), the solution acidified with diluted acetic acid and extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent removed under reduced pressure. Crystallization from EtOAc afforded $0.95 \mathrm{~g}(3.28 \mathrm{mmol} ; 66$ \%) beige crystals; mp: 205.3$205.8{ }^{\circ} \mathrm{C}$.IR (KBr): $3422,1613 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 12.61(\mathrm{~s}, 1 \mathrm{H}), 11.08(\mathrm{~s}$, $1 \mathrm{H}), 7.98$ (d, $J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.01(\mathrm{~m}$, $1 \mathrm{H}), 7.01-6.89(\mathrm{~m}, 1 \mathrm{H}), 5.32-4.88(\mathrm{~m}, 2 \mathrm{H}), 4.24(\mathrm{dd}, J=13.7,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{dd}, J=$ 13.7, $4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.54(\mathrm{~s}, 2 \mathrm{H})$. ESI-MS m/z (\%): $290\left[\mathrm{MH}^{+}\right]$(100). Anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$: C 58.11; H 5.23; N 14.52; found: C 57.53; H 5.47; N 14.10 .

4-Methyl-3-thioxo-3,4,6,11-tetrahydro-2,6-methano[1,3]diazocino[5,6-b]indol-5(1H)-one (49)

Synthesis of 4-methyl-3-thioxo-3,4,6,11-tetrahydro-2,6-methano[1,3]-diazocino[5,6-b]indol-5(1H)-one (49) was performed as a modification of the method described by Kumar^{28} as follows: 2-(Methylcarbamothioyl)-2,3,4,9-tetrahydro-1 H-pyrido[3,4-b]indole-4-carboxylic acid (48) ($1.80 \mathrm{~g} ; 6.22 \mathrm{mmol}$) was disolved in $\mathrm{MeCN}(50 \mathrm{~mL})$ and CDI $(1.10 \mathrm{~g} ; 6.78 \mathrm{mmol})$ was added. The solution was strirred for 30 min and poured into water. The precipitating product was removed by filtration, washed with water and dried. Yield $1.48 \mathrm{~g}(5.46 \mathrm{mmol} ; 88 \%)$ colorless crystals; mp: 233.0$236.7^{\circ} \mathrm{C}$. IR (KBr): $3383,1714 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 11.22(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-6.89(\mathrm{~m}, 2 \mathrm{H}), 5.40(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=$ $15.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{dd}, J=12.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~s}$, 3H). ESI-MS m / z (\%): 312 [MH +MeCN$]$ (40), $271\left[\mathrm{MH}^{+}\right]$(100). Anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{OS}$: C 61.97; H 4.83; N 15.49; found: C 61.90; H 4.93; N 15.49.
tert-Butyl 4-((4-methyl-5-oxo-3-thioxo-3,4,5,6-tetrahydro-2,6-methano[1,3]diazocino[5,6-b]indol-11(1H)-yl)methyl)benzoate(50)

According to GP1a from 4-methyl-3-thioxo-3,4,6,11-tetrahydro-2,6-methano[1,3]diazocino[5,6-b]indol-5(1H)-one (49) ($1.48 \mathrm{~g} ; 5.45 \mathrm{mmol}$) and tert-butyl 4-(brommethyl)benzoate (21). ${ }^{27}$ Yield $2.40 \mathrm{~g}(5.20 \mathrm{mmol} ; 95 \%)$ colorless crystals from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ petrolether; mp : 186.9-188.4 ${ }^{\circ} \mathrm{C}$. $\mathrm{IR}(\mathrm{KBr})$: $3440,1729,1697 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 7.80(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.57-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.14-7.01(\mathrm{~m}, 2 \mathrm{H})$, $5.53(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.03(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~d}, J=12.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=12.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 9 \mathrm{H})$.ESI-MS m/z (\%): $462\left[\mathrm{MH}^{+}\right]$(25), $406\left[\mathrm{MH}^{+}-\mathrm{C}_{4} \mathrm{H}_{8}\right]$ (100). Anal. calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$: C 67.65; H 5.90; N 9.10; found: C 67.26; H 5.87; N 8.98 .

4-((4-Methyl-5-oxo-3-thioxo-3,4,5,6-tetrahydro-2,6-methano[1,3]diazocino[5,6-b]indol-11(1H)-yl)methyl)benzoic acid (51)

According to GP2 from tert-butyl 4-((4-methyl-5-oxo-3-thioxo-3,4,5,6-tetrahydro-2,6-methano[1,3]diazocino[5,6-b]indol-11(1H)-yl)methyl)benzoate (50) ($2.40 \mathrm{~g} ; 5.20 \mathrm{mmol})$. Yield $1.35 \mathrm{~g}(3.33 \mathrm{mmol} ; 64 \%)$ colorless crystals; mp: 285.5-286.5 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}): $\delta 12.94$ ($\mathrm{s}, 1 \mathrm{H}$), 7.84 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.56-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.16-7.04(\mathrm{~m}, 2 \mathrm{H}), 5.52(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~s}, 2 \mathrm{H}), 5.04(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.08$ (d, $J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=12.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H})$. ESI-MS $m / z(\%)$: $406\left[\mathrm{MH}^{+}\right]$(100). Anal. calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4} \times \frac{1}{3} \mathrm{H}_{2} \mathrm{O}$: C 64.22; H 4.82; N 10.21; S 7.79 found: C 64.33; H 4.85; N 9.88, S 7,50.

4-((4-Methyl-3-oxo-5-thioxo-3,4,5,6-tetrahydro-2,6-methano[1,3]diazocino[5,6-b]indol-11(1H)-yl)methyl)- N -((tetrahydro-2H-pyran-2-yl)oxy)benzamide (52)

According to GP3 from 4-((4-methyl-3-oxo-5-thioxo-3,4,5,6-tetrahydro-2,6-methano[1,3]diazocino[5,6-b]indol-11(1H)-yl)methyl)benzoic acid (51) $(0.40 \mathrm{~g} ; 0.99 \mathrm{mmol})$. Yellow solid after cc $\left(\mathrm{SiO}_{2} ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, EtOAc , 3:2). Yield $0.39 \mathrm{~g}(0.77 \mathrm{mmol}, 77 \%)$; ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): δ $11.60(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{t}, J=5.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.41(\mathrm{dd}, J=6.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.23$ $-7.00(\mathrm{~m}, 4 \mathrm{H}), 5.40(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.93(\mathrm{dd}, J=18.1,3.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.59(\mathrm{dd}, J=16.6,5.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.44(\mathrm{~s}, 1 \mathrm{H}), 4.18-3.77(\mathrm{~m}, 2 \mathrm{H}), 3.49(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H})$, $1.53(\mathrm{~s}, 3 \mathrm{H})$. ESI-MS $m / z(\%): 505\left[\mathrm{MH}^{+}\right]$(100). Anal. calcd. for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S} \times 1 / 2$ ETOAC: C 63.49; H 5.88; N 10.21; S 5.84; found: C 63.27; H 5.82; N 10.53; S 5.88.

4-Methyl-5-thioxo-4,5,6,11-tetrahydro-2,6-methano[1,3]diazocino[5,6-b]indol-3(1H)-one

 (53)

A solution of $20 \mathrm{a}(0.50 \mathrm{~g}, 1.96 \mathrm{mmol})$ and Lawesson's reagent $(0.80 \mathrm{~g}, 1.96$ $\mathrm{mmol})$ in THF (25 mL) was refluxed for 48 h . The mixture was poured into water (80 mL) and extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The organic layer was separated, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent removed under reduced pressure. The residue was purified by cc $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 20: 1\right)$. Colorless crystals $(0.50 \mathrm{~g}, 1.84 \mathrm{mmol}, 47 \%) ; \mathrm{mp}: 226.6-227.3^{\circ} \mathrm{C}$.

IR (KBr): $3389,1698 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 11.16(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.39-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.12-6.94(\mathrm{~m}, 2 \mathrm{H}), 4.89-4.58(\mathrm{~m}, 2 \mathrm{H}), 4.38(\mathrm{~s}, 1 \mathrm{H}), 3.96-3.82(\mathrm{~m}$, $1 \mathrm{H}), 3.52-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H})$. ESI-MS $m / z(\%): 272\left[\mathrm{MH}^{+}\right]$(100). Anal. calcd. for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{OS}$: C 61.97; H 4.83; N 15.49; S 11.82; found: C 61.98; H 4.83; N 15.50; S 11.78.
tert-Butyl 4-((4-methyl-3-oxo-5-thioxo-3,4,5,6-tetrahydro-2,6-methano[1,3]diazocino[5,6-b]indol-11(1H)-yl)methyl)benzoate (54)

According to GP1a from 4-methyl-5-thioxo-4,5,6,11-tetrahydro-2,6-methano[1,3]diazocino[5,6-b]indol-3(1H)-one (53) ($0.72 \mathrm{~g} ; 2.76 \mathrm{mmol}$) and tert-butyl 4-(brommethyl)benzoate (21) ${ }^{27}$. Yellow crystals $(0.52 \mathrm{~g}, 1.13 \mathrm{mmol}$, 40%) after crystallization from petrol ether and ethyl acetae (2:1). mp: 203.6 $205.44^{\circ} \mathrm{C}$. IR (KBr): $1701,3433 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.97-$ $7.84(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.14(\mathrm{~m}, 3 \mathrm{H}), 7.06(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.24(\mathrm{dd}, J=63.0,17.0 \mathrm{~Hz}, 2 \mathrm{H})$, 4.91 (d, $J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.57-4.51(\mathrm{~m}, 1 \mathrm{H}), 4.25(\mathrm{dd}, J=16.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J=12.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 3.33$ (dd, $J=13.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.57$ (s, 9H). ESI-MS m/z (\%): $462\left[\mathrm{MH}^{+}\right]$ (100). Anal. calcd. for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ x $1 / 4 \mathrm{EtOAc}$: C 67.06; H 6.04; N 8.68; S 6.63; found: C 66.70; H 5.96; N 8.69; S 6.64.

4-((4-Methyl-3-oxo-5-thioxo-3,4,5,6-tetrahydro-2,6-methano[1,3]diazocino[5,6-b]indol$11(1 H)$-yl)methyl)benzoic acid(55)

According to GP2 from tert-butyl 4-((4-methyl-3-oxo-5-thioxo-3,4,5,6-tetrahydro-2,6-methano[1,3]diazocino[5,6-b]indol-11(1H)-yl)methyl)benzoate (54) $(0.54 \mathrm{~g} ; 1.18 \mathrm{mmol})$. Pale oil ($0.47 \mathrm{~g}, 1.11 \mathrm{mmol}, 98 \%)$ after extraction with EtOAc / water. IR (KBr): 3432, $1718 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO$\left.d_{6}\right): \delta 12.94(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.75-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.39$ $(\mathrm{m}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.01(\mathrm{~m}, 2 \mathrm{H}), 5.43(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.91(\mathrm{~d}, J=$ $16.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~s}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=$ 13.1, $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.30$ (s, 3H). ESI-MS m/z (\%):406 [MH ${ }^{+}$(100).

4-((4-Methyl-3-oxo-5-thioxo-3,4,5,6-tetrahydro-2,6-methano[1,3]diazocino[5,6-b]indol$11(1 H)$-yl)methyl)- N -((tetrahydro-2H-pyran-2-yl)oxy)benzamide (56)

According to GP3 from 4-((4-methyl-3-oxo-5-thioxo-3,4,5,6-tetrahydro-2,6-methano[1,3]diazocino[5,6-b]indol-11(1H)-yl)methyl)benzoic acid (55) $(0.40 \mathrm{~g} ; 0.99 \mathrm{mmol})$. Yellow crystals $0.39 \mathrm{~g}(0.77 \mathrm{mmol}, 77 \%)$ after cc $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{EtOAc}, 3: 2\right) ; \mathrm{mp}: 148.5-150.3{ }^{\circ} \mathrm{C}$; IR (KBr): $1702,1644 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 11.60(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{t}, J=5.3 \mathrm{~Hz}, 3 \mathrm{H})$, 7.41 (dd, $J=6.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.00(\mathrm{~m}, 4 \mathrm{H}), 5.40(\mathrm{~d}, J=13.2 \mathrm{~Hz}$, $2 \mathrm{H}), 4.93$ (dd, $J=18.1,3.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.59(\mathrm{dd}, J=16.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~s}, 1 \mathrm{H}), 4.18-3.77$ (m, 2H), $3.49(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.53$ (s, 3H). ESI-MS m/z (\%): $505\left[\mathrm{MH}^{+}\right]$(100). Anal. calcd. for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S} \times 1 / 2 \mathrm{EtOAc}$ C 63.49 ; H 5.88; N 10.21; S 5.84; found: C 63.27; H 5.82; N 10.53; S 5.88.

According to GP1a from $1 H$-indole-2-carbaldehyde (28) and tert-butyl 4(bromomethyl)benzoate (21). Silica gel chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /light petrol 1:1) afforded the desired product. Yield $27.16 \mathrm{~g}(80.98 \mathrm{mmol}, 64 \%)$ yellow crystals after cc $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ light petrol; mp:131.7-133.1 ${ }^{\circ} \mathrm{C}$. IR (KBr): 1709, $1671 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.90(\mathrm{~s}, 1 \mathrm{H}), 7.92-$ $7.84(\mathrm{~m}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.20(\mathrm{ddd}, J=8.0,6.6,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.09 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 5.88 (s, 2H), 1.54 (s, 9H). HRMS (ESI-MS) m/z: calc.: $336.1594\left[\mathrm{MH}^{+}\right]$, found: $336.1603\left[\mathrm{MH}^{+}\right]$, Anal. calcd. for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{3}$: C 75.20; H 6.31; N 4.18; found C 75.07; H 6.33; N 4.09.

(E)-tert-Butyl 4-((2-(2-nitrovinyl)-1H-indol-1-yl)methyl)benzoate (30)

(E)-tert-butyl 4-((2-(2-nitrovinyl)-1H-indol-1-yl)methyl)benzoate (30) was prepared according to a modified lit.procedure ${ }^{29}$: A solution of tert-butyl 4-((2-formyl-1H-indol-1-yl)methyl)benzoate (29) ($24.55 \mathrm{~g} ; 73.20 \mathrm{mmol}$) and ammonium acetate $(2.82 \mathrm{~g}, 36.6 \mathrm{mmol})$ in nitromethane $(250 \mathrm{~mL})$ was heated at reflux for 10 h under nitrogen. After removal of half of the solvent the mixture was cooled, the crystalline precipitated product removed by filtration and crystallized from ethanol. Yield $17.50 \mathrm{~g}(46.2 \mathrm{mmol}, 63 \%)$ yellow crystals from ethanol; $\mathrm{mp}: 196.3-199.5^{\circ} \mathrm{C}$. IR (KBr): 1704, $1632 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.03(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{td}, J=6.2,1.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.04(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.53(\mathrm{~s}, 2 \mathrm{H}), 1.56$ (s, 9H).HRMS (ESI-MS) m/z: calcd.: $379.1652\left[\mathrm{MH}^{+}\right]$, found: $379.1657\left[\mathrm{MH}^{+}\right]$. Anal.calcd. for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}$: C 69.83; H 5.86; N 7.40, found: C 69.81; H 5.92; N 7.42.
tert-Butyl 4-((2-(2-nitroethyl)-1H-indol-1-yl)methyl)benzoate (31)

To a solution of (E)-tert-butyl 4-((2-(2-nitrovinyl)-1H-indol-1yl)methyl)benzoate ($\mathbf{3 0}$) ($15.0 \mathrm{~g} ; 39.7 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(750 \mathrm{~mL})$ and ípropanol (75 mL) silica gel (75 g) and $\mathrm{NaBH}_{4}(47.6 \mathrm{mmol} ; 1.80 \mathrm{~g})$ were added and the mixture stirred over night at room temperature. Water (100 mL) was added dropwise whilst stirring, the mixture filtered over a pad of celite, the organic layer died $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and purified by cc $\left(\mathrm{SiO}_{2} ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. Yield 11.18 g ($29.4 \mathrm{mmol}, 74 \%$) yellow crystals from $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; \mathrm{mp}: 150.4-152.2^{\circ} \mathrm{C}$. IR (KBr): 1704, $1555 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, CDCl_{3}): $\delta 7.94-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{dd}, J=6.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.09(\mathrm{~m}, 3 \mathrm{H}), 6.98(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 5.40(\mathrm{~s}, 2 \mathrm{H}), 4.63(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.56(\mathrm{~s}$, 9H). HRMS (ESI-MS) m/z: calcd.: $381.1809\left[\mathrm{MH}^{+}\right]$, found: 381.1814 [$\left.\mathrm{MH}^{+}\right]$; Anal. calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}$: C 69.46; H 6.36; N 7.36; found: C 69.29; H 6.33; N 7.19.
tert-Butyl 4-((2-(2-aminoethyl)-1H-indol-1-yl)methyl)benzoate hydrochloride (32)

To a stirred solution of tert-butyl 4-((2-(2-nitroethyl)-1H-indol-1yl)methyl)benzoate (31) (10.80 g ; 28.4 mmol) in HOAc (108 mL) zinc dust ($170 \mathrm{mmol} ; 11.13 \mathrm{~g}$) was added in small portions at $20^{\circ} \mathrm{C}$. After 4 h , ice was added (250 g) and the mixture alkalized with aqueous ammonia (25%) until $\mathrm{pH}=14$. The mixture was filtered, the aqueous layer extracted with ethyl acetate ($3 \times 100 \mathrm{~mL}$),
the combined organic layers dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent removed under reduced pressure. The remaining solid was dissolved in THF (10 mL), the solution cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{HCl}(5-6 \mathrm{~N}$ in ${ }^{\text {i }}$ propanol) was added dropwise till $\mathrm{pH}=2 . \mathrm{Et}_{2} \mathrm{O}$ was added whilst stirring, the precipitating hydrochloride filtered off and washed with $\mathrm{Et}_{2} \mathrm{O}$. Yield $9.60 \mathrm{~g}(24.8 \mathrm{mmol}, 84 \%)$ colorless crystals; mp:208.9-210.2 ${ }^{\circ} \mathrm{C}$. IR (KBr): 3446, 1718, $1506 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}): $\delta 7.86(\mathrm{~s}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-$ $6.99(\mathrm{~m}, 4 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 5.54(\mathrm{~s}, 2 \mathrm{H}), 3.08(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.99(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.51$ (s, 9H). HRMS (ESI-MS) m/z: calcd.: $351.2067\left[\mathrm{MH}^{+}\right]$, found: $351.2075\left[\mathrm{MH}^{+}\right]$; Anal.calcd. for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{ClN}_{2} \mathrm{O}_{2}$: C 68.29; H 7.03; N 7.24; found: C 68.08; H 7.04; N 7.07.

Ethyl 5-(4-(tert-butoxycarbonyl)benzyl)-2,3,4,5-tetrahydro-1H-pyrido[4,3-b]indole-1carboxylate (33)

To a stirred solution of tert-butyl 4-((2-(2-aminoethyl)- 1 H -indol-1yl)methyl)benzoate hydrochloride (32) ($9.00 \mathrm{~g} ; 23.3 \mathrm{mmol}$) in $\mathrm{MeOH}(200 \mathrm{~mL})$ ethyl glyoxalate ($5.56 \mathrm{~mL} ; 50 \%$ in toluene) and silica gel (18.0 g) were added and the mixture stirred for 1 h . The solvents were removed under reduced pressure and the product purified by cc $\left(\mathrm{SiO}_{2} ; \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{MeOH}, \mathrm{NH}_{3}(25 \%)\right.$, 10:1:0.1) (dry load method). Yield 9.90 g ($22.8 \mathrm{mmol}, 98 \%$) yellow foam; IR (KBr): $3049,2931,1733,1712 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.89$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.79-7.72(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.08(\mathrm{~m}, 3 \mathrm{H}), 7.03(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.33(\mathrm{~d}, J=$ $17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}), 4.35-4.10(\mathrm{~m}, 2 \mathrm{H}), 3.49$ (ddd, $J=13.0$, $9.1,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{ddd}, J=12.5,5.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.81-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 1 \mathrm{H}), 1.56(\mathrm{~s}$, 9H), 1.32 (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$). HRMS (ESI-MS) m/z: calcd.: $435.2278\left[\mathrm{MH}^{+}\right]$, found: $435.2285\left[\mathrm{MH}^{+}\right]$; Anal.calcd.for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4} \times 0.5 \mathrm{H}_{2} 0$: C 70.41; H 7.04; N 6.32, found: C 70.34; H 6.79; N 6.24.
tert-Butyl 4-((2-methyl-1,3-dioxo-2,3,5,6-tetrahydro-1H-imidazo[1',5':1,2]pyrido[4,3b]indol-7(11ch)-yl)methyl)benzoate (34)

Ethyl 5-(4-(tert-butoxycarbonyl)benzyl)-2,3,4,5-tetrahydro-1H-pyrido[4,3b]indole-1-carboxylate ($\mathbf{3 3}$) ($3.00 \mathrm{~g} ; 6.90 \mathrm{mmol}$) was dissolved in MeCN $(15.0 \mathrm{~mL})$. With stirring diisopropylethylamine (3.0 mL) was added. After
 stirring was continued for 16 h at rt . The mixture was poured into water and the crude product was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$). The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Yield 1.44 g ($3.23 \mathrm{mmol}, 47 \%$) colorless foam after cc $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, ethyl acetate $\left.10: 1\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 8.12-8.01(\mathrm{~m}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.08(\mathrm{~m}, 3 \mathrm{H}), 6.96(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 5.34(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~s}, 2 \mathrm{H}), 4.48(\mathrm{dd}, J=13.7,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.20-3.05(\mathrm{~m}, 1 \mathrm{H})$, $2.97(\mathrm{~s}, 3 \mathrm{H}), 2.88-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.56(\mathrm{dd}, J=16.0,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H})$.

4-((2-Methyl-1,3-dioxo-2,3,5,6-tetrahydro-1H-imidazo[1',5':1,2]pyrido[4,3-b]indol-7(11cH)yl)methyl)benzoic acid (35)

tert-Butyl 4-((2-methyl-1,3-dioxo-2,3,5,6-tetrahydro-1H-imidazo[1',5':1,2]-pyrido[4,3-b]indol-7(11cH)-yl)methyl)benzoate (34) ($1.00 \mathrm{~g} ; 2.24 \mathrm{mmol}$) was
dissolved in trifluoro acetic acid (10.0 mL) and the mixture stirred for 15 min at rt . The solution was added to water (100 mL), the precipitating product collected by filtration and dried in vacuo. Yield $0.83 \mathrm{~g}(2,12 \mathrm{mmol} ; 95 \%) . \mathrm{mp}: 267.2-269.6^{\circ} \mathrm{C}$; IR (KBr): $1717,1678 \mathrm{~cm}^{-1,1} ; \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 12.91$ (s, 1H), $7.94-7.89(\mathrm{~m}, 1 \mathrm{H}), 7.86$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.43 (d, J $=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.13-7.05(\mathrm{~m}, 2 \mathrm{H}), 5.52(\mathrm{~s}, 1 \mathrm{H}), 5.46(\mathrm{~s}, 2 \mathrm{H}), 4.33$ (dd, $J=13.6,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.28-3.15(\mathrm{~m}, 2 \mathrm{H}), 2.86(\mathrm{~s}, 3 \mathrm{H}), 2.78(\mathrm{~s}, 1 \mathrm{H})$. HRMS (ESI-MS) m/z: calcd.: $390.1361\left[\mathrm{MH}^{+}\right]$, found: $390.1360\left[\mathrm{MH}^{+}\right]$; Anal.calcd.for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4} \times 0.5 \mathrm{H}_{2} 0$: C 66.32; H 5.06 ; N 10.55; found: C 66.01; H 5.09; N 10.19.

4-((2-Methyl-1,3-dioxo-2,3,5,6-tetrahydro-1H-imidazo[1',5':1,2]pyrido[4,3-b]indol-7(11ch)-yl)methyl)- N -((tetrahydro-2H-pyran-2-yl)oxy)benzamide (36)

4-((2-Methyl-1,3-dioxo-2,3,5,6-tetrahydro-1H-imidazo[1',5':1,2]pyrido-[4,3-b]indol-7($11 \mathrm{c} H$)-yl)methyl)benzoic acid (35) ($0.78 \mathrm{~g}, 2.00 \mathrm{mmol}$) was dissolved in DMF (15.0 mL) and BOP (1.2 equ.), $\mathrm{EtN}(\mathrm{iProp})_{2}$ $(0.78 \mathrm{~mL})$ and O-(tetrahydro- 2 H -pyran- 2 -yl)hydroxylamine (3.0 equ.) were added. The solution was stirred over night at room temperature, poured into water and extracted with ethyl acetate ($3 \times 50 \mathrm{~mL}$). CC $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{MeOH}(10: 1)\right.$ and removal of the solvent under reduced pressure yielded the product as colorless foam; Yield $0.97 \mathrm{~g}(1.98 \mathrm{mmol} ; 98 \%)$. mp: 184.7-186.9 ${ }^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}): 3412$, 2950, 1770, $1706 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}): $\delta 11.58$ ($\mathrm{s}, 1 \mathrm{H}$), 7.91 (dd, $J=6.6,2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.04(\mathrm{~m}, 4 \mathrm{H}), 5.52(\mathrm{~s}, 1 \mathrm{H})$, 5.44 (s, 2H), 4.95 (s, 1H), 4.33 (dd, $J=13.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.49$ (d, $J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.28-3.14$ (m, 1H), 2.87 (s, 3H), 2.76 (d, $J=17.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.09(\mathrm{~s}, 1 \mathrm{H}), 1.61$ (d, $J=49.2 \mathrm{~Hz}, 6 \mathrm{H})$. HRMS (ESI-MS) m/z: calcd.: $489.2132\left[\mathrm{MH}^{+}\right]$, found: $489.2133\left[\mathrm{MH}^{+}\right]$.

Enantioselective synthesis of \boldsymbol{R} - and \boldsymbol{S}-Marbostat-100

R-Enantiomer:

(R)-Ethyl 2-(1H-indol-3-yl)-3-nitropropanoate (60a)

at rt . The solution was stirred for 5 min at rt and sodium tetrakis[3,5bis(trifluoromethyl)phenyl]borate ($4.0 \mathrm{~g} ; 4.24 \mathrm{mmol}$) was added in one portion. Stirring was continued for 10 min at rt to form the active thiourea catalysts 59a in situ. The mixture was cooled to $-60^{\circ} \mathrm{C}$ and a solution of (E)-ethyl 3-nitroacrylate (58) ${ }^{30}(2.5 \mathrm{~g} ; 17.23 \mathrm{mmol})$ in CHCl_{3} $(5.0 \mathrm{~mL})$ was added by a dropping funnel. A solution of indole (57a) ($3.0 \mathrm{~g} ; 25.61 \mathrm{mmol}$) in CHCl_{3} was added and the mixture stirred at $-60^{\circ} \mathrm{C}$ for 16 h . In order to quench the reaction an aqueous NaCl -solution (5.0 mL) was added, the mixture allowed to reach rt , the organic layer was separated, washed with $\mathrm{HCl}(2 \mathrm{M})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, the solvent removed under reduced pressure and the product purified by cc $\left(\mathrm{SiO}_{2} ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, n-hexane, EtOAc 1:5:1). Yield 2.00 g ($8.62 \mathrm{mmol}, 50 \%$) yellow oil. ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}): $\delta 11.21(\mathrm{~s}, 1 \mathrm{H}), 7.64$ (d, $J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.40-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.00(\mathrm{~m}, 2 \mathrm{H}), 5.28(\mathrm{dd}, J=15.0,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{dd}, J=$
$15.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{dd}, J=10.5,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-3.98(\mathrm{~m}, 2 \mathrm{H}), 1.11(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. The ee was determined by HPLC analysis with a Chiralcel OD-H column, hexane/2-propanol (85:15), flow rate $=0.6 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm} . \mathrm{t}_{\mathrm{R}}=105.66 \mathrm{~min}$ (major), 90.81 min (minor), $\geq 99 \%$ ee, $[\alpha]^{20}{ }_{589}+134.093$ (c $0.1 ; \mathrm{MeOH}$). HRMS (ESI-MS) m/z: calcd: $263.1026\left[\mathrm{MH}^{+}\right]$, found: $263.1031\left[\mathrm{MH}^{+}\right]$.

(R)-Ethyl 3-amino-2-(1H-indol-3-yl)propanoate hydrochloride(61a)

From (R)-ethyl 2-(1H-indol-3-yl)-3-nitropropanoate (60a) as described for 79a. Yield 1.5 g ($6.46 \mathrm{mmol} ; 88 \%$) colorless foam.IR (KBr): 3310, 3021, $2975,1730 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}): $\delta 11.25(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{~s}$, $2 \mathrm{H}), 7.58(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.17-6.97(\mathrm{~m}, 2 \mathrm{H}), 4.30(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{qq}, J=10.8,7.1 \mathrm{~Hz}$, 2 H), 3.47 (dd, $J=12.7,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=12.7,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.12(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .[\alpha]^{20}{ }_{589}+86.891$ (c $0.1 ; \mathrm{MeOH}$). HRMS (ESI-MS) m/z: calcd: $233.1285\left[\mathrm{MH}^{+}\right]$, found: $233.1289\left[\mathrm{MH}^{+}\right]$.

(R)-Ethyl 2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-4-carboxylate hydrochloride (62a)

From (R)-ethyl 3-amino-2-(1 H -indol-3-yl)propanoate hydrochloride (61a) as described for 16a at rt for 24 h . Yield $2.3 \mathrm{~g}(9.42 \mathrm{mmol} ; 55 \%)$ colorless crystals after crystallization from diethyl ether.mp: 269.1-271. $8^{\circ} \mathrm{C}$. IR (KBr): 3201, 1730 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}): $\delta 11.40(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.39$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-6.98(\mathrm{~m}, 2 \mathrm{H}), 4.41-4.28(\mathrm{~m}, 2 \mathrm{H}), 4.24(\mathrm{t}, J=4.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.22-4.07(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{dd}, J=12.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{dd}, J=12.8,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.22(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$). The ee was determined by HPLC analysis with a Chiralcel OD-H column, hexane $/ 2$-propanol ($85: 15$), flowrate $=0.6 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm} . \mathrm{t}_{\mathrm{R}}=20.66 \mathrm{~min}$ (major), 19.32 min (minor), $\geq 96 \%$ ee, $[\alpha]^{20} 589+97.190$ (c $0.1 ; \mathrm{MeOH}$). Anal.calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}_{2}$: C $59.89 ; \mathrm{H}$ 6.10; N 9.98; found: C 59.97; H 6.28; N 9.95 .

(\boldsymbol{R})- N -Methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-4-carboxamide hydrochloride (\boldsymbol{R} 37a)

Following aprotocol for aminolysis of esters by use of cyanide as an efficient and mild catalys ${ }^{31}(R)$-ethyl 2,3,4,9-tetrahydro- 1 H -pyrido[3,4-b]indole-4carboxylate hydrochloride ($\mathbf{6 2 a}$) $(0.5 \mathrm{~g} ; 3.56 \mathrm{mmol})$ was dissolved in a methanolic methylamine solution ($30 \%, 0.6 \mathrm{~mL}$) at $0^{\circ} \mathrm{C}$ and a catalytic amount of $\mathrm{NaCN}(0.01 \mathrm{~g})$ was added. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 5 d , silica gel was added and the solvent removed under reduced pressure. Purification by cc $\left(\mathrm{SiO}_{2} ; \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, $\mathrm{MeOH}, \mathrm{NH}_{3 \text { conz }} 50: 10: 0.1$) (dry load technique) yielded 1.39 g ($6.07 \mathrm{mmol} ; 77 \%$) colorless crystals. mp: 265.6-267.0 ${ }^{\circ} \mathrm{C}$. IR (KBr): 2925, $1653 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta 10.81$ (s, 1H), 7.95 (d, $J=4.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.31 (dd, $J=24.2,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.04-6.87(\mathrm{~m}, 2 \mathrm{H}), 3.95-$ 3.77 (m, 2H), $3.51(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{dd}, J=12.9,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{dd}, J=12.9,4.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.60(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 3 \mathrm{H}) .[\alpha]^{20}{ }_{589}+24.996$ (c $\left.0.1 ; \mathrm{MeOH}\right)$

(R)- N-methyl-2,3,4,9-tetrahydro-1 H -pyrido[3,4-b]indole-4-carboxamide hydrochloride $(\boldsymbol{R}-\mathbf{3 7 a})(0.23 \mathrm{~g}, 0.90 \mathrm{mmol})$ was dissolved under argon atmosphere in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(17.0 \mathrm{~mL})$ and pyridine (1.25 mL) and cooled to $0^{\circ} \mathrm{C}$. A solution of triphosgene (216 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.0 \mathrm{~mL})$ was added dropwise and the mixture stirred at $0^{\circ} \mathrm{C}$ for 3 h . The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the organic layer washed with $\mathrm{HCl}(1 \mathrm{~N})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent removed under reduced pressure. Yield $0.11 \mathrm{~g} ; 0.44 \mathrm{mmol}(49 \%)$ colorless crystals . mp: 260.8-263.0 ${ }^{\circ} \mathrm{C}$. IR (KBr): $3266,1729,1675 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{dd}, J=6.5,1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.32(\mathrm{dd}, J=6.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.12(\mathrm{~m}, 2 \mathrm{H}), 4.90(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.57-4.48$ $(\mathrm{m}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{dd}, J=12.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{~s}, 3 \mathrm{H})$. The ee was determined by HPLC analysis with a Chiralcel OD-H column, hexane/2-propanol (85:15), flow rate $=0.6 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm} . \mathrm{t}_{\mathrm{R}}=37.16 \mathrm{~min}$ (major), 44.34 min (minor), $\geq 96 \% \mathrm{ee},[\alpha]^{20}{ }_{589}-136.190$ (c $0.1 ; \mathrm{MeOH}$). Anal.calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$: C 65.87; H 5.13; N 16,46; found: C 65.69; H 5.26; N 16.22.

tert-Butyl 4-(((6R)-4-Methyl-3,5-dioxo-3,4,5,6-tetrahydro-2,6-methano[1,3]diazocino[5,6-b]indol-11(1H)-yl)methyl)benzoate (R-22a)

A stirred mixture of (6R)-4-methyl-6,11-dihydro-2,6-methano[1,3]diazocino[5,6-b]indole-3,5(1H,4H)-dione (R-20a) (0.64 g ; $2.52 \mathrm{mmol})$, tert-butyl 4-(bromomethyl)benzoate (21) ($0.82 \mathrm{~g}, 3.0 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.42 \mathrm{~g}, 3.0 \mathrm{mmol})$ in 2-butanone (30.0 mL) was heated to $80^{\circ} \mathrm{C}$ for 10 h . The mixture was cooled to rt , the solid filtered off and the solvent removed under reduced pressure. After purification by cc $\left(\mathrm{SiO}_{2}\right.$; $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $\mathrm{EtOAc} 3: 1$) and removal of the solvent under reduced pressure the product $(0.82 \mathrm{~g}, 1.84 \mathrm{mmol}, 73 \%)$ was obtained as colorless crystals. mp : $96.4-97.0^{\circ} \mathrm{C}$. IR (KBr): 1712, $1688 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.94-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.76-7.70(\mathrm{~m}$, $1 \mathrm{H}), 7.25-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.06(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.35(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=17.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{dd}, J=16.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H})$, 3.33 (dd, $J=13.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}$), $3.06(\mathrm{~s}, 3 \mathrm{H}), 1.57$ ($\mathrm{s}, 9 \mathrm{H}$). $[\alpha]^{20}{ }_{589}-115.591$ (c $0.1 ; \mathrm{MeOH}$). Anal. calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{4}$: C 70.09; H 6.11; N 9,43; found: C 70.32; H 6.07; N 9.43 .

4-(((6R)-4-Methyl-3,5-dioxo-3,4,5,6-tetrahydro-2,6-methano[1,3]diazocino[5,6-b]indol-11(1H)-yl)methyl)benzoic acid (R-24a)

tert-Butyl 4-(((6R)-4-methyl-3,5-dioxo-3,4,5,6-tetrahydro-2,6-methano-[1,3]diazocino[5,6-b]indol-11(1H)-yl)methyl)benzoate (\boldsymbol{R}-22a) ($1.21 \mathrm{~g} ; 2.73$ $\mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}), \mathrm{CF}_{3} \mathrm{COOH}$ was added $(10 \mathrm{~mL})$ and the solution stirred for 2.5 h at $\mathrm{rt} . \mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ was added, the organic layer separated, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, the solvent removed under reduced pressure and the solid obtained crystallized from $\mathrm{Et}_{2} \mathrm{O}$. Yield $0.89 \mathrm{~g}(2.29 \mathrm{mmol} ; 84$ $\%)$ colorless crystals . mp: 244.0-247.4 ${ }^{\circ} \mathrm{C}$. $\mathrm{IR}(\mathrm{KBr}): 1725,1694 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}): $\delta 12.96(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{dd}, J=6.4,2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.42(\mathrm{dd}, J=6.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.13-7.06(\mathrm{~m}, 2 \mathrm{H}), 5.45(\mathrm{~s}$, $2 \mathrm{H}), 4.83(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.45(\mathrm{dd}, J=$
13.4, $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H}) .[\alpha]^{20} 589-141.690(\mathrm{c} 0.1 ; \mathrm{MeOH})$. Anal. calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4}$: C 67.86; H 4.92; N 10,79; found: C 67.56; H 5.14; N 10.50 .

4-(((6R)-4-methyl-3,5-dioxo-3,4,5,6-tetrahydro-2,6-methano[1,3]diazocino[5,6-b]indol-11(1H)-yl)methyl)-N-((tetrahydro-2H-pyran-2-yl)oxy)benzamide (R-27a)

4-(((6R)-4-methyl-3,5-dioxo-3,4,5,6-tetrahydro-2,6-methano-[1,3]diazocino[5,6-b]indol-11(1H)-yl)methyl)benzoic acid
(R-24a) $(0.89 \mathrm{~g} ; 2.28 \mathrm{mmol})$ was dissolved in THF $(15.0 \mathrm{~mL}), N, N$-Diisopropylethylamine $(0.89 \mathrm{~mL}), \mathrm{NH}_{2} \mathrm{OTHP}(0.80 \mathrm{~g} ; 6.84 \mathrm{mmol})$ and BOP $(1.01 \mathrm{~g}$; $2.28 \mathrm{mmol})$ were added and the mixture stirred at rt for 2 h . The mixture was poured into water $(100 \mathrm{~mL})$, extracted with ethyl acetate ($3 \times 20 \mathrm{~mL}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvents removed under reduced pressure. MeOH $(10 \mathrm{~mL})$ was added to the remaining solid and the mixture macerated at $40^{\circ} \mathrm{C}$ for 1 h by rotation of the flask. The methanolic solution was decanted and the solid dried in vacuo. $0.47 \mathrm{~g} ; 0.96$ mmol (42 \%) colorless foam. mp: 228.3-230.1 ${ }^{\circ} \mathrm{C}$. IR (KBr): 2942; 1723, $1678 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right): \delta 11.58(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.55-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.14-7.05(\mathrm{~m}, 2 \mathrm{H}), 5.48-5.36(\mathrm{~m}, 2 \mathrm{H}), 4.96(\mathrm{~s}, 1 \mathrm{H})$, $4.86(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=13.9$ $\mathrm{Hz}, 2 \mathrm{H}), 3.55-3.41(\mathrm{~m}, 2 \mathrm{H}), 2.90(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~d}, J=68.6 \mathrm{~Hz}, 6 \mathrm{H})$). The ee was determined by HPLC analysis with a Phenomenex Lux Cellulose-2 column, MeOH/2-propanol (90:10), flowrate $=0.5 \mathrm{~mL} / \mathrm{min}, 215 \mathrm{~nm} . \mathrm{t}_{\mathrm{R}}=20-26.20 \mathrm{~min}$ (major), 26.20-32.00 min (minor), $96 \% \mathrm{ee}$, $[\alpha]^{20}{ }_{589}-133.593$ (c 0.1; $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$), Anal.calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{5}$: C 66.38; H 5.78; N 11,47; found: C 66.00; H 6.06; N 11.25 .

S-Enantiomer

(S)-Ethyl 2-(1H-indol-3-yl)-3-nitropropanoate (60b)

Preparation as described above for the R-Enantiomer 60a by use of $N-((1 S, 2 R)$ -2-hydroxy-2,3-dihydro- $1 H$-inden-1-yl)quinoline-2-carbothioamide $\mathbf{1 0 6 b}^{21}$ as precatalyst. Yield $1.91 \mathrm{~g}(8.23 \mathrm{mmol} ; 48 \%)$ yellow oil. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 8.23(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.19$ (ddd, $J=7.2,6.5,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.21(\mathrm{dd}, J=14.2,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.74$ (dd, $J=9.7$, $4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.64$ (dd, $J=14.2,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.33-4.07$ (m, 2H), 1.23 (dd, $J=$ $8.5,5.8 \mathrm{~Hz}, 3 \mathrm{H})$. The ee was determined by HPLC analysis with a Chiralcel OD-H column, hexane/2-propanol ($85: 15$), flowrate $=0.6 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm} . \mathrm{t}_{\mathrm{R}}=107.92 \mathrm{~min}$ (major), 90.81 min (minor), $\geq 99 \%$ ee, $[\alpha]^{20}{ }_{589}-134.090$ (c $\left.0.1 ; ~ M e O H\right) . ~ H R M S ~(E S I-M S) ~ m / z: ~ c a l c d: ~$ $263.1026\left[\mathrm{MH}^{+}\right]$, found: $263.1030\left[\mathrm{MH}^{+}\right]$.

(S)-Ethyl 3-amino-2-(1H-indol-3-yl)propanoate hydrochloride (61b)

Preparation as described above for the R-Enantiomer61a by use of (S)-Ethyl 2-(1 H -indol-3-yl)-3-nitropropanoate ($\mathbf{6 0 b}$). Yield 1.5 g ($6.46 \mathrm{mmol} ; 88 \%$) colorless foam. IR (KBr): 3310, 3021, 2975, $1730 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d d_{6} : $\delta 11.26(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{~s}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-6.99(\mathrm{~m}, 2 \mathrm{H}), 4.30(\mathrm{t}, J=7.3 \mathrm{~Hz}$,
$1 \mathrm{H}), 4.10(\mathrm{qq}, J=10.8,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.47(\mathrm{dd}, J=12.7,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=12.8,6.7 \mathrm{~Hz}$, $1 \mathrm{H}), 1.12(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .[\alpha]^{20}{ }_{589}-86.896$ (c $0.1 ; \mathrm{MeOH}$). HRMS (ESI-MS) m/z: calcd: $233.1285\left[\mathrm{MH}^{+}\right]$, found: $233.1288\left[\mathrm{MH}^{+}\right]$.
(S)-Ethyl 2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-4-carboxylate hydrochloride (62b)

Preparation as described above for the R-Enantiomer 62a by use of (S)-Ethyl 3-amino-2-(1 H -indol-3-yl)propanoate hydrochloride (61b). Yield 2.5 g (10.24 mmol ; 60%) colorless crystals after recrystallization from diethyl ether. mp : 268.8-271.4 ${ }^{\circ} \mathrm{C}$. IR (KBr): $3200,1730 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}): δ 11.35 (s, 1H), 9.64 (s, 1H), 7.56 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.39$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.08 (ddd, $J=14.9,13.9,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.42-4.28(\mathrm{~m}, 2 \mathrm{H}), 4.23(\mathrm{dd}, J=10.2,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.21$ $-4.09(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{dd}, J=12.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{dd}, J=12.9,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.22(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H})$. The ee was determined by HPLC analysis with a Chiralcel OD-H column, hexane/2propanol ($85: 15$), flowrate $=0.6 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm} . \mathrm{t}_{\mathrm{R}}=17.71 \mathrm{~min}$ (major), 19.29 min (minor), \geq 96% ee. $[\alpha]^{20}{ }_{589}-97.195$ (c $0.1 ; \mathrm{MeOH}$). Anal.calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}_{2}$: C 59.89; H 6.10; N 9.98; found: C 59.92; H 6.16; N 9.90 .

(S)-N-Methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-4-carboxamide (S-37a)

Preparation as described above for the R-Enantiomer \boldsymbol{R}-37a by use of (S)-ethyl 2,3,4,9-tetrahydro-1 H -pyrido[3,4-b]indole-4-carboxylate hydrochloride ($\mathbf{6 2 b}$). Yield 0.24 g (1.05 mmol ; 63%) colorless foam. mp: 239.3-241. $2^{\circ} \mathrm{C}$. $\mathbb{I R}(\mathrm{KBr})$: 2926, $1653 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}): $\delta 10.81(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=4.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.35$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.27$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-6.87$ (m, 2H), $3.94-3.78(\mathrm{~m}, 2 \mathrm{H}), 3.51(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{~s}, 1 \mathrm{H}), 3.10(\mathrm{dd}, J=12.9,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.98$ (dd, $J=12.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 3 \mathrm{H}) .[\alpha]^{20}{ }_{589}-24.999(\mathrm{c} 0.1 ; \mathrm{MeOH})$
(6S)-4-Methyl-6,11-dihydro-2,6-methano[1,3]diazocino[5,6-b]indole-3,5(1H,4H)-dione

Preparation as described above for the R-Enantiomer \boldsymbol{R}-20a by use of $(S)-N$ -methyl-2,3,4,9-tetrahydro-1 H -pyrido[3,4-b]indole-4-carboxamide $\quad(\boldsymbol{S} \mathbf{- 3 7 a})$. Yield $0.12 \mathrm{~g}(0.47 \mathrm{mmol} ; 45 \%)$ colorless crystals. mp: 251.4-254. ${ }^{\circ} \mathrm{C}$. IR (KBr): 3266, 1729, $1675 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.06(\mathrm{~s}, 1 \mathrm{H})$, 7.69 (dd, $J=6.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.32$ (dd, $J=6.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.12(\mathrm{~m}, 2 \mathrm{H}), 4.90(\mathrm{~d}, J=$ $16.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.58-4.49(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{dd}, J=12.8,1.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.06(\mathrm{~s}, 3 \mathrm{H})$. The ee was determined by HPLC analysis with a Chiralcel OD-H column, hexane/2-propanol (85:15), flowrate $=0.6 \mathrm{~mL} / \mathrm{min}, 220 \mathrm{~nm} . \mathrm{t}_{\mathrm{R}}=41.72 \mathrm{~min}$ (major), 37.92 min (minor), $\geq 96 \%$ ee, $[\alpha]^{20}{ }_{589}+136.193$ (c $0.1 ; \mathrm{MeOH}$). Anal.calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$: C $65.87 ; \mathrm{H}$ 5.13; N 16,46; found: C 65.62; H 5.22; N 16.19.
tert-Butyl 4-(((6S)-4-methyl-3,5-dioxo-3,4,5,6-tetrahydro-2,6-methano[1,3]diazocino[5,6-b]indol-11(1H)-yl)methyl)benzoate (\mathbf{S}-22a)

Preparation as described above for the R-Enantiomer \boldsymbol{R}-22a by use of $(6 S)$ -4-methyl-6,11-dihydro-2,6-methano[1,3]diazocino[5,6-b]indole$3,5(1 H, 4 H)$-dione ($\mathbf{S - 2 0 a}$). Yield $0.71 \mathrm{~g}(1.60 \mathrm{mmol} ; 78 \%)$ colorless crystals. mp: 96.7-97.4 ${ }^{\circ} \mathrm{C}$. IR (KBr): 1711, $1688 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR
($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.92(\mathrm{dd}, 2 \mathrm{H}), 7.77-7.70(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.06(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 5.35(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.27$ (dd, $J=16.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.33(\mathrm{dd}, J=13.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{~s}$, $3 \mathrm{H}), 1.57(\mathrm{~s}, 9 \mathrm{H}) .[\alpha]^{20}{ }_{589}+155.594$ (c 0.1; MeOH). Anal.calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{4}$: C 70.09; H 6.11; N 9,43; found: C 70.26; H 5.99; N 9.42.

4-(((6S)-4-Methyl-3,5-dioxo-3,4,5,6-tetrahydro-2,6-methano[1,3]diazocino[5,6-b]indol-11(1H)-yl)methyl)benzoic acid (S-24a)

Preparation as described above for the R-Enantiomer \boldsymbol{R}-24a by use of tertbutyl 4-(((6S)-4-methyl-3,5-dioxo-3,4,5,6-tetrahydro-2,6-methano[1,3]diazocino[5,6-b]indol-11(1H)-yl)methyl)benzoate (S-33a). Yield $0.31 \mathrm{~g}(0.80 \mathrm{mmol} ; 50 \%)$ colorless crystals. $\mathrm{mp}: 241.8-243.7^{\circ} \mathrm{C}$. IR (KBr): 1725, $1693 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 12.93(\mathrm{~s}, 1 \mathrm{H})$, $7.86(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.56-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.15$ (t, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.15-7.04(\mathrm{~m}, 2 \mathrm{H}), 5.45(\mathrm{~s}, 2 \mathrm{H}), 4.83(\mathrm{~d}, J=16.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.55(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.45(\mathrm{dd}, J=13.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~s}$, $3 \mathrm{H})$. $[\alpha]^{20}{ }_{589}+141.693$ (c $\left.0.1 ; \mathrm{MeOH}\right)$. Anal.calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{4}$: C 67.86; H 4.92; N 10,79; found: C 67.54; H 4.93; N 10.48 .

4-(((6S)-4-Methyl-3,5-dioxo-3,4,5,6-tetrahydro-2,6-methano[1,3]diazocino[5,6-b]indol-11(1H)-yl)methyl)- N -((tetrahydro-2H-pyran-2-yl)oxy)benzamide (S -27a)

Preparation as described above for the R-Enantiomer \boldsymbol{R}-27a by use of 4-(((6S)-4-methyl-3,5-dioxo-3,4,5,6-tetrahydro-2,6-
methano[1,3]diazocino[5,6-b]indol-11(1H)-yl)methyl)benzoic acid $(S$ 24a). Yield 0.22 g ($0.45 \mathrm{mmol} ; 56 \%$) colorless foam. mp: 242.6$243.0^{\circ} \mathrm{C}$. IR (KBr): 2944, $1723,1679 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $8.86(\mathrm{~s}, 1 \mathrm{H}), 7.72$ (dd, $J=8.9,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.19$ (q, $J=3.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.05(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.30(\mathrm{dd}, J=16.9,9.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.19-5.12(\mathrm{~m}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{dd}, J=16.3,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=$ $16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.63(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.33$ $(\mathrm{dd}, J=13.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{~s}, 3 \mathrm{H}), 1.76(\mathrm{~d}, 6 \mathrm{H})$. The ee was determined by HPLC analysis with a Phenomenex Lux Cellulose-2 column, $\mathrm{MeOH} / 2$-propanol ($90: 10$), flowrate $=0.5 \mathrm{~mL} / \mathrm{min}$, $215 \mathrm{~nm} . \mathrm{t}_{\mathrm{R}}=20-26.20 \mathrm{~min}$ (major), 26.20-32.00 min (minor), $\geq 96 \%$ ee, $[\alpha]^{20}{ }_{589} 133.590$ (c 0.1 ; $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$) Anal. calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{5}$: C 66.38; H 5.78; N 11.47; found: C 66.00; H 6.08; N 11.26.

HPLC Chromatograms

4-((4-Methyl-3,5-dioxo-3,4,5,6-tetrahydro-2,6-methano[1,3]diazocino[5,6-b]indol-11(1H)-yl)methyl)-N-

Vail : 111
Method: Phe_Cel2_0-10-0-90_0.5
Run time : $60,00 \mathrm{~min}$
Inj. vol. : $10,000 \mu$ l
$\lambda: 215 \mathrm{~nm}$

Column: Phenomenex Lux Cellulose-2, $4.6 \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m}$
Eluents: $\mathrm{A}=\mathrm{n}$-Heptane $B=i-$ Propanol
Flow: $0.5 \mathrm{ml} / \mathrm{min}$

Peak Results :

Index	Name	Time [Min]	Quantity [\% Area]	Height [mAU]	Area [mAU.Min]	Area \% [\%]
1	UNKNOWN	20,56	24,91	153,1	149,3	24,911
2	UNKNOWN	24,46	23,93	114.3	143,4	23,933
3	UNKNOWN	27,33	23,18	118,3	138,9	23,184
4	UNKNOWN	29,55	27,97	120,1	167.6	27.972
Total			100,00	505.9	599.3	100,000

4-(((6R)-4-Methyl-3,5-dioxo-3,4,5,6-tetrahydro-2,6-methano[1,3]diazocino[5,6-b]indol-11(1H)-yl)methyl)- N -((tetrahydro-2H-pyran-2-yl)oxy)benzamide

Vail : 82
Method: Phe_Cel2_0-10-0-90_0.5
Run time : 60,00 min
Inj. vol. : 10,000 μ l

Column: Phenomenex Lux Cellulose-2, $4.6 \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m}$
Eluents: $\mathrm{A}=\mathrm{n}$-Heptane
$B=i-$ Propanol
Flow: $0.5 \mathrm{ml} / \mathrm{min}$
$\lambda: 215 \mathrm{~nm}$

Peak Results :

Index	Name	Time [Min]	Quantity [\% Area]	Height [mAU]	Area [mAU.Min]	Area \% $[\%]$
1	UNKNOWN	20,85	0,54	1,4	1,4	0,541
2	UNKNOWN	23,90	0,24	0,9	0.6	0,239
3	UNKNOWN	27,20	52,82	104,9	135,2	52,819
4	UNKNOWN	29,49	46,40	80,4	118,7	46,401
Total			100,00	187.5	255,9	100,000

4-(((6S)-4-Methyl-3,5-dioxo-3,4,5,6-tetrahydro-2,6-methano[1,3]diazocino[5,6-b]indol-11(1H)-yl)methyl)N -((tetrahydro-2H-pyran-2-yl)oxy)benzamide

S-27a

Vail : 112
Method: Phe_Cel2_0-10-0-90_0.5
Run time : 60,00 min
Inj. vol. : $10,000 \mu \mathrm{l}$
Column : Phenomenex Lux Cellulose-2,
$4.6 \times 250 \mathrm{~mm}, 5 \mu \mathrm{~m}$
Eluents: $A=\mathrm{n}$-Heptane
$B=i$-Propanol
Flow: $0.5 \mathrm{ml} / \mathrm{min}$
$\lambda: 215 \mathrm{~nm}$

Peak Results :

| Index | Name | Time
 [Min] | Quantity
 [\% Area] | Height
 [mAU] | Area
 [mAU.Min] |
| :---: | :--- | ---: | ---: | ---: | ---: | ---: |
| Area \% | | | | | |
| [\%] | | | | | |$|$

NMR spectra of intermediates of Marbostat-100 (5a) according to the synthetic path, Marbostat-100 (5a) and final test compounds 5a-16

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-\mathrm{D}_{6}, 300 \mathrm{MHz}\right)$

20a

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-\mathrm{D}_{6}, 300 \mathrm{MHz}\right.$)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-\mathrm{D}_{6}, 300 \mathrm{MHz}\right.$)

${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO-D6, 300 MHz)

$B(s)$
9.02

8
+

$4 E+08$

W
+
+
8

${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO-D6, 300 MHz)

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, Aceton-D $\left.{ }_{6}\right)$

 $\iint \sqrt{5}$ is J/ f 111

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-\mathrm{D}_{6}, 300 \mathrm{MHz}\right)$

\qquad

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-\mathrm{D}_{6}, 300 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$-NMR (DMSO-D ${ }^{6}, 300 \mathrm{MHz}$)

Crystallographic data of Marbostat-100 (5a),

Crystal Data and Experimental. For Full details see Cambridge Crystallographic Data Centre: http://www.ccdc.cam.ac.uk/ deposit@ccdc.cam.ac.uk. The data have been assigned to the following deposition number: CCDC 1518348

Experimental. Single colourless prism-shaped crystals of (n126) were obtained by recrystallization from methanol. A suitable crystal $(0.31 \times 0.23 \times 0.07) \mathrm{mm}^{3}$ was selected and mounted on a MiTeGen holder with inert oil on a SuperNova, Single source at offset, Atlas diffractometer. The crystal was kept at $T=123(1) \mathrm{K}$ during data collection. Using Olex2 (Dolomanov et al., 2009), the structure was solved with the ShelXT (Sheldrick, 2015) structure solution program, using the Intrinsic Phasing solution method. The model was refined with version 2014/7 of ShelXL (Sheldrick, 2015) using Least Squares minimisation.

Crystal Data. $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4}, M_{r}=404.42$, monoclinic, $\mathrm{P}_{2} / \mathrm{c}$ (No. 14), $\mathrm{a}=11.52770(15) \AA, \mathrm{b}=10.22990(12) \AA, \mathrm{c}=$ 15.93783(19) $\AA, \quad \beta=99.6558(12)^{\circ}, \quad \alpha=\gamma=90^{\circ}, \quad V=$ 1852.88(4) $\AA^{3}, T=123(1) \mathrm{K}, Z=4, Z^{\prime}=1, \mu\left(\mathrm{CuK}_{\alpha}\right)=0.842$, 55591 reflections measured, 3701 unique ($R_{\text {int }}=0.0274$) which were used in all calculations. The final $w R_{2}$ was 0.0896 (all data) and R_{1} was 0.0333 (I > 2(I)).

Compound	Marbostat-100 (N126)
CCDC	1518348
Formula	$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4}$
$D_{\text {calc. }} / \mathrm{g} \mathrm{cm}^{-3}$	1.450
μ / mm^{-1}	0.842
Formula Weight	404.42
Colour	colourless
Shape	prism
Size/mm ${ }^{3}$	$0.31 \times 0.23 \times 0.07$
T/K	123(1)
Crystal System	monoclinic
Space Group	P2 $1^{\text {/c }}$
$a / \AA{ }^{\text {a }}$	11.52770(15)
b / \AA	10.22990(12)
c / \AA	15.93783(19)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	99.6558(12)
$\gamma /{ }^{\circ}$	90
V / \AA^{3}	1852.88(4)
Z	4
Z'	1
Wavelength/A	1.54184
Radiation type	CuK_{α}
$\Theta_{\text {min }} /{ }^{\circ}$	3.890
$\Theta_{\max } /{ }^{\circ}$	73.170
Measured Refl.	55591
Independent Refl.	3701
Reflections Used	3420
Rint	0.0274
Parameters	355
Restraints	0
Largest Peak	0.236
Deepest Hole	-0.263
GooF	1.039
$w R_{2}$ (all data)	0.0896
$w^{2} 2$	0.0872
R_{1} (all data)	0.0359
R_{1}	0.0333

Structure Quality Indicators

Reflections:	d min (Cu) 0.81	[/\%	59.2	Rint	2.74\%	complete ${ }^{\text {che }}$,	100\%
Refinement:	Shift 0.000	Max Peak	0.2	Min Pe	-0.3	Goof	1.039

A colourless prism-shaped crystal with dimensions $0.31 \times 0.23 \times 0.07 \mathrm{~mm}^{3}$ was mounted on a MiTeGen holder with inert oil. X-ray diffraction data were collected using a SuperNova, Single source at offset, Atlas diffractometer equipped with a Oxford Cryosystems, CryoStream 700 low-temperature device, operating at $T=123(1) \mathrm{K}$.

Data were measured using ω scans scans of 1.0° per frame for 2.5 s using CuK_{α} radiation (sealed X-ray tube, $50 \mathrm{kV}, 0.8 \mathrm{~mA}$). The total number of runs and images was based on the strategy calculation from the program CrysAlisPro (Agilent, V1.171.37.34, 2014). The maximum resolution achieved was $\Theta=$ 73.170.\ ${ }^{\circ}$

Cell parameters were retrieved using the CrysAlisPro (Agilent, V1.171.37.34, 2014) software and refined using CrysAlisPro (Agilent, V1.171.37.34, 2014) on 27788 reflections, 50% of the observed reflections. Data reduction was performed using the CrysAlisPro (Agilent, V1.171.37.34, 2014) software which corrects for Lorentz polarisation. The final completeness is 100.00 out to 73.170 in Θ. The absorption coefficient μ of this material is 0.842 at this wavelength $(\lambda=1.54184)$ and the minimum and maximum transmissions are 0.85618 and 1.00000.

The structure was solved in the space group $\mathrm{P} 2_{1} / \mathrm{c}$ (\# 14) by Intrinsic Phasing using the ShelXT (Sheldrick, 2015) structure solution program and refined by Least Squares using version 2014/7 of ShelXL (Sheldrick, 2015). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model.

There is a single molecule in the asymmetric unit, which is represented by the reported sum formula. In other words: Z is 4 and Z ' is 1 .

Data Plots: Diffraction Data

Data Plots: Refinement and Data

Reflection Statistics

Total reflections (after filtering)	57597	Unique reflections	3701
Completeness	0.996	Mean I/ σ	59.18
$\mathrm{hkl}_{\text {max }}$ collected	$(14,12,19)$	$\mathrm{hkl}_{\text {min }}$ collected	(-14, -11, -19)
hkl ${ }_{\text {max }}$ used	$(14,12,19)$	$\mathrm{hkl}_{\text {min }}$ used	$(-14,0,0)$
Lim dmax ${ }_{\text {max }}$ collected	100.0	Lim d ${ }_{\text {min }}$ collected	0.77
$\mathrm{d}_{\text {max }}$ used	11.36	$\mathrm{d}_{\text {min }}$ used	0.81
Friedel pairs	6518	Friedel pairs merged	1
Inconsistent equivalents	3	Rint	0.0274
$\mathrm{R}_{\text {sigma }}$	0.0086	Intensity transformed	0
Omitted reflections	0	Omitted by user (OMIT hkl)	0
Multiplicity	$\begin{aligned} & (1365,2250,2382,2127, \\ & 2060,1611,1092,559,285, \\ & 102,33,4) \end{aligned}$	Maximum multiplicity	36
Removed systematic abs	2006	Filtered off (Shel/OMIT)	0

Table S1: Fractional Atomic Coordinates $\left(\times 10^{4}\right)$ and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{n 1 2 6}$. $U_{e q}$ is defined as $1 / 3$ of the trace of the orthogonalised $U_{i j}$.

Atom	\mathbf{x}	\mathbf{y}	\mathbf{z}	$\boldsymbol{U}_{\boldsymbol{e q}}$
O3	$1607.1(8)$	$55.7(8)$	$400.3(6)$	$32.0(2)$
O4	$3694.3(8)$	$3607.1(9)$	$1165.5(6)$	$34.6(2)$
N3	$1425.3(9)$	$853.8(9)$	$1715.4(6)$	$27.2(2)$
O1	$-5700(1)$	$753.2(11)$	$4310.1(7)$	$42.7(2)$
N4	$2955.8(8)$	$1554.9(10)$	$1002.1(6)$	$26.2(2)$
N2	$-911.4(8)$	$3269.3(9)$	$981.0(6)$	$25.5(2)$
C9	$-628.9(10)$	$4582.5(11)$	$945.8(7)$	$24.9(2)$
C20	$3016.6(10)$	$2797.5(11)$	$1361.6(7)$	$25.9(2)$
C16	$76(1)$	$2610.7(11)$	$1363.2(7)$	$25.1(2)$
C14	$566.1(10)$	$4736.9(11)$	$1314.9(7)$	$24.3(2)$
C22	$1953.7(10)$	$765.2(11)$	$1000.7(7)$	$25.4(2)$
N1	$-5015.8(10)$	$903.6(12)$	$3675.7(8)$	$40.6(3)$
C7	$-4031.6(10)$	$1162.9(12)$	$2139.7(8)$	$29.2(3)$

Atom	\mathbf{x}	\mathbf{y}	\mathbf{z}	$\boldsymbol{U}_{e q}$
C15	$993.4(10)$	$3465.3(11)$	$1572.2(7)$	$24.1(2)$
O2	$-5245.2(11)$	$3074.4(10)$	$3687.0(8)$	$56.1(3)$
C2	$-4096.7(10)$	$2172.1(11)$	$2714.9(7)$	$26.3(2)$
C5	$-2742.2(10)$	$2464.5(11)$	$1424.4(7)$	$26.0(2)$
C3	$-3464.5(11)$	$3313.6(12)$	$2650.5(8)$	$32.6(3)$
C12	$385.8(12)$	$7037.6(12)$	$1040.3(8)$	$31.0(3)$
C19	$2196.5(10)$	$3022.3(11)$	$2001.2(7)$	$26.1(2)$
C13	$1072.1(11)$	$5987.3(11)$	$1361.9(7)$	$28.2(3)$
C10	$-1321.7(11)$	$5640.1(12)$	$614.7(7)$	$28.8(3)$
C6	$-3353.5(11)$	$1314.2(12)$	$1501.4(8)$	$29.6(3)$
C11	$-792.4(11)$	$6859.3(12)$	$667.7(8)$	$30.7(3)$
C4	$-2785.7(11)$	$3448.7(13)$	$2019.2(9)$	$33.0(3)$
C1	$-4825.7(11)$	$2102.8(12)$	$3405.1(8)$	$30.9(3)$
C17	$153.9(11)$	$1157.0(12)$	$1504.5(8)$	$28.7(3)$
C8	$-2058.2(10)$	$2672.2(13)$	$701.3(8)$	$28.8(3)$
C18	$2037.0(11)$	$1699.3(12)$	$2397.3(7)$	$29.6(3)$
C21	$3686.0(12)$	$1261.9(14)$	$353.7(9)$	$33.6(3)$

Table S2: Anisotropic Displacement Parameters $\left(\times 10^{4}\right) \mathbf{n 1 2 6}$. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} \times U_{11}+\ldots+2 h k a^{*} \times b^{*} \times U_{12}\right]$

Atom	U_{11}	U_{22}	U_{33}	\boldsymbol{U}_{23}	U_{13}	U_{12}
03	36.1(5)	23.7(4)	36.9(5)	-6.1(3)	8.4(4)	-2.1(3)
04	31.6(4)	27.1(4)	46.0(5)	1.3(4)	9.0(4)	-6.0(4)
N3	32.1(5)	21.0(5)	30.1(5)	3.9(4)	9.4(4)	0.4(4)
01	49.0(6)	43.0(6)	41.3(6)	7.9(4)	22.8(5)	-0.8(5)
N4	27.6(5)	23.4(5)	29.0(5)	-0.9(4)	8.3(4)	-0.1(4)
N2	25.3(5)	24.1(5)	29.2(5)	-0.3(4)	10.7(4)	0.2(4)
C9	29.9(6)	24.3(5)	23.0(5)	-0.3(4)	11.8(4)	0.8(4)
C20	25.6(5)	22.5(6)	28.4(5)	2.4(4)	1.1(4)	$0.9(4)$
C16	29.6(6)	23.2(6)	25.1(5)	0.7(4)	11.6(4)	1.3(4)
C14	29.6(6)	23.7(6)	21.6(5)	0.1(4)	9.9(4)	$1.2(4)$
C22	28.9(6)	17.2(5)	30.6(6)	2.5(4)	6.2(4)	2.7(4)
N1	39.5(6)	36.1(6)	52.6(7)	16.6(5)	26.4(5)	11.5(5)
C7	28.2(6)	23.9(6)	35.8(6)	$0.1(5)$	6.5(5)	-2.8(5)
C15	29.0(6)	21.4(5)	23.3(5)	-0.2(4)	8.6(4)	0.9(4)
02	73.6(8)	36.4(6)	71.8(8)	-6.6(5)	51.1(6)	0.0(5)
C2	23.8(5)	24.8(6)	31.3(6)	2.5(5)	7.3(4)	$2.9(4)$
C5	23.2(5)	25.4(6)	30.1(6)	-1.3(4)	6.7(4)	1.4(4)
C3	37.2(7)	25.0(6)	39.1(7)	-7.0(5)	16.3(5)	-1.7(5)
C12	42.4(7)	22.4(6)	30.9(6)	2.1(5)	14.2(5)	0.1(5)
C19	31.2(6)	22.0(6)	24.8(5)	-1.1(4)	3.5(5)	0.5(4)
C13	33.8(6)	23.8(6)	28.5(6)	-0.5(4)	9.4(5)	-1.2(5)
C10	31.0(6)	31.5(6)	25.6(5)	1.7(5)	10.0(5)	5.7(5)
C6	31.8(6)	25.2(6)	32.6(6)	-5.5(5)	7.2(5)	-2.0(5)
C11	40.2(7)	27.2(6)	27.2(6)	5.2(5)	13.1(5)	9.2(5)
C4	36.6(7)	23.7(6)	42.4(7)	-5.2(5)	18.0(5)	-5.5(5)
C1	29.0(6)	30.3(6)	34.7(6)	2.7(5)	9.2(5)	1.1(5)
C17	30.9(6)	22.8(6)	34.7(6)	2.8(5)	12.6(5)	-1.8(5)
C8	27.7(6)	29.9(6)	30.2(6)	-4.8(5)	8.8(5)	-2.2(5)
C18	37.5(7)	26.4(6)	25.4(6)	3.8(5)	6.6(5)	3.2(5)
C21	30.7(6)	37.3(7)	35.1(7)	-4.2(5)	12.1(5)	-0.3(5)

Table S3: Bond Lengths in Å for n126.

Atom	Atom	Length/Å
O3	C22	$1.2141(14)$
O4	C20	$1.2149(14)$
N3	C22	$1.3818(15)$

Atom	Atom	Length/Å
N3	C17	$1.4805(15)$
N3	C18	$1.4730(16)$
O1	N1	$1.3913(14)$

Atom	Atom	Length/Å
N4	C20	$1.3913(15)$
N4	C22	$1.4093(15)$
N4	C21	$1.4690(15)$
N2	C9	$1.3857(15)$
N2	C16	$1.3740(15)$
N2	C8	$1.4566(15)$
C9	C14	$1.4131(16)$
C9	C10	$1.3948(17)$
C20	C19	$1.5195(16)$
C16	C15	$1.3694(16)$
C16	C17	$1.5046(16)$
C14	C15	$1.4265(16)$
C14	C13	$1.4027(16)$
N1	C1	$1.3306(17)$

Atom	Atom	Length/Å
C7	C2	$1.3911(17)$
C7	C6	$1.3917(17)$
C15	C19	$1.5094(16)$
O2	C1	$1.2234(16)$
C2	C3	$1.3894(17)$
C2	C1	$1.4937(16)$
C5	C6	$1.3876(17)$
C5	C4	$1.3895(17)$
C5	C8	$1.5165(16)$
C3	C4	$1.3813(18)$
C12	C13	$1.3809(17)$
C12	C11	$1.4000(19)$
C19	C18	$1.5177(16)$
C10	C11	$1.3848(18)$

Table S4: Bond Angles in ${ }^{\circ}$ for $n 126$.

Atom	Atom	Atom	Angle ${ }^{\circ}$
C22	N3	C17	$112.52(9)$
C22	N3	C18	$115.09(9)$
C18	N3	C17	$112.19(9)$
C20	N4	C22	$120.60(10)$
C20	N4	C21	$118.74(10)$
C22	N4	C21	$116.63(10)$
C9	N2	C8	$126.98(10)$
C16	N2	C9	$108.09(9)$
C16	N2	C8	$124.88(10)$
N2	C9	C14	$108.11(10)$
N2	C9	C10	$130.08(11)$
C10	C9	C14	$121.82(11)$
04	C20	N4	$120.47(11)$
04	C20	C19	$124.66(11)$
N4	C20	C19	$114.87(10)$
N2	C16	C17	$125.11(10)$
C15	C16	N2	$110.08(10)$
C15	C16	C17	$124.77(11)$
C9	C14	C15	$106.45(10)$
C13	C14	C9	$119.46(10)$
C13	C14	C15	$134.09(11)$
O3	C22	N3	$123.82(11)$
03	C22	N4	$120.35(11)$
N3	C22	N4	$115.83(10)$
C1	N1	O1	$118.81(11)$
C2	C7	C6	$119.88(11)$

Atom	Atom	Atom	Angle $/^{\circ}$
C16	C15	C14	$107.27(10)$
C16	C15	C19	$122.14(10)$
C14	C15	C19	$130.59(10)$
C7	C2	C1	$123.32(11)$
C3	C2	C7	$119.22(11)$
C3	C2	C1	$117.46(11)$
C6	C5	C4	$118.51(11)$
C6	C5	C8	$121.50(10)$
C4	C5	C8	$119.99(11)$
C4	C3	C2	$120.41(11)$
C13	C12	C11	$120.71(12)$
C15	C19	C20	$111.68(9)$
C15	C19	C18	$106.86(10)$
C18	C19	C20	$106.05(9)$
C12	C13	C14	$118.85(11)$
C11	C10	C9	$117.19(11)$
C5	C6	C7	$120.98(11)$
C10	C11	C12	$121.97(11)$
C3	C4	C5	$120.94(11)$
N1	C1	C2	$115.22(11)$
O2	C1	N1	$122.22(12)$
O2	C1	C2	$122.53(11)$
N3	C17	C16	$105.85(9)$
N2	C8	C5	$112.77(10)$
N3	C18	C19	$107.04(9)$

Table S5: Torsion Angles in ${ }^{\circ}$ for $\mathbf{n 1 2 6}$.

Atom	Atom	Atom	Atom	Angle ${ }^{\circ}{ }^{\circ}$
O4	C20	C19	C15	$93.79(13)$
O4	C20	C19	C18	-
				$150.17(11)$
O1	N1	C1	O2	$-1.0(2)$
O1	N1	C1	C2	-
				$179.17(11)$
N4	C20	C19	C15	$-86.84(12)$
N4	C20	C19	C18	$29.21(13)$
N2	C9	C14	C15	$0.12(12)$

Atom	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
N2	C9	C14	C13	-
				179.68(10)
N2	C9	C10	C11	-
				179.85(11)
N2	C16	C15	C14	0.40(12)
N2	C16	C15	C19	-179.94(9)
N2	C16	C17	N3	165.32(10)
C9	N2	C16	C15	-0.33(12)
C9	N2	C16	C17	-
				178.32(10)
C9	N2	C8	C5	-96.98(13)
C9	C14	C15	C16	-0.32(12)
C9	C14	C15	C19	-
				179.93(11)
C9	C14	C13	C12	-0.34(16)
C9	C10	C11	C12	-0.33(17)
C20	N4	C22	03	143.99(11)
C20	N4	C22	N3	-36.55(15)
C20	C19	C18	N3	-64.87(12)
C16	N2	C9	C14	0.12(12)
C16	N2	C9	C10	179.53(11)
C16	N2	C8	C5	80.16(14)
C16	C15	C19	C20	96.25(12)
C16	C15	C19	C18	-19.30(14)
C14	C9	C10	C11	-0.51(16)
C14	C15	C19	C20	-84.18(14)
C14	C15	C19	C18	160.27(11)
C22	N3	C17	C16	-80.96(11)
C22	N3	C18	C19	53.94(13)
C22	N4	C20	04	-
				159.43(11)
C22	N4	C20	C19	21.17(15)
C7	C2	C3	C4	0.45(19)
C7	C2	C1	N1	26.83(17)
C7	C2	C1	02	-
				151.31(14)
C15	C16	C17	N3	-12.38(15)
C15	C14	C13	C12	179.93(12)
C15	C19	C18	N3	54.39(12)
C2	C7	C6	C5	-0.39(18)
C2	C3	C4	C5	1.6(2)
C3	C2	C1	N1	-
				153.64(12)
C3	C2	C1	02	28.23(19)
C13	C14	C15	C16	179.45(12)
C13	C14	C15	C19	-0.2(2)
C13	C12	C11	C10	0.83(18)
C10	C9	C14	C15	-
				179.35(10)
C10	C9	C14	C13	0.85(16)
C6	C7	C2	C3	-1.03(18)
C6	C7	C2	C1	178.50(11)
C6	C5	C4	C3	-2.95(19)
C6	C5	C8	N2	-
				136.96(11)
C11	C12	C13	C14	-0.47(18)
C4	C5	C6	C7	2.36(18)
C4	C5	C8	N2	44.33(16)
C1	C2	C3	C4	-
				179.11(12)
C17	N3	C22	03	-54.16(15)

Atom	Atom	Atom	Atom	${\text { Angle } /{ }^{\circ}}^{\text {C17 }}$
N3	C22	N4	$126.40(10)$	
C17	N3	C18	C19	$-76.43(12)$
C17	C16	C15	C14	$178.40(10)$
C17	C16	C15	C19	$-1.94(17)$
C8	N2	C9	C14	$177.65(10)$
C8	N2	C9	C10	$-2.94(19)$
C8	N2	C16	C15	-
				$177.92(10)$
C8	N2	C16	C17	$4.09(17)$
C8	C5	C6	C7	-
				$176.37(11)$
C8	C5	C4	C3	$175.79(12)$
C18	N3	C22	O3	$175.62(11)$
C18	N3	C22	N4	$-3.82(14)$
C18	N3	C17	C16	$50.72(12)$
C21	N4	C20	O4	$-2.77(17)$
C21	N4	C20	C19	$177.82(10)$
C21	N4	C22	O3	$-13.14(16)$
C21	N4	C22	N3	$166.32(10)$

Table S6: Hydrogen Fractional Atomic Coordinates ($\times 10^{4}$) and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{n 1 2 6}$. $U_{e q}$ is defined as $1 / 3$ of the trace of the orthogonalised $U_{i j}$.

Atom	\mathbf{x}	\mathbf{y}	\mathbf{z}	$\boldsymbol{U}_{e q}$
H1	$-4587(15)$	$239(17)$	$3608(10)$	$41(4)$
H7	$-4462(13)$	$336(15)$	$2164(9)$	$32(4)$
H3	$-3515(13)$	$4010(16)$	$3052(10)$	$39(4)$
H12	$727(13)$	$7914(16)$	$1072(10)$	$36(4)$
H19	$2579(12)$	$3653(15)$	$2413(9)$	$28(3)$
H13	$1918(13)$	$6105(14)$	$1622(9)$	$33(4)$
H10	$-2138(13)$	$5546(15)$	$375(9)$	$33(4)$
H6	$-3298(14)$	$591(16)$	$1090(10)$	$42(4)$
H11	$-1244(14)$	$7618(16)$	$460(10)$	$39(4)$
H4	$-2336(14)$	$4236(16)$	$1987(10)$	$41(4)$
H17A	$-230(13)$	$889(15)$	$1983(10)$	$35(4)$
H17B	$-174(12)$	$661(15)$	$987(9)$	$31(4)$
H8A	$-1963(13)$	$1841(15)$	$421(9)$	$32(4)$
H8B	$-2517(13)$	$3252(15)$	$271(9)$	$32(4)$
H18A	$2803(13)$	$1313(15)$	$2647(9)$	$31(4)$
H18B	$1531(13)$	$1762(15)$	$2835(10)$	$34(4)$
H21A	$3290(14)$	$1526(16)$	$-200(11)$	$39(4)$
H21B	$3841(14)$	$323(17)$	$379(10)$	$42(4)$
H21C	$4393(14)$	$1739(16)$	$504(10)$	$39(4)$
H1A	$-5200(40)$	$640(50)$	$4780(30)$	$83(15)$
H1B	$-5640(40)$	$1690(50)$	$4500(30)$	$85(14)$

Table S7: Atomic Occupancies for all atoms that are not fully occupied in n126.

Atom	Occupancy
H1A	0.5
H1B	0.5

Citations

CrysAlisPro Software System, Agilent Technologies UK Ltd, Yarnton, Oxford, UK (2014).
O.V. Dolomanov and L.J. Bourhis and R.J. Gildea and J.A.K. Howard and H. Puschmann, Olex2: A complete structure solution, refinement and analysis program, J. Appl. Cryst., (2009), 42, 339-341.
Sheldrick, G.M., Crystal structure refinement with ShelXL, Acta Cryst., (2015), C27, 3-8.
Sheldrick, G.M., ShelXT-Integrated space-group and crystal-structure determination, Acta Cryst., (2015),
A71, 3-8

Crystal Data and Experimental. For Full details see Cambridge Crystallographic Data Centre: http://www.ccdc.cam.ac.uk/ deposit@ccdc.cam.ac.uk. The data have been assigned to the following deposition number:1532350

Experimental. Single clear colourless prism-shaped crystals of (Q014) were obtained by recrystallization from a solution ofthe free base in $\mathrm{MeOH} /$ ethyl acetate (1:1) under a hydrobromide athmosphere. A Suitable crystal $(0.36 \times 0.17 \times 0.10) \mathrm{mm}^{3}$ was selected and mounted on a MITIGEN holder oil on a GV1000, TitanS2 diffractometer. The crystal was kept at $T=123.00$ (10) K during data collection. Using Olex2 (Dolomanov et al., 2009), the structure was solved with the ShelXT (Sheldrick, 2015) structure solution program, using the Intrinsic Phasing solution method. The model was refined with version 2016/6 of ShelXL (Sheldrick, 2015) using Least Squares minimisation.

Crystal Data. $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{BrN}_{2} \mathrm{O}_{2}, M_{r}=325.20$, orthorhombic, $\mathrm{P} 2_{1} 2_{1} 2$ (No. 18), $\mathrm{a}=28.07952(18) \AA$ A, $\mathrm{b}=10.21829$ (6) \AA, $\mathrm{c}=5.02462(4) \AA, \alpha=\beta=\gamma=90^{\circ}, V=1441.687(18) \AA^{3}, T=$ $123.00(10) \mathrm{K}, Z=4, Z^{\prime}=1, \mu\left(\mathrm{CuK}_{\alpha}\right)=3.891,40092$ reflections measured, 2922 unique ($R_{\text {int }}=0.0538$) which were used in all calculations. The final $w R_{2}$ was 0.0703 (all data) and R_{1} was 0.0272 (I > 2(I)).

Compound	$\begin{aligned} & \text { 62b x HBr } \\ & \text { (Q014) } \end{aligned}$
Formula	$\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{BrN}_{2} \mathrm{O}_{2}$
$D_{\text {calc. }} / \mathrm{g} \mathrm{cm}^{-3}$	1.498
μ / mm^{-1}	3.891
Formula Weight	325.20
Colour	clear colourless
Shape	prism
Size/mm ${ }^{3}$	$0.36 \times 0.17 \times 0.10$
T/K	123.00 (10)
Crystal System	orthorhombic
Flack Parameter	-0.025(6)
Hooft Parameter	-0.007(6)
Space Group	$\mathrm{P} 2{ }_{1} 212$
a / \AA	28.07952(18)
b/Å	10.21829(6)
c / \AA	5.02462(4)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\gamma /{ }^{\circ}$	90
V / \AA^{3}	1441.687(18)
Z	4
Z^{\prime}	1
Wavelength/Å	1.54184
Radiation type	CuK_{α}
$\Theta_{\text {min }} /{ }^{\circ}$	3.148
$\Theta_{\max } /{ }^{\circ}$	73.976
Measured Refl.	40092
Independent Refl.	2922
Reflections Used	2898
Rint	0.0538
Parameters	180
Restraints	0
Largest Peak	0.697
Deepest Hole	-0.321
GooF	1.075
$w R_{2}$ (all data)	0.0703
$w R_{2}$	0.0700
R_{1} (all data)	0.0275
R_{1}	0.0272

Structure Quality Indicators

A clear colourless prism-shaped crystal with dimensions $0.36 \times 0.17 \times 0.10 \mathrm{~mm}^{3}$ was mounted on a MITIGEN holder oil.X-ray diffraction data were collected using a GV1000, TitanS2 diffractometer equipped with a Oxford Cryosystems CryoStream 700 low-temperature device, operating at $T=$ 123.00(10) K.

Data were measured using ω scans scans of 1.0° per frame for 1.0 s using CuK_{α} radiation (gradient vaccum rotating-anode X-ray tube). The total number of runs and images was based on the strategy calculation from the program CrysAlisPro (Agilent).The maximum resolution achieved was $\Theta=$ 73.976.\ ${ }^{\circ}$

Cell parameters were retrieved using the CrysAlisPro (Agilent) software and refined using CrysAlisPro (Agilent) on 29970 reflections, 75 \% of the observed reflections. Data reduction was performed using the CrysAlisPro (Agilent) software which corrects for Lorentz polarisation. The final completeness is 100.00 out to 73.976 in Θ. The absorption coefficient μ of this material is 3.891 at this wavelength $(\lambda=$ 1.54184) and the minimum and maximum transmissions are 0.824 and 0.938 .

The structure was solved in the space group $\mathrm{P} 2_{1} 2_{1} 2$ (\# 18) by Intrinsic Phasing using the ShelXT (Sheldrick, 2015) structure solution program and refined by Least Squares using version 2016/6 of ShelXL (Sheldrick, 2015). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model.

There is a single molecule in the asymmetric unit, which is represented by the reported sum formula. In other words: Z is 4 and Z ' is 1 .

The Flack parameter was refined to $-0.025(6)$. Determination of absolute structure using Bayesian statistics on Bijvoet differences using the Olex2 results in $-0.007(6)$. Note: The Flack parameter is used to determine chirality of the crystal studied, the value should be near 0 , a value of 1 means that the stereochemistry is wrong and the model should be inverted. A value of 0.5 means that the crystal consists of a racemic mixture of the two enantiomers.

Data Plots: Diffraction Data

Data Plots: Refinement and Data

Reflection Statistics

Total reflections (after filtering)	40256	Unique reflections	2922
Completeness	0.997	Mean I/ σ	44.41
hkl ${ }_{\text {max }}$ collected	$(35,12,5)$	$\mathrm{hkl}_{\text {min }}$ collected	$(-34,-12,-6)$
hkl ${ }_{\text {max }}$ used	$(34,12,6)$	$\mathrm{hkl}_{\text {min }}$ used	$(-34,0,0)$
Lim d ${ }_{\text {max }}$ collected	100.0	Lim dmin ${ }_{\text {min }}$ collected	0.77
$\mathrm{d}_{\text {max }}$ used	14.04	$\mathrm{d}_{\text {min }}$ used	0.8
Friedel pairs	4974	Friedel pairs merged	0
Inconsistent equivalents	1	Rint	0.0538
$\mathrm{R}_{\text {sigma }}$	0.017	Intensity transformed	0
Omitted reflections	0	Omitted by user (OMIT hkl)	0
Multiplicity	$\begin{aligned} & (1470,2045,1983,1872, \\ & 1338,818,633,413,168,37 \\ & \text { 4) } \end{aligned}$	Maximum multiplicity	31
Removed systematic abs		Filtered off (Shel/OMIT)	0

Table S8: Fractional Atomic Coordinates $\left(\times 10^{4}\right)$ and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for Q014. $U_{e q}$ is defined as $1 / 3$ of the trace of the orthogonalised $U_{i j}$.

Atom	\mathbf{x}	\mathbf{y}	\mathbf{z}	$\boldsymbol{U}_{\text {eq }}$
$\mathrm{Br}(1)$	$7987.1(2)$	$5771.1(3)$	$-1402.1(6)$	$20.31(11)$
$\mathrm{O}(1)$	$6842.5(8)$	$3805(2)$	$6342(6)$	$24.7(5)$
$\mathrm{O}(2)$	$6081.0(8)$	$3373(2)$	$5296(5)$	$26.4(5)$
$\mathrm{N}(2)$	$6535.5(10)$	$8324(3)$	$7757(6)$	$23.5(6)$
$\mathrm{N}(1)$	$7254.1(9)$	$6154(3)$	$3476(6)$	$21.4(5)$
$\mathrm{C}(4)$	$6681.5(11)$	$7432(3)$	$5880(7)$	$19.9(6)$
$\mathrm{C}(3)$	$6345.9(11)$	$6486(3)$	$5553(6)$	$18.0(6)$
$\mathrm{C}(2)$	$6410.3(10)$	$5352(3)$	$3688(7)$	$20.1(6)$
$\mathrm{C}(12)$	$6849.0(11)$	$5576(3)$	$1921(6)$	$23.8(7)$
$\mathrm{C}(6)$	$5965.6(11)$	$6767(3)$	$7370(7)$	$19.8(6)$
$\mathrm{C}(5)$	$7149.6(11)$	$7498(3)$	$4485(7)$	$21.8(6)$
$\mathrm{C}(7)$	$6099.9(11)$	$7926(3)$	$8724(7)$	$22.5(6)$
$\mathrm{C}(1)$	$6475.1(11)$	$4095(3)$	$5254(6)$	$20.2(6)$
$\mathrm{C}(11)$	$5531.2(11)$	$6164(3)$	$8041(7)$	$26.4(7)$
$\mathrm{C}(14)$	$5668.8(13)$	$1381(3)$	$6053(10)$	$37.0(9)$
$\mathrm{C}(10)$	$5258.5(12)$	$6707(4)$	$10029(8)$	$33.4(8)$
$\mathrm{C}(8)$	$5823.3(13)$	$8476(4)$	$10737(8)$	$30.6(8)$
$\mathrm{C}(13)$	$6107.8(13)$	$2142(3)$	$6740(9)$	$32.9(9)$
$\mathrm{C}(9)$	$5402.4(13)$	$7855(4)$	$11347(9)$	$36.5(8)$

Table S9: Anisotropic Displacement Parameters $\left(\times 10^{4}\right)$ Q014. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} \times U_{11}+\ldots+2 h k a^{*} \times b^{*} \times U_{12}\right]$

Atom	$\boldsymbol{U}_{\mathbf{1 1}}$	$\boldsymbol{U}_{\mathbf{2 2}}$	$\boldsymbol{U}_{\mathbf{3 3}}$	\boldsymbol{U}_{23}	$\boldsymbol{U}_{\mathbf{1 3}}$	$\boldsymbol{\boldsymbol { U } _ { \mathbf { 1 2 } }}$
$\mathrm{Br}(1)$	$21.71(16)$	$22.53(16)$	$16.69(17)$	$1.06(12)$	$-1.10(12)$	$0.53(11)$
$\mathrm{O}(1)$	$23.4(10)$	$24.2(10)$	$26.5(12)$	$0.3(10)$	$-7(1)$	$1.8(8)$
$\mathrm{O}(2)$	$23.2(10)$	$23.2(11)$	$32.9(14)$	$7.5(10)$	$-6.8(10)$	$-2.2(9)$
$\mathrm{N}(2)$	$24.5(12)$	$17.5(12)$	$28.6(16)$	$-0.4(11)$	$-2.3(12)$	$0.3(10)$
$\mathrm{N}(1)$	$19.3(11)$	$29.0(14)$	$16.0(13)$	$5.3(12)$	$0.9(11)$	$2.6(9)$
$\mathrm{C}(4)$	$19.9(13)$	$18.3(13)$	$21.4(17)$	$4.1(13)$	$-2.9(12)$	$-0.2(11)$
$\mathrm{C}(3)$	$20.2(13)$	$18.2(14)$	$15.5(15)$	$1.2(12)$	$-2.4(12)$	$1.8(11)$
$\mathrm{C}(2)$	$21.0(13)$	$23.5(14)$	$15.7(15)$	$2.0(12)$	$-4.8(13)$	$-0.6(11)$
$\mathrm{C}(12)$	$24.1(14)$	$32.4(17)$	$14.8(16)$	$-1.8(13)$	$-1.5(12)$	$1.6(12)$
$\mathrm{C}(6)$	$19.2(14)$	$21.8(14)$	$18.6(15)$	$2.8(12)$	$-2.9(12)$	$3.1(12)$
$\mathrm{C}(5)$	$22.1(14)$	$19.8(14)$	$23.3(16)$	$5.1(12)$	$-1.7(12)$	$-0.6(11)$
$\mathrm{C}(7)$	$23.9(14)$	$23.0(14)$	$20.5(16)$	$0.8(14)$	$-2.8(14)$	$6.7(11)$
$\mathrm{C}(1)$	$21.7(14)$	$20.7(14)$	$18.2(15)$	$-4.8(13)$	$-0.2(11)$	$0.7(12)$
$\mathrm{C}(11)$	$20.1(14)$	$31.6(16)$	$28(2)$	$6.5(13)$	$-1.8(13)$	$2.0(12)$
$\mathrm{C}(14)$	$36.0(18)$	$24.9(16)$	$50(3)$	$7.2(19)$	$-1.1(19)$	$-0.4(14)$
$\mathrm{C}(10)$	$21.5(15)$	$48(2)$	$31(2)$	$8.6(17)$	$4.7(15)$	$4.0(15)$
$\mathrm{C}(8)$	$35.0(17)$	$30.5(17)$	$26.4(19)$	$-4.2(15)$	$-2.2(15)$	$12.2(14)$
$\mathrm{C}(13)$	$29.7(16)$	$26.8(16)$	$42(2)$	$13.6(17)$	$-6.5(17)$	$0.1(13)$
$\mathrm{C}(9)$	$31.6(16)$	$50(2)$	$28(2)$	$1(2)$	$7.0(17)$	$16.6(15)$

Table S10: Bond Lengths in Å for Q014.

Atom	Atom	Length/Å
$\mathrm{O}(1)$	$\mathrm{C}(1)$	$1.205(4)$
$\mathrm{O}(2)$	$\mathrm{C}(1)$	$1.330(4)$
$\mathrm{O}(2)$	$\mathrm{C}(13)$	$1.454(4)$
$\mathrm{N}(2)$	$\mathrm{C}(4)$	$1.374(4)$
$\mathrm{N}(2)$	$\mathrm{C}(7)$	$1.378(4)$
$\mathrm{N}(1)$	$\mathrm{C}(12)$	$1.501(4)$
$\mathrm{N}(1)$	$\mathrm{C}(5)$	$1.494(4)$
$\mathrm{C}(4)$	$\mathrm{C}(3)$	$1.360(4)$
$\mathrm{C}(4)$	$\mathrm{C}(5)$	$1.491(4)$
$\mathrm{C}(3)$	$\mathrm{C}(2)$	$1.502(4)$

Atom	Atom	Length/Å
$\mathrm{C}(3)$	$\mathrm{C}(6)$	$1.434(5)$
$\mathrm{C}(2)$	$\mathrm{C}(12)$	$1.536(4)$
$\mathrm{C}(2)$	$\mathrm{C}(1)$	$1.517(4)$
$\mathrm{C}(6)$	$\mathrm{C}(7)$	$1.417(5)$
$\mathrm{C}(6)$	$\mathrm{C}(11)$	$1.408(4)$
$\mathrm{C}(7)$	$\mathrm{C}(8)$	$1.394(5)$
$\mathrm{C}(11)$	$\mathrm{C}(10)$	$1.376(5)$
$\mathrm{C}(14)$	$\mathrm{C}(13)$	$1.498(5)$
$\mathrm{C}(10)$	$\mathrm{C}(9)$	$1.406(6)$
$\mathrm{C}(8)$	$\mathrm{C}(9)$	$1.376(5)$

Table S11: Bond Angles in ${ }^{\circ}$ for $\mathbf{Q 0 1 4 .}$

Atom	Atom	Atom	Angle/ ${ }^{\circ}$
$\mathrm{C}(1)$	$\mathrm{O}(2)$	$\mathrm{C}(13)$	$116.4(3)$
$\mathrm{C}(4)$	$\mathrm{N}(2)$	$\mathrm{C}(7)$	$108.1(3)$
$\mathrm{C}(5)$	$\mathrm{N}(1)$	$\mathrm{C}(12)$	$112.9(2)$
$\mathrm{N}(2)$	$\mathrm{C}(4)$	$\mathrm{C}(5)$	$123.8(3)$
$\mathrm{C}(3)$	$\mathrm{C}(4)$	$\mathrm{N}(2)$	$110.3(3)$
$\mathrm{C}(3)$	$\mathrm{C}(4)$	$\mathrm{C}(5)$	$125.9(3)$
$\mathrm{C}(4)$	$\mathrm{C}(3)$	$\mathrm{C}(2)$	$122.7(3)$
$\mathrm{C}(4)$	$\mathrm{C}(3)$	$\mathrm{C}(6)$	$107.3(3)$
$\mathrm{C}(6)$	$\mathrm{C}(3)$	$\mathrm{C}(2)$	$129.9(3)$
$\mathrm{C}(3)$	$\mathrm{C}(2)$	$\mathrm{C}(12)$	$110.0(2)$
$\mathrm{C}(3)$	$\mathrm{C}(2)$	$\mathrm{C}(1)$	$110.1(3)$
$\mathrm{C}(1)$	$\mathrm{C}(2)$	$\mathrm{C}(12)$	$109.3(3)$
$\mathrm{N}(1)$	$\mathrm{C}(12)$	$\mathrm{C}(2)$	$111.5(3)$
$\mathrm{C}(7)$	$\mathrm{C}(6)$	$\mathrm{C}(3)$	$106.0(3)$
$\mathrm{C}(11)$	$\mathrm{C}(6)$	$\mathrm{C}(3)$	$135.2(3)$
$\mathrm{C}(11)$	$\mathrm{C}(6)$	$\mathrm{C}(7)$	$118.8(3)$
$\mathrm{C}(4)$	$\mathrm{C}(5)$	$\mathrm{N}(1)$	$106.9(2)$
$\mathrm{N}(2)$	$\mathrm{C}(7)$	$\mathrm{C}(6)$	$108.3(3)$
$\mathrm{N}(2)$	$\mathrm{C}(7)$	$\mathrm{C}(8)$	$129.2(3)$
$\mathrm{C}(8)$	$\mathrm{C}(7)$	$\mathrm{C}(6)$	$122.5(3)$
$\mathrm{O}(1)$	$\mathrm{C}(1)$	$\mathrm{O}(2)$	$124.6(3)$
$\mathrm{O}(1)$	$\mathrm{C}(1)$	$\mathrm{C}(2)$	$123.2(3)$
$\mathrm{O}(2)$	$\mathrm{C}(1)$	$\mathrm{C}(2)$	$112.2(3)$
$\mathrm{C}(10)$	$\mathrm{C}(11)$	$\mathrm{C}(6)$	$118.7(4)$
$\mathrm{C}(11)$	$\mathrm{C}(10)$	$\mathrm{C}(9)$	$121.2(3)$
$\mathrm{C}(9)$	$\mathrm{C}(8)$	$\mathrm{C}(7)$	$117.0(3)$
$\mathrm{O}(2)$	$\mathrm{C}(13)$	$\mathrm{C}(14)$	$106.9(3)$
$\mathrm{C}(8)$	$\mathrm{C}(9)$	$\mathrm{C}(10)$	$121.8(4)$

Table S12: Hydrogen Fractional Atomic Coordinates ($\times 10^{4}$) and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for Q014. $U_{e q}$ is defined as $1 / 3$ of the trace of the orthogonalised $U_{i j}$.

Atom	\mathbf{x}	\mathbf{y}	\mathbf{z}	$\boldsymbol{U}_{\boldsymbol{e q}}$	
H(2)	6689.34	9011.55	8243.99	28	
H(1A)	$7331(14)$	$5690(40)$	$4800(100)$	26	
H(2A)	6127.36	5272.15	2557.86	24	
H(12A)	6948.6	4749.26	1153.46	29	
H(12B)	6765.38	6161.2	474.77	29	
H(5A)	7396.84	7780.81	5704.68	26	
H(5B)	7134.32	8114.24	3018.5	26	
H(11)	5430.63	5413.15	7158.02	32	
H(14A)	5658.41	1234.74	4166.94	55	
H(14B)	5392.19	1866.61	6589.7	55	
H(14C)	5674.25	555.41	6962.98	55	
H(10)	4973.72	6307.54	10510.97	40	
H(8)	5918.91	9229.71	11628.04	37	
H(13A)	6121.73	2301.84	8640.93	39	
H(13B)	6390.34	1659.44	6218.68	39	
H(9)	5207.84	8204.06	12666.02	44	$38(12)$
H(1B)	$7503(17)$	$6210(50)$	$2180(100)$		

Citations

O.V. Dolomanov and L.J. Bourhis and R.J. Gildea and J.A.K. Howard and H. Puschmann, Olex2: A complete structure solution, refinement and analysis program, J. Appl. Cryst., (2009), 42, 339-341.

Sheldrick, G.M., Crystal structure refinement with ShelXL, Acta Cryst., (2015), C27, 3-8.
Sheldrick, G.M., ShelXT-Integrated space-group and crystal-structure determination, Acta Cryst., (2015), A71, 3-8.

Crystal Data and Experimental. For Full details see Cambridge Crystallographic Data Centre: http://www.ccdc.cam.ac.uk/ deposit@ccdc.cam.ac.uk. The data have been assigned to the following deposition number: 1532351

Structure Quality Indicators

A crystal with dimensions was mounted on a MITIGEN holder oil. Data were collected using a diffractometer equipped with a low-temperature apparatus operating at $T=293(2) \mathrm{K}$.

Data were measured using scans of 1.0° per frame for 3.0 s using CuK_{α} radiation. The total number of runs and images was based on the strategy calculation from the program. The actually achieved resolution was $\Theta=73.534$.

Data reduction was performed using software which corrects for Lorentz polarisation. The final completeness is 99.90 out to 73.534 in Θ. The absorption coefficient (μ) of this material is 0.808 .

The structure was solved in the space group C2 (\#5) by Unknown using the structure solution program and refined by Least Squares using ShelXL-2014/7 (Sheldrick, 2014). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model.

There is a single molecule in the asymmetric unit, which is represented by the reported sum formula. In other words: Z is 4 and Z ' is 1 .

The Flack parameter was refined to -0.08(5). Determination of absolute structure using Bayesian statistics on Bijvoet differences using the Olex2 results in $-0.05(4)$. Note: The Flack parameter is used to determine chirality of the crystal studied, the value should be near 0 , a value of 1 means that the stereochemistry is wrong and the model should be inverted. A value of 0.5 means that the crystal consists of a racemic mixture of the two enantiomers.

Data Plots: Diffraction Data

Data Plots: Refinement and Data

Reflection Statistics

Total reflections (after	36890
filtering)	
Completeness	0.941
hklsub>max</sub> collected	$(40,8,17)$
hkl $_{\text {max }}$ used	$(40,8,17)$
Lim d $_{\text {max }}$ collected	100.0
$\mathrm{~d}_{\text {max }}$ used	10.87
Friedel pairs	5259
Inconsistent equivalents	0
R $_{\text {sigma }}$	0.02
Omitted reflections	0
Multiplicity	$(3004,2659,2410,1595$,
	$1019,569,375,217,106,56$,
	$28,20,2)$

Unique reflections	6807
Mean I / σ	30.44
hklsub>min</sub> collected	$(-40,-9,-17)$
hkl $\mathrm{min}_{\text {}}$ used	$(-40,-9,0)$
Lim $\mathrm{d}_{\text {min }}$ collected	0.77
$\mathrm{~d}_{\text {min }}$ used	0.8
Friedel pairs merged	0
$\mathrm{R}_{\text {int }}$	0.0338
Intensity transformed	0
Omitted by user (OMIT hkl)	0
Maximum multiplicity	18
Filtered off (Shel/OMIT)	0

Images of the Crystal on the Diffractometer

Table S13: Fractional Atomic Coordinates $\left(\times 10^{4}\right)$ and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{m C}$ gauss. $U_{e q}$ is defined as $1 / 3$ of the trace of the orthogonalised $U_{i j}$.

Atom	\mathbf{x}	\mathbf{y}	\mathbf{z}	$\boldsymbol{U}_{\boldsymbol{e q}}$
04	$5800.9(5)$	$3056(2)$	$5642.3(11)$	$22.2(3)$
O3	$5475.8(5)$	$1711(3)$	$4441.1(13)$	$27.1(4)$
09	$5894.5(5)$	$3507(2)$	$7523.8(12)$	$26.8(4)$
05	$5198.4(6)$	$325(3)$	$7109.2(13)$	$29.5(4)$
08	$5782.0(6)$	$6780(3)$	$6913.3(13)$	$29.0(4)$
O6	$5765.6(5)$	$-166(2)$	$6308.0(13)$	$28.1(4)$
O10	$5659.3(7)$	$4494(3)$	$8896.6(14)$	$43.0(5)$
O11	$6586.3(6)$	$6845(4)$	$6450.8(15)$	$43.3(5)$
07	$5166.5(6)$	$6196(3)$	$6305.6(18)$	$43.8(5)$
N2	$3506.3(7)$	$8198(4)$	$5458.6(16)$	$32.3(5)$
N1	$4539.8(6)$	$8385(3)$	$6503.9(15)$	$26.7(4)$
C22	$5767.4(7)$	$2517(3)$	$4748.5(17)$	$22.4(5)$
O2	$3560(2)$	$7667(10)$	$8775(5)$	$39.0(7)$
01	$4076(2)$	$9178(13)$	$9371(6)$	$39.0(6)$

Atom	x	y	z	$U_{e q}$
C18	6118.5(7)	3080(3)	4191.2(17)	23.9(5)
C4	3835.2(7)	8211(4)	6065.7(17)	25.4(5)
C19	6060.8(7)	3405(4)	3232.2(17)	25.3(5)
C24	5468.7(7)	797(3)	6594.9(17)	23.9(5)
C26	5483.7(8)	5796(3)	6738.8(19)	27.2(5)
C3	4246.2(7)	7648(4)	5798.3(18)	26.9(5)
C10	3179.7(8)	8829(4)	5930(2)	36.4(6)
C20	6374.5(8)	4068(4)	2713.4(17)	28.4(5)
C5	3726.6(8)	8836(4)	6924.0(17)	25.9(5)
C2	4417.5(8)	8082(4)	7495.7(18)	30.6(6)
C27	5931.7(9)	3874(4)	8446.2(18)	30.4(5)
C15	6753.6(8)	4380(4)	3125.2(19)	30.0(6)
C25	5511.3(8)	3900(3)	7074.1(18)	26.4(5)
C16	6806.7(8)	4022(5)	4080(2)	39.7(7)
C17	6493.5(8)	3405(5)	4614.5(18)	34.5(6)
C23	5469.0(7)	2668(3)	6247.6(17)	23.5(5)
C9	3304.3(8)	9263(4)	6856(2)	30.6(6)
C28	6339.0(9)	3409(4)	8827.3(17)	36.5(5)
C14	3049(4)	9870(30)	7529(14)	37.3(11)
C1	4026.7(8)	9081(4)	7716.7(17)	28.9(5)
C6	3879.2(10)	8440(5)	8664.7(19)	38.6(5)
C29	6406.2(9)	3513(5)	9794.9(18)	41.1(5)
C21	7098.0(9)	5108(5)	2562(2)	38.2(7)
C31	7118(2)	2670(12)	9637(4)	40.5(6)
C13	2642(3)	10063(17)	7298(7)	38(1)
C33	6674.4(15)	3039(10)	8284(4)	37.7(6)
C11	2754(4)	8847(16)	5713(9)	39.0(11)
C30	6782.2(9)	3067(5)	10177(2)	42.7(5)
C32	7057.4(19)	2680(9)	8666(5)	39.2(6)
C12	2494(3)	9555(15)	6389(7)	38.8(10)
C35	6717.8(12)	8174(7)	7071(3)	68.2(12)
C34	7520(20)	2250(70)	10080(40)	70(5)
C7	3950(3)	8693(12)	10313(5)	39.9(7)
C36	4655.8(15)	2947(9)	8941(3)	82.2(16)
C8A	4454(4)	9104(14)	10836(6)	40.8(7)
C31A	7066(3)	2410(16)	9588(6)	40.6(6)
C33A	6619(2)	2691(12)	8224(5)	37.8(6)
C32A	6987(2)	2207(11)	8630(6)	39.1(6)
C34A	7510(30)	2050(90)	9980(60)	70(5)
012A	4724(2)	4625(11)	8658(5)	97(2)
02A	3637(3)	7328(12)	8808(6)	39.1(7)
01A	4154(3)	9072(17)	9305(7)	39.0(7)
C7A	4097(4)	8522(15)	10278(6)	39.9(7)
C8	4293(3)	9222(11)	10963(5)	40.9(7)
01AA	3816(7)	9490(30)	9293(12)	39.3(6)
C7AA	3679(9)	8920(40)	10229(17)	39.7(7)
02AA	3958(6)	6710(30)	8898(11)	39.1(7)
C8AA	4051(10)	9010(40)	10902(18)	40.3(7)
012	4455(3)	4740(15)	9050(7)	97(2)
C14A	2997(3)	10000(20)	7428(11)	37.2(10)
C13A	2610(2)	10227(13)	7055(5)	38.1(10)
C12A	2513(2)	9828(12)	6131(5)	38.8(10)
C11A	2794(3)	9171(12)	5547(7)	38.9(10)

Table S14: Anisotropic Displacement Parameters $\left(\times 10^{4}\right) \mathbf{m C}$ _gauss. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} \times U_{11}+\ldots+2 h k a^{*} \times b^{*} \times U_{12}\right]$

Atom	\boldsymbol{U}_{11}	$\boldsymbol{U}_{\mathbf{2 2}}$	\boldsymbol{U}_{33}	\boldsymbol{U}_{23}	\boldsymbol{U}_{13}	$\boldsymbol{U}_{\mathbf{1 2}}$
04	$24.4(8)$	$16.0(9)$	$26.3(8)$	$0.1(6)$	$2.2(6)$	$-3.1(6)$
03	$22.5(8)$	$21.3(9)$	$37.5(9)$	$-7.1(8)$	$-2.7(7)$	$-0.6(7)$

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
09	36.5(9)	18.4(9)	25.7(8)	-0.6(7)	3.2(7)	3.4(7)
05	30.7(9)	21(1)	37.0(9)	2.4(8)	6.0(7)	-5.5(7)
08	34.2(9)	16.1(9)	36.7(9)	1.1(7)	0.0(7)	0.0(7)
06	31.2(9)	15.6(9)	37.6(9)	3.1(7)	5.1(7)	2.2(7)
010	46.4(12)	48.4(15)	34.5(10)	-8.3(10)	9.2(9)	4(1)
011	34.5(10)	54.7(15)	40.8(11)	2.3(11)	1.2(8)	5.7(10)
07	37.9(11)	21.0(11)	71.9(15)	-4.9(10)	-13.2(10)	7.0(8)
N2	29.2(10)	37.7(14)	29.8(10)	-5.7(10)	-5.9(8)	5.8(10)
N1	23.2(9)	19.2(11)	37.7(11)	7.1(9)	-1.4(8)	-2.7(8)
C22	22.2(11)	14.7(11)	30.1(11)	-1.3(9)	-2.7(9)	4.0(9)
02	47.5(15)	41.3(14)	28.2(9)	5(1)	-3.7(10)	-14.3(12)
01	48.1(15)	42.3(12)	26.4(9)	3.8(8)	-5.7(11)	-14.3(13)
C18	24.5(11)	19.0(13)	28.1(11)	-2.9(10)	-0.5(9)	0.9 (9)
C4	25.6(11)	20.7(13)	29.9(11)	0.8(10)	-2.5(9)	-2(1)
C19	27.1(11)	21.0(13)	27.8(11)	-5.2(10)	-5.2(9)	2.5(10)
C24	24.9(11)	19.2(13)	27.8(11)	-1.8(9)	0.7(9)	-2.0(9)
C26	29.7(12)	16.4(13)	35.5(13)	-4.3(10)	2.4(10)	1.8(10)
C3	26.7(12)	21.4(13)	32.6(12)	1.6(10)	0.5(9)	1.3(10)
C10	28.8(13)	39.3(18)	40.8(14)	-6.3(13)	-5.1(11)	6.3(12)
C20	34.8(13)	26.6(14)	23.9(11)	-1.5(10)	-0.2(9)	4.3(11)
C5	28.6(12)	21.9(13)	27.2(11)	1.8(10)	-1.6(9)	-3.4(10)
C2	31.8(12)	27.8(15)	31.9(12)	9.6(11)	-8.2(10)	-5.0(11)
C27	44.8(14)	19.2(13)	27.4(11)	-0.1(10)	8.1(10)	-2.0(11)
C15	30.0(13)	27.5(15)	32.7(13)	0.3(10)	6.3(10)	1.2(10)
C25	29.2(11)	16.6(13)	33.5(12)	0.1(10)	6.6(9)	$0.9(9)$
C16	25.3(13)	58(2)	36.0(14)	6.9(14)	-4.9(10)	-7.9(13)
C17	27.1(12)	49.0(19)	27.0(11)	5.0(12)	-4.7(9)	-4.2(12)
C23	21.4(11)	16.6(12)	32.5(12)	0.6(10)	4.0(9)	-1.7(9)
C9	29.8(12)	23.8(14)	38.3(14)	-2.3(11)	0 (1)	0.4(10)
C28	50.7(10)	32.1(11)	26.9(8)	-1.9(8)	1.3(8)	7.7(9)
C14	28.5(14)	41(2)	42(3)	-4(2)	-1.5(14)	6.3(13)
C1	33.4(13)	22.6(13)	30.3(12)	3(1)	-4.1(10)	-7.8(11)
C6	47.7(13)	40.7(12)	27.2(8)	3.4(8)	-4.7(9)	-14.1(11)
C29	54.1(11)	39.2(12)	29.8(9)	-5.5(9)	1.5(8)	6.7(10)
C21	32.4(14)	42.9(19)	39.5(14)	5.3(13)	8.7(11)	1.3(12)
C31	54.4(12)	36.3(14)	30.8(9)	-2.5(10)	-3.1(10)	11(1)
C13	29.0(12)	42(2)	42(3)	-3(2)	-1.9(13)	7.0(11)
C33	51.6(12)	33.7(13)	27.8(9)	-2.2(10)	-0.9(9)	10.5(10)
C11	29.1(13)	44(2)	43(3)	-1(2)	-3.4(14)	6.2(13)
C30	56.7(11)	40.2(12)	31.0(9)	-3.6(9)	-2.0(8)	9.7(10)
C32	52.9(12)	34.9(14)	29.9(9)	-2.3(10)	-1.7(9)	11.4(10)
C12	29.0(12)	44(2)	43(3)	-1(2)	-2.3(13)	6.8(11)
C35	43.6(19)	87(3)	74(2)	-22(2)	-16.4(17)	7(2)
C34	81(4)	80(10)	48(11)	-7(8)	-15(6)	49(7)
C7	48.8(15)	43.5(12)	27.2(9)	4.0(9)	-5.4(11)	-13.9(13)
C36	70(3)	115(5)	61(2)	2(3)	3(2)	-23(3)
C8A	49.1(17)	45.0(13)	28.0(11)	3.7(10)	-5.3(13)	-14.0(15)
C31A	54.3(12)	36.4(14)	31(1)	-2.5(10)	-2.9(10)	11.2(11)
C33A	51.7(12)	33.7(13)	28.0(9)	-2(1)	-0.9(10)	10.6(10)
C32A	52.8(12)	34.8(14)	29.7(9)	-2.4(10)	-1.8(9)	11.2(10)
C34A	81(4)	80(10)	48(11)	-8(8)	-16(7)	49(7)
012A	72(3)	110(5)	110(4)	53(4)	14(3)	23(3)
02A	47.8(15)	41.2(14)	28.2(9)	4.9(10)	-3.8(11)	-14.8(12)
01A	48.3(15)	42.2(12)	26.4(9)	4.0(9)	-5.6(11)	-14.2(13)
C7A	48.6(15)	43.5(12)	27.2(9)	4.1(9)	-5.3(11)	-13.9(13)
C8	49.3(17)	44.9(13)	28.1(11)	3.7(10)	-5.3(13)	-13.3(15)
01AA	48.2(15)	42.2(12)	27.2(8)	4.1(8)	-4.8(10)	-14.1(12)
C7AA	48.6(16)	43.2(13)	27.1(10)	4(1)	-5.2(12)	-13.9(14)
02AA	47.9(16)	41.1(15)	28.1(11)	4.5(11)	-3.8(12)	-14.4(13)
C8AA	48.9(16)	44.1(13)	27.6(11)	3.9(10)	-5.3(13)	-13.8(14)
012	73(3)	112(5)	108(4)	54(4)	16(3)	22(3)

Atom	$\boldsymbol{U}_{\mathbf{1 1}}$	$\boldsymbol{U}_{\mathbf{2 2}}$	$\boldsymbol{U}_{\mathbf{3 3}}$	$\boldsymbol{U}_{\mathbf{2 3}}$	$\boldsymbol{U}_{\mathbf{1 3}}$	$\boldsymbol{U}_{\mathbf{1 2}}$
C14A	$28.6(14)$	$41(2)$	$42(3)$	$-4(2)$	$-1.3(14)$	$6.4(13)$
C13A	$28.9(12)$	$43(2)$	$43(3)$	$-3.0(19)$	$-1.8(13)$	$7.2(11)$
C12A	$28.9(12)$	$44(2)$	$43(3)$	$-1.6(19)$	$-2.8(13)$	$6.7(11)$
C11A	$29.0(13)$	$45(2)$	$43(3)$	$-1(2)$	$-3.1(13)$	$6.1(13)$

Table S15: Bond Lengths in Å for mC_gauss.

Atom	Atom	Length/Å
04	C22	$1.338(3)$
O4	C23	$1.437(3)$
O3	C22	$1.217(3)$
O9	C27	$1.344(3)$
09	C25	$1.438(3)$
05	C24	$1.219(3)$
08	C26	$1.261(3)$
O6	C24	$1.299(3)$
O10	C27	$1.211(4)$
O11	C35	$1.409(5)$
O7	C26	$1.243(3)$
N2	C10	$1.368(4)$
N2	C4	$1.373(3)$
N1	C2	$1.492(3)$
N1	C3	$1.492(3)$
C22	C18	$1.480(3)$
O2	C6	$1.223(8)$
O1	C6	$1.312(10)$
O1	C7	$1.457(9)$
C18	C17	$1.388(3)$
C18	C19	$1.395(3)$
C4	C5	$1.365(4)$
C4	C3	$1.480(3)$
C19	C20	$1.380(4)$
C24	C23	$1.515(4)$
C26	C25	$1.531(4)$
C10	C11A	$1.398(11)$
C10	C9	$1.412(4)$
C10	C11	$1.431(13)$
C20	C15	$1.392(4)$
C5	C9	$1.433(4)$
C5	C1	$1.497(3)$
C27	C1	$1.538(4)$
C15	C16	$1.483(4)$
		$1.391(4)$
C16		

Atom	Atom	Length/Å
C15	C21	$1.510(4)$
C25	C23	$1.511(4)$
C16	C17	$1.378(4)$
C9	C14	$1.368(18)$
C9	C14A	$1.427(13)$
C28	C33A	$1.386(5)$
C28	C29	$1.391(3)$
C28	C33	$1.391(4)$
C14	C13	$1.383(11)$
C1	C6	$1.522(4)$
C6	O2A	$1.188(10)$
C6	O1AA	$1.22(2)$
C6	O1A	$1.362(11)$
C6	O2AA	$1.39(2)$
C29	C30	$1.388(3)$
C31	C32	$1.391(4)$
C31	C30	$1.394(5)$
C31	C34	$1.48(7)$
C13	C12	$1.427(11)$
C33	C32	$1.394(4)$
C11	C12	$1.409(12)$
C30	C31A	$1.364(11)$
C7	C8	$1.504(9)$
C36	O12A	$1.367(10)$
C36	012	$1.533(12)$
C8A	C7A	$1.476(11)$
C31A	C32A	$1.390(5)$
C31A	C34A	$1.57(9)$
C33A	C32A	$1.386(5)$
01A	C7A	$1.462(11)$
O1AA	C7AA	$1.48(3)$
C7AA	C8AA	$1.54(4)$
C14A	C13A	$1.387(9)$
C13A	C12A	$1.379(9)$
C12A	C11A	$1.355(9)$

Table S16: Bond Angles in ${ }^{\circ}$ for mC_gauss.

Atom	Atom	Atom	Angle ${ }^{\circ}{ }^{\circ}$
C22	O4	C23	$117.03(18)$
C27	09	C25	$116.9(2)$
C10	N2	C4	$108.1(2)$
C2	N1	C3	$113.07(19)$
O3	C22	04	$123.2(2)$
O3	C22	C18	$125.3(2)$
O4	C22	C18	$111.5(2)$
C6	O1	C7	$116.6(6)$
C17	C18	C19	$119.7(2)$
C17	C18	C22	$121.4(2)$
C19	C18	C22	$118.8(2)$

Atom	Atom	Atom	Angle $^{\circ}{ }^{\circ}$
C5	C4	N2	$110.2(2)$
C5	C4	C3	$126.1(2)$
N2	C4	C3	$123.7(2)$
C20	C19	C18	$119.9(2)$
05	C24	O6	$125.8(2)$
O5	C24	C23	$118.7(2)$
06	C24	C23	$115.5(2)$
07	C26	O8	$126.7(3)$
O7	C26	C25	$115.6(2)$
O8	C26	C25	$117.7(2)$
C4	C3	N1	$107.7(2)$

Atom	Atom	Atom	Angle ${ }^{\circ}$
N2	C10	C11A	$126.6(4)$
N2	C10	C9	$108.8(2)$
C11A	C10	C9	$124.4(5)$
N2	C10	C11	$132.6(6)$
C9	C10	C11	$117.7(5)$
C19	C20	C15	$121.1(2)$
C4	C5	C9	$107.0(2)$
C4	C5	C1	$122.3(2)$
C9	C5	C1	$130.6(2)$
N1	C2	C1	$111.0(2)$
O10	C27	O9	$122.9(3)$
O10	C27	C28	$125.3(2)$
09	C27	C28	$111.8(2)$
C16	C15	C20	$118.1(2)$
C16	C15	C21	$120.5(3)$
C20	C15	C21	$121.4(2)$
O9	C25	C23	$106.4(2)$
09	C25	C26	$112.5(2)$
C23	C25	C26	$110.3(2)$
C17	C16	C15	$121.6(2)$
C16	C17	C18	$119.7(2)$
04	C23	C25	$106.02(19)$
O4	C23	C24	$113.33(19)$
C25	C23	C24	$109.8(2)$
C14	C9	C10	$124.0(6)$
C10	C9	C14A	$115.3(5)$
C14	C9	C5	$130.0(6)$
C14A	C9	C9	C5
C33A	C28	C29	$105.9(2)$
C29	C28	C28	C33

Atom	Atom	Atom	Angle/ ${ }^{\circ}$
C6	C1	C2	107.7(2)
02	C6	01	121.7(5)
02A	C6	01A	125.6(7)
01AA	C6	02AA	119.1(12)
02A	C6	C1	127.7(5)
01AA	C6	C1	119.8(9)
02	C6	C1	124.1(4)
01	C6	C1	112.1(4)
01A	C6	C1	104.8(5)
02AA	C6	C1	117.2(8)
C30	C29	C28	119.8(3)
C32	C31	C30	116.4(6)
C32	C31	C34	122(2)
C30	C31	C34	121(2)
C14	C13	C12	120.0(9)
C28	C33	C32	123.4(5)
C12	C11	C10	117.8(9)
C31A	C30	C29	118.0(5)
C29	C30	C31	123.6(4)
C31	C32	C33	120.0(6)
C11	C12	C13	121.2(8)
01	C7	C8	105.7(6)
C30	C31A	C32A	121.6(8)
C30	C31A	C34A	119(3)
C32A	C31A	C34A	119(3)
C28	C33A	C32A	116.0(6)
C33A	C32A	C31A	121.6(8)
C6	01A	C7A	115.6(7)
01A	C7A	C8A	107.6(7)
C6	01AA	C7AA	122(2)
01AA	C7AA	C8AA	107(2)
C13A	C14A	C9	119.5(9)
C12A	C13A	C14A	122.1(7)
C11A	C12A	C13A	121.1(6)
C12A	C11A	C10	117.5(7)

Table S17: Torsion Angles in ${ }^{\circ}$ for mC_gauss.

Atom	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
C23	O4	C22	O3	$-0.9(3)$
C23	O4	C22	C18	$177.0(2)$
O3	C22	C18	C17	$-156.3(3)$
04	C22	C18	C17	$25.9(3)$
O3	C22	C18	C19	$28.3(4)$
04	C22	C18	C19	$-149.5(2)$
C10	N2	C4	C5	$0.2(3)$
C10	N2	C4	C3	$-178.8(3)$
C17	C18	C19	C20	$-0.8(4)$
C22	C18	C19	C20	$174.7(2)$
C5	C4	C3	N1	$-17.4(4)$
N2	C4	C3	N1	$161.4(2)$
C2	N1	C3	C4	$48.3(3)$
C4	N2	C10	C11A	$174.2(5)$
C4	N2	C10	C9	$0.4(4)$
C4	N2	C10	C11	$-168.1(7)$
C18	C19	C20	C15	$1.7(4)$
N2	C4	C5	C9	$-0.6(3)$

Atom	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
C3	C4	C5	C9	178.3(3)
N2	C4	C5	C1	-177.0(2)
C3	C4	C5	C1	1.9(4)
C3	N1	C2	C1	-65.8(3)
C25	09	C27	010	0.5(4)
C25	09	C27	C28	179.9(2)
C19	C20	C15	C16	-0.7(4)
C19	C20	C15	C21	-179.9(3)
C27	09	C25	C23	-153.6(2)
C27	09	C25	C26	85.5(3)
07	C26	C25	09	176.8(2)
08	C26	C25	09	-2.2(3)
07	C26	C25	C23	58.2(3)
08	C26	C25	C23	-120.8(2)
C20	C15	C16	C17	-1.2(5)
C21	C15	C16	C17	178.1(3)
C15	C16	C17	C18	2.0(5)
C19	C18	C17	C16	-1.0(5)
C22	C18	C17	C16	-176.4(3)
C22	04	C23	C25	-161.1(2)
C22	04	C23	C24	78.5(3)
09	C25	C23	04	-61.3(2)
C26	C25	C23	04	61.0(3)
09	C25	C23	C24	61.4(2)
C26	C25	C23	C24	-
				176.24(19)
05	C24	C23	04	-179.5(2)
06	C24	C23	04	0.6(3)
05	C24	C23	C25	62.1(3)
06	C24	C23	C25	-117.7(2)
N2	C10	C9	C14	-177.3(11)
C11	C10	C9	C14	-6.9(11)
N2	C10	C9	C14A	178.0(8)
C11A	C10	C9	C14A	4.0(8)
N2	C10	C9	C5	-0.7(4)
C11A	C10	C9	C5	-174.7(5)
C11	C10	C9	C5	169.7(6)
C4	C5	C9	C14	177.1(12)
C1	C5	C9	C14	-6.8(13)
C4	C5	C9	C10	0.8(3)
C1	C5	C9	C10	176.8(3)
C4	C5	C9	C14A	-177.4(11)
C1	C5	C9	C14A	-1.3(12)
010	C27	C28	C33A	179.4(5)
09	C27	C28	C33A	0.0(6)
010	C27	C28	C29	7.2(5)
09	C27	C28	C29	-172.2(3)
010	C27	C28	C33	-166.1(5)
09	C27	C28	C33	14.5(6)
C10	C9	C14	C13	0.4(19)
C5	C9	C14	C13	-175.4(7)
C4	C5	C1	C6	-135.9(3)
C9	C5	C1	C6	48.6(4)
C4	C5	C1	C2	-15.3(4)
C9	C5	C1	C2	169.1(3)
N1	C2	C1	C5	45.1(3)
N1	C2	C1	C6	169.4(2)
C7	01	C6	02	14.1(11)
C7	01	C6	C1	178.3(6)
C5	C1	C6	02A	26.7(8)
C2	C1	C6	02A	-94.7(7)

Atom	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
C5	C1	C6	O1AA	$-113.1(12)$
C2	C1	C6	O1AA	$125.5(12)$
C5	C1	C6	O2	$5.5(6)$
C2	C1	C6	O2	$-115.9(6)$
C5	C1	C6	O1	$-158.2(5)$
C2	C1	C6	01	$80.4(6)$
C5	C1	C6	01A	$-168.7(6)$
C2	C1	C6	O1A	$69.9(6)$
C5	C1	C6	O2AA	$89.4(9)$
C2	C1	C6	O2AA	$-32.0(9)$
C33A	C28	C29	C30	$7.3(7)$
C33	C28	C29	C30	$-7.0(6)$
C27	C28	C29	C30	$179.2(3)$
C9	C14	C13	C12	$3.1(19)$
C29	C28	C33	C32	$3.8(8)$
C27	C28	C33	C32	$177.2(5)$
N2	C10	C11	C12	$177.3(6)$
C9	C10	C11	C12	$9.7(10)$
C28	C29	C30	C31A	$-4.9(8)$
C28	C29	C30	C31	$6.5(7)$
C32	C31	C30	C29	$-2.1(10)$
C34	C31	C30	C29	$178(2)$
C30	C31	C32	C33	$-1.3(11)$
C34	C31	C32	C33	$178(2)$
C28	C33	C32	C31	$0.4(11)$
C10	C11	C12	C13	$-6.7(13)$
C14	C13	C12	C11	$0.2(15)$
C6	C13A	C1	C13A	C12A

Table S18: Hydrogen Fractional Atomic Coordinates ($\times 10^{4}$) and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{m C}$ gauss. $U_{e q}$ is defined as $1 / 3$ of the trace of the orthogonalised $U_{i j}$.

Atom		\mathbf{x}	\mathbf{y}	\mathbf{z}	
H6	5740	-1160	6514	$\boldsymbol{U}_{\boldsymbol{e q}}$	
H11B	6368	6459	6625	62	
H2	3506	7854	4882		39
H1A	4782	7905	6418	32	
H1B	4563	9528	6407	32	
H19	5811	3175	2943	30	

Table S19: Atomic Occupancies for all atoms that are not fully occupied in mC_gauss.

Atom	Occupancy	Atom	Occupancy	Atom	Occupancy	Atom	Occupancy
02	0.487(11)	C31	0.559(6)	H33	0.559(6)	H30A	0.441(6)
01	0.487(11)	C13	$0.441(6)$	C11	$0.441(6)$	C32	0.559(6)
C14	0.441(6)	H13	0.441(6)	H11	0.441(6)	H32	0.559(6)
H14	0.441(6)	C33	0.559(6)	H30	0.559(6)	C12	0.441(6)

Atom	Occupancy
H12	0.441(6)
C34	0.559(6)
H34A	0.559(6)
H34B	0.559(6)
H34C	$0.559(6)$
C7	0.487(11)
H7A	0.487(11)
H7B	0.487(11)
C8A	0.398(11)
H8AA	0.398(11)
H8AB	$0.398(11)$
H8AC	$0.398(11)$
C31A	0.441 (6)
C33A	0.441 (6)
H33A	0.441 (6)
C32A	0.441 (6)
H32A	0.441(6)
C34A	0.441 (6)
H34D	0.441(6)
H34E	0.441 (6)
H34F	0.441 (6)
012A	0.559(6)
02A	0.398(11)
01A	0.398(11)
C7A	$0.398(11)$
H7AA	$0.398(11)$
H7AB	0.398(11)
C8	0.487(11)
H8A	0.487(11)
H8B	0.487(11)
H8C	0.487(11)
01AA	0.113(3)
C7AA	0.113(3)
H7AC	0.113(3)
H7AD	0.113(3)
02AA	0.113(3)
C8AA	0.113(3)
H8AD	0.113(3)
H8AE	0.113(3)
H8AF	0.113(3)
012	0.441 (6)
C14A	0.559(6)
H14A	0.559(6)
C13A	0.559(6)
H13A	$0.559(6)$
C12A	$0.559(6)$
H12A	0.559(6)
C11A	0.559 (6)
H11A	$0.559(6)$

References

1. Cheng, Y.; Prusoff, W. H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 1973, 22, 3099-3108.
2. Beyer, M.; Kiweler, N.; Mahboobi, S.; Krämer, O. H. How to Distinguish Between the Activity of HDAC1-3 and HDAC6 with Western Blot. In Methods Mol Biol, New York, USA, 2017; Vol. 1510, pp 355-364.
3. Annedi, S. C.; Maddaford, S. P.; Mladenova, G.; Ramnauth, J.; Rakhit, S.; Andrews, J. S.; Lee, D. K. H.; Zhang, D.; Porreca, F.; Bunton, D.; Christie, L. Discovery of N-(3-(1-methyl-1,2,3,6-tetrahydropyridin-4-yl)-1H-indol-6-yl) thiophene-2-carboximidamide as a selective Inhibitor of human neuronal nitric oxide synthase (nNOS) for the treatment of pain. Journal of Medicinal Chemistry 2011, 54, 7408-7416.
4. Hénon, H.; Messaoudi, S.; Hugon, B.; Anizon, F.; Pfeiffer, B.; Prudhomme, M. Synthesis of granulatimide bis-imide analogues. Tetrahedron 2005, 61, 5599-5614.
5. Burm, B. E. A.; Gremmen, C.; Wanner, M. J.; Koomen, G.-J. Synthesis of new bridged tetrahydro- β-carbolines and spiro-fused quinuclidines. Tetrahedron 2001, 57, 20392049.
6. Macor, J. E.; Blank, D. H.; Ryan, K.; Post, R. J. A direct synthesis of 3-(pyrrolidin-3yl)indoles for use as conformationally restricted analogs of tryptamines. Synthesis 1997, 1997, 443-449.
7. da Silva, W. A.; Rodrigues, M. T.; Shankaraiah, N.; Ferreira, R. B.; Andrade, C. K. Z.; Pilli, R. A.; Santos, L. S. Novel supramolecular palladium catalyst for the asymmetric reduction of imines in aqueous media. Organic Letters 2009, 11, 3238-3241.
8. Bischler, A.; Napieralski, B. Zur Kenntniss einer neuen Isochinolinsynthese. Berichte der deutschen chemischen Gesellschaft 1893, 26, 1903-1908.
9. Tietze, Lutz F.; Zhou, Y.; Töpken, E. Synthesis of simple enantiopure tetrahydro- $\beta-$ carbolines and tetrahydroisoquinolines. European Journal of Organic Chemistry 2000, 2000, 2247-2252.
10. Santos, L. S.; Fernandes, S. A.; Pilli, R. A.; Marsaioli, A. J. A novel asymmetric reduction of dihydro- β-carboline derivatives using calix[6]arene/chiral amine as a host complex. Tetrahedron: Asymmetry 2003, 14, 2515-2519.
11. Bartoli, G.; Bosco, M.; Giuli, S.; Giuliani, A.; Lucarelli, L.; Marcantoni, E.; Sambri, L.; Torregiani, E. Efficient preparation of 2-indolyl-1-nitroalkane derivatives employing nitroalkenes as versatile michael scceptors: New practical linear approach to alkyl $9 \mathrm{H}-\beta-$ carboline-4-carboxylate. J. Org. Chem. 2005, 70, 1941-1944.
12. Palmieri, A.; Gabrielli, S.; Ballini, R. Low impact synthesis of β-nitroacrylates under fully heterogeneous conditions. Green Chem. 2013, 15, 2344-2348.
13. Yi, W.-B.; Wang, X.; Cai, C. Nitroaldol reaction in fluorous media. An important improvement of the chemoselective addition of aldehyde. Catal. Commun. 2007, 8, 19951998.
14. Ballini, R.; Gabrielli, S.; Palmieri, A.; Petrini, M. Improved preparation of alkyl 2-(3-indolyl)-3-nitroalkanoates under fully heterogenous conditions: stereoselective synthesis of alkyl (E)-2-(3-indolyl)-alkenoates. Tetrahedron 2008, 64 5435-5441.
15. Shi, X.-X.; Liu, S.-L.; Xu, W.; Xu, Y.-L. Highly stereoselective Pictet-spengler reaction of D-tryptophan methyl ester with piperonal: convenient syntheses of Cialis (Tadalafil), 12a-epi-Cialis, and their deuterated analogues. Tetrahedron: Asymmetry 2008, 19, 435-442.
16. Tao, L.-M.; Li, Q.-G.; Liu, W.-Q.; Zhou, Y.; Zhou, J.-F. An efficient and reusable $\mathrm{PdCl} 2 / \mathrm{TBAF}$ system for the Heck reaction under ligand- and solvent-free conditions. J. Chem. Res. 2010, 34, 211-213.
17. Tercel, M.; Stevenson, R. J.; Lu, G.-L.; Stribbling, S. M.; Wilson, W. R.; Tatnell, M. A.; Marnane, R. N.; Mountjoy, K. G.; Denny, W. A. Weight loss effects of quaternary salts of 5-amino-1-(chloromethyl)-1,2-dihydro-3H-benz[e]indoles; structure-activity relationships. Bioorg. Med. Chem. 2012, 20, 734-749.
18. Nadri, S.; Joshaghani, M.; Rafiee, E. Biphenyl-based phosphine: A well-defined, airstable, and efficient ligand for the Mizoroki-Heck reaction. Appl. Catal., A 2009, 362, 163168.
19. Riesgo, E. C.; Jin, X.; Thummel, R. P. Introduction of Benzo[h]quinoline and 1,10Phenanthroline Subunits by Friedlaender Methodology. J. Org. Chem. 1996, 61, 3017-3022.
20. Siu, J.; Baxendale, I. R.; Ley, S. V. Microwave-assisted Leimgruber-Batcho reaction for the preparation of indoles, azaindoles, and pyrroloquinolines. Org. Biomol. Chem. 2004, 2, 160-167.
21. Ganesh, M.; Seidel, D. Catalytic enantioselective additions of indoles to nitroalkenes. J. Am. Chem. Soc. 2008, 130, 16464-16465.
22. Perron, Y.; Minor, W.; Bierwagen, M.; Ridlon, S.; Pindell, M. 3-Indolylsuccinimides and 3-(3-pyrrolidinyl) indoles. Journal of medicinal chemistry 1966, 9, 136-140.
23. Sui, Y.; Liu, L.; Wang, D.; Chen, Y.-J. An efficient synthetic method to non-natural α and β-tryptophan analogs via Friedel-Crafts alkylation of indoles with nitroacrylates. Chin. J. Chem. 2007, 25, 977-985.
24. Safdy, M. E.; Kurchacova, E.; Schut, R. N.; Vidrio, H.; Hong, E. Tryptophan analogs. 1. Synthesis and antihypertensive activity of positional isomers. Journal of medicinal chemistry 1982, 25, 723-730.
25. Perez-Alvarez, V.; Morales-Rios, M. S.; Hong, E.; Joseph-Nathan, P. Synthesis of 3-amino-2-(3-indolyl)propanol and propanoate derivatives and preliminary cardiovascular evaluation in rats. J. Pharm. Pharmacol. 1997, 49, 246-252.
26. Van Dyke, J. W., Jr.; Kurchacova, E. Tetrahydroß-carbolines having antihypertensive Activity. US4291039A, 1981.
27. Andrianjara, C.; Ortwine, D. F.; Pavlovsky, A. G.; Roark, W. H. Preparation of substituted Isophthalic Acid Derivatives, multicyclic Pyrimidinediones and Analogs thereof as Matrix Metalloproteinase Inhibitors. WO2002064080A2, 2002.
28. Kumar, V.; Khatik, G. L.; Pal, A.; Praneeth, M. R.; Bhattarai, S.; Nair, V. A. A facile synthesis and chemoselective reactions of dihydrothiouracils. Synlett 2012, 23, 2357-2362.
29. Yang, W.-L.; Li, C.-Y.; Qin, W.-J.; Tang, F.-F.; Yu, X.; Deng, W.-P. Cu(I)-Catalyzed Chemoselective and Stereoselective [3 + 3] Cycloaddition of Azomethine Ylides with 2Indolylnitroethylenes: Facile Access to Highly Substituted Tetrahydro- γ-Carbolines. ACS Catal. 2016, 6, 5685-5690.
30. Banfi, L.; Basso, A.; Chiappe, C.; De Moliner, F.; Riva, R.; Sonaglia, L. Development of a stereoselective Ugi reaction starting from an oxanorbornene β-amino acid derivative. Org. Biomol. Chem. 2012, 10, 3819-3829.
31. Högberg, T.; Ström, P.; Ebner, M.; Rämsby, S. Cyanide as an efficient and mild catalyst in the aminolysis of esters. J. Org. Chem. 1987, 52, 2033-2036.

[^0]: ${ }^{a}$ Reagents and conditions: conditions: (a) $\mathrm{Al}_{2} \mathrm{O}_{3}, \quad 2 \mathrm{~h}, 65^{\circ} \mathrm{C}$. (b) $\mathrm{MeOH}, \mathrm{THF}, \mathrm{Zn}, \mathrm{HCl}$. (c) MeOH , formaldehyde (43), 16 h , rt.

