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Text S1. Distance measuring methods tested 

 

A distance metric is a function that defines a distance between two observations. Given an mx-

by-n data matrix X, which is treated as mx (1-by-n) row vectors x1, x2, …, xmx, and an my-by-n 

data matrix Y, which is treated as my (1-by-n) row vectors y1, y2, …, ymy, the various distances 

between the vector xs and yt are defined as follows:  

 

1. Euclidean distance  

 

The Euclidean distance is the straight-line distance between two points in Euclidean space. The 

Euclidean distance is a special case of the Minkowski distance, where q=2.  ��� = ��� − ��	��� − ��	
 = �� |��� − ���|��
��� ��/� 

 

2. Standardized Euclidean distance 

 ��� = ��� − ��	������ − ��	
 

 

where V is the n-by-n diagonal matrix whose jth diagonal element is ����	�), where S is a vector 

of scaling factors for each dimension.  

 

3.  City block distance (Manhattan distance) 

  

The city block distance between two points is the sum of the absolute differences of their 

coordinates. The city block distance is a special case of the Minkowski distance, where q=1. 

 ��� = � |��� − ���|�
���  

 

4.  Chebychev distance  

The Chebychev distance is a special case of the MInkowski distance, where q=∞. 

 ��� = max� {|��� − ���|} 
 

5. Cosine distance  ��� = �1 − ����
������
	�����
		 
 

6. Correlation distance  

 ��� = 1 − ��� − �� 	��� − �� 	
���� − �� 	��� − �� 	
���� − �� 	��� − �� 	
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where  �� = 1!�����  

 �� = 1!�����  

7. Hamming distance  

 ��� = �#���� ≠ ���	/!	 
 

8. Jaccard distance  

 ��� = #[���� ≠ ���	 ∩ ���� ≠ 0	 ∩ ���� ≠ 0	]#[���� ≠ 0	 ∪ ���� ≠ 0	]  

9. Spearman distance  

 ��� = 1 − �)� − )� 	�)� − )� 	
��)� − )� 	�)� − )� 	
��)� − )� 	�)� − )� 	
 

where  )�� is the rank of ���  taken over ���, ��� , … , �,-,�  )�� is the rank of ���  taken over ���, ��� , … , �,.,� )� and )� are the coordinate-wise rank vectors of �� and ��, i.e., )� = �)��, )��, … , )��	 and )� = �)��, )��, … , )��	 )� = 1!�)��� = �! + 1	2  

)� = 1!�)��� = �! + 1	2  

 

10. Minkowski distance 11 ��� = �� |��� − ���|2�
��� ��/2																													 

For the special case of q=1, the Minkowski distance gives the city block distance. For the special 

case of q=2, the Minkowski distance gives the Euclidean distance. For the special case of q=∞, 

the Minkowski distance gives the Chebychev distance.  
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Table S1. Average Mean Percentage Error (MPE) when missing 1% data calculated using 

different distance functions 

 Method Definition  MPE 

Eculidean 

distance  

The straight-line distance between two points in Euclidean 

space. equivalent to Minkowsk distance when q=2  

80.99% 

Standardized 

Eculidean 

distance 

Each coordinate difference between observations is scaled 

by dividing by the corresponding element of the standard 

deviation 

105.96% 

City block 

distance 

Also called Manhattan distance, the sum of the absolute 

differences of their coordinates, equivalent to Minkowski 

distance when q=1 

80.90% 

Chebychev 

distance 

Maximum coordinate difference, equivalent to Minkowski 

distance when q=∞ 

86.08% 

Cosince 

distance  

One minus the cosine of the included angle between points  1393.67% 

Correlation 

distance 

One minus the correlation between points 1208.16% 

Hamming 

distance 

Percentage of coordinates that differ 100.00% 

Jaccard 

distance 

One minus the Jaccard coefficient, which is the percentage 

of nonzero coordinates that differ 

24972.57% 

Spearman One minus the sample Spearman's rank correlation 

between observations 

1194.69% 

Note: Minkowski distance is a metric which can be considered as a generalization of the 

Euclidean distance (q=2), the City block distance (q=1), and the Chebychev distance (q=∞). 

When q is smaller the MPE is getting smaller. Therefore, through adjusting the q value in 

Minkowski distance, we can find the best q value that can have the best estimation 

performance. 

 

Text S2. Normalization  

 

Normalization sometimes is needed to represent data in similar order of magnitudes. There are 

different ways of normalization, such as Z-score and min-max. In this paper, we define another 

way of matrix normalization. We first pre-multiplied original matrix 4 by a diagonal matrix, 5, in 

which the diagonal elements are the inverse of the maximum values in each row of matrix 4.   

5 =
677
778

1max 9�,∶ 0 00 … 00 0 1max 9�,:<==
==> 

 

then,   
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? = 54 =
677
778

1max 9�,∶ 0 00 … 00 0 1max 9�,:<==
==> @ 9�� … 9��… … …9,� … 9,�A = 677

78 9��max9�,∶ … 9��max9�,∶… … …9,�max9�,: … 9,�max9�,:<==
=>
 

We then post-multiplied ? by B, a diagonal matrix in which the diagonal elements are the 

inverse of the maximum values in each column of matrix ?.   

B =
677
778

1max C:,� 0 00 … 00 0 1max C:,,<==
==> 

then, 

D = ?B = @C�� … C��… … …C,� … C,�A 677
8 �EFGH:,I 0 00 … 00 0 �EFGH:,J<=

=> = K HIIEFGH:,I … HILEFGH:,J… … …HJIEFGH:,I … HJLEFGH:,J
M   

After the matrix normalization, the resulting matrix D has the maximum value as 1 and the 

minimum value as 0 for all the rows and columns.  By doing so, the values in the whole matrix 

are normalized in the similar orders of magnitude. Another benefit of such transformation is 

that MPEs calculated based on the matrix D are the same as those based on the original 

matrix	4 since this transformation is basically the multiplication of constant values, which can 

be recorded for denormalizing the data after estimation. The row normalization is to reduce the 

order of magnitude difference in intermediate and elementary flows, which is equivalent to 

converting the units of the flows. While the column normalization is to remove the scale 

difference of the process units, which is equivalent to converting the functional units.  

Based on this definition, we tried three different normalization strategies: 1) normalization 

based on the complete matrix; 2) normalization based on the training set to avoid introducing 

future information in the test set; and 3) without normalization. Table S2 shows the comparison 

of the average MPE using the three different strategies.  

In general, estimation with normalization based on the training set has the highest average 

MPE. This is because, in ecoinvent, the order of the magnitude of the test data can be very 

different from that of the training data. If there are magnitude of difference between the test 

data and the training data, test data after normalization can be extremely small or large, while 

the maximum of the normalized training data is always 1. Therefore, normalizing the test data 

based on the information from the training data can be problematic and skew the test data.  

Much to our surprise, estimation without normalization has the lowest average MPE. We 

believe this is because normalization, while making the data more regular, can actually lose 

information that might be useful in the estimation.  
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Therefore, based on the above comparison and analysis, we did the estimation without 

normalization. 

 

Table S2 Average Mean Percentage Error (MPE) using three different normalization strategies 

Average MPE 
Normalization based 

on the whole matrix  

Normalization based 

on the training set  

Without 

normalization  

1% missing 3.14×10
-14

% 17.95% 2.09×10
-13

% 

5% missing 13.43% 100% 2.85×10
-12

% 

10% missing 59.45% 100% 39.32% 

20% missing 97.55% 100% 91.39% 

 

Text S3.  

An example of estimating 1% data missing in a process named “petrol, unleaded//[RER] market 

for petrol, unleaded” with MPE=2.94%. Details see the supporting Excel file sheet 1 - sheet 3. 

 

Text S4. Computational time 

We examined the computational time required to implement this method. We used 2.67 GHz 

Intel Xeon X5650 processors with 4GB RAM memory. In the case of missing 1% data with one 

processor, it takes approximately 25 minutes to estimate the missing data for all processes. The 

estimation itself takes the greatest computational time (94.1%), while other procedures 

including the similarity calculation and data preparation only need approximately 5.9% of the 

computational time. The estimation step dominates the computational time because it involves 

many matrix multiplications, i.e., 2,545 times of matrix multiplication for estimating missing 

data in each process, in total 6.5 million times of matrix multiplication. When more data are 

missing, the time spent on similarity calculation would decrease since the dataset for 

calculating similarity is smaller. However, the time for estimation would increase significantly 

since the dataset for estimation becomes larger.  

In order to improve the computational efficiency, we used high-performance computing (HPC) 

to run the calculation in parallel. We used 10 processors (2.67 GHz Intel Xeon X5650 processors 

with 4GB RAM memory) regarding to 10 different q to calculate simultaneously. Table S2 shows 

the computational time required for calculating the whole database. Overall the computational 

resource needed for implementing our method in ecoinvent 3.1 is manageable. For the case 

study, it only requires 3 minutes with one processor to run the calculation. More time might be 

needed to find the indexes of the intermediate flows and elementary flows in the unit process 

matrix.  

Table S3. Computational time required for completing the estimation 

Missing data scenarios  Time required  

1% missing 1.25 hours 

5% missing 5.62 hours 

10% missing 11.94 hours 

20% missing 57.22 hours 

 



S7 

 

Text S5. Case study 

A case study of process “Diesel, combusted in industrial boiler” in US LCI database. Details see 

the supporting Excel file sheet 4. 

 

 


