
Supporting Information

Promising Photocatalysts for Water Splitting in BeN_2 and $MgN_2 \ Monolayers$

Yining Wei, Yandong Ma*, Wei Wei, Mengmeng Li, Baibiao Huang, Ying Dai*

School of physics, State Key Laboratory of Crystal Materials, Shandong University, 250100 Jinan, PR China

Corresponding authors: yandong.ma@sdu.edu.cn (Y.M.); daiy60@sdu.edu.cn (Y.D.)

Fig. S1 (a) Variation of free energy during AIMD simulation at 800 K for BeN₂ and MgN₂ monolayers. (b) Phonon dispersion curves of BeN₂ (left) and MgN₂ (right) monolayers.

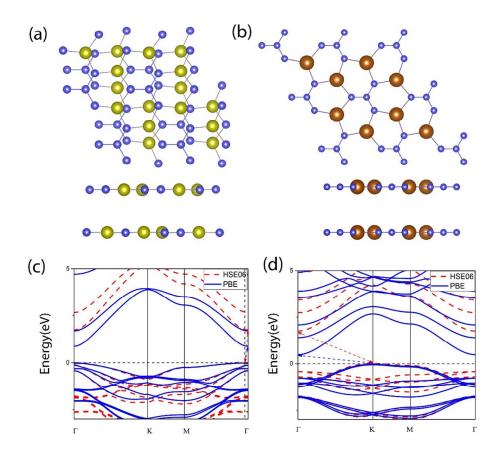
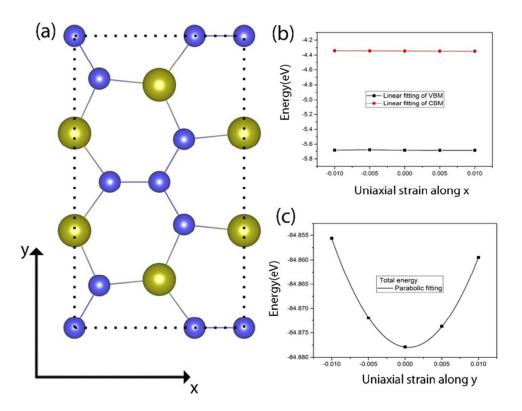



Fig. S2 (a) (b) the most stable configure after optimization for BeN_2 and MgN_2 double layers. (c) (d) the band structure of BeN_2 and MgN_2 double layers.

Fig. S3 (a) Rectangle unit cell of BeN_2 and MgN_2 monolayers. (b) CBM and VBM of BeN_2 monolayers along x direction as a function of deformation proportion. The solid line is a quadratic fitting to the data. (c) The energy of BeN_2 monolayers as a function of the uniaxial strain along x directions.