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Scheme S1. Simplified route proposed for the generation of Cossee-Arlman centers 

(Ni-H or Ni-ethene-H) in nickel-aluminosilicate catalysts initiated by proton transfer1. 

According to this pathway, the heterolytic cleavage of a C-H bond of ethylene 

coordinated at a charge-balancing Ni2+ site leads to a nickel-vinyl species and H that 

generates a new Brønsted acid site on a nearby lattice O atom. Insertion of a second 

ethylene molecule into the Ni-C bond of the Ni-vinyl species forms Ni-butenyl which 

releases butadiene through β-hydride abstraction to the same Ni ion, creating the Ni-

H Cossee-Arlman site1. 
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Scheme S2. Metallacycle mechanism proposed for the oligomerization of ethylene 

catalyzed by nickel.  

 

 
The metallacycle route, originally proposed for the selective trimerization of ethylene 

on Phillips (Cr/SiO2) catalysts2-5, involves the formation of a metallacyclopentane 

intermediate via oxidative coupling of two ethylene molecules coordinated to the 

metal site. Chain propagation then occurs by insertion of additional ethylene 

molecules into any of the two metal-C bonds forming larger metallacycles, while 

chain termination can take place through a direct hydrogen shift or via stepwise β-

hydride elimination to the metal site followed by reductive elimination releasing the 

corresponding linear α-olefin. More recently, the metallacycle mechanism has been 

suggested in order to account for the product distribution during the heterogeneous 

oligomerization of ethylene over Ni-Al-SBA-15 catalysts6. 
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Table S1. Characteristic mass fragmentations (m/z signals) and relative peak 

intensities, taking the most intense m/z peak for each compound as 100, for ethylene 

and relevant reaction products. The specific m/z values used in the identification of 

each compound during the acquisition of the online MS spectra are highlighted in 

bolt.  

 m/z values 

 26 27 28 29 30 43 55 56 58 69 84 

Ethylene 55 62 100 5 - - - - - - - 

Ethane 22 35 100 21 30 - - - - - - 

Butenes 10 25 30 15 1 6 50 100 5 - - 

Butane 10 40 35 45 3 100 2 1 15 - - 

Hexenes 5 35 5 20 3 60 65 100 10 25 30 
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Figure S1. a) Ethylene conversion rates at 120 ºC, 1 bar, and WHSV of 33 h-1 as a 

function of time-on-stream (TOS) for Ni-beta catalysts loaded with different amounts 

of nickel (1-10 wt%); b) Correlation between the steady state ethylene conversion 

rates at the reaction pressure of 1 bar (120 ºC, 33 h-1) and 35 bar (120 ºC, 2.1 h-1). 
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Figure S2. Chromatograms evidencing the initial formation of H2 upon reacting 5Ni-

beta with ethylene at 120 ºC and 1 bar for 1 min (a) and its practical absence after 70 

min of reaction (b). The analyses were performed by manually injecting a 

representative sample of the gaseous effluent in a Varian 3800 GC specially 

equipped for H2 detection (5Å Molecular Sieve column, TCD-type detector, Ar as 

carrier gas). 
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Figure S3. FTIR spectra of CO adsorption recorded at -176 ºC for pre-reacted (i.e. 

after in situ pretreatment in flowing N2 at 300 ºC) 5Ni-beta sample at increasing CO 

pressures (0.1→2.0 mbar). 
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Figure S4. Normalized FTIR spectra in the OH stretching region of a) pristine H-beta 

zeolite, and b) 5Ni-beta sample after in situ pretreatment in flowing N2 at 300 ºC. 

The FTIR spectrum of activated pristine H-beta zeolite in the OH stretching region 

(spectrum a) showed three distinct features with maxima at ca. 3736, 3660, and 3610 

cm-1 assigned to the ν(O-H) vibration modes of silanols, extraframework aluminium 

species, and Brønsted acid sites, respectively. After nickel incorporation (spectrum 

b), a reduction in the intensities of the peaks at 3736 and 3610 cm-1 is observed due 

to the replacement of some acidic protons by nickel ions. Furthermore, no additional 

peak in the 3630–3650 cm-1 region attributable to Ni-OH species7 could be detected 

in the activated 5Ni-Beta sample. 
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Figure S5. Low temperature FTIR-CO spectra at low CO coverage (0.1 mbar) for the 

5Ni-beta catalyst showing the development of dicarbonyl Ni+ bands at 2138 and 2095 

cm-1 upon reaction with ethylene at 120 ºC and 1 bar for selected reaction times. The 

component at 2150 cm-1 of CO coordinated to unsaturated Ni2+ species on the 

surface of bulk-like NiO particles (reported as inactive in ethylene oligomerization) 

remains almost unaffected during the catalytic reaction. Spectra are up-shifted for 

better visualization. 
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Figure S6.  FTIR spectra (normalized by overtone area) in the C-H stretching (a) and 

bending (b) vibration regions for 5Ni-beta in its pre-reacted state (spectrum at 0 min) 

and after reaction with ethylene at 120 ºC and 1 bar for 8 and 70 min and subsequent 

evacuation of the cell at 120 ºC for 1 h under dynamic vacuum of 10-5 mbar. The 

characteristic sp3 C-H stretching and bending IR bands of CH3 (νas= 2960 cm-1, νs= 

2870 cm-1, δs= 1364-1380 cm-1, δas= 1440-1470 cm-1) and CH2 (νas= 2926 cm-1, νs= 

2855 cm-1, δ= 1440-1470 cm-1) groups8-11 are clearly perceived. 

 

From the intensities of the peaks assigned to CH2 and CH3 asymmetric stretches, a 

CH2/CH3 ratio of ca. 1.14 and 1.24 is obtained for the irreversibly adsorbed 

hydrocarbons (spectators) after 8 and 70 min of reaction, respectively, evidencing a 

minor increase in chain length with reaction time. Considering that a CH2/CH3 ratio of 

2 and 3 has been reported for the asymmetric C-H stretches of n-hexane and n-

octane, respectively12, we infer that those spectators are mainly short-chain aliphatic 

acyclic hydrocarbons.   
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Figure S7. Normalized FTIR spectra in the C-H stretching (a) and bending (b) 

vibration regions for Ni-beta samples loaded with 1 and 5 wt% Ni after in situ reaction 

with ethylene for 70 min at 120 ºC and 1 bar followed by evacuation at this 

temperature for 1 h under dynamic vacuum of 10-5 mbar. The higher concentration of 

hydrocarbon species irreversibly adsorbed on the surface of the highly-loaded 5Ni-

beta catalyst exhibiting a 2.5-fold lower amount of Brønsted acid sites than 1Ni-beta13 

is an indication that they predominantly form at the cationic nickel centers. 

 

  



12 

 

3400 3300 3200 3100 3000 2900

3340

3212

3005

2975
3065

A
b

so
rb

a
n

ce
 (

a
.u

.)

Wavenumber (cm-1)

3093

0.09

10

mbar
C

2
H

4

a)

 

1600 1520 1440 1360

1440

1340A
b

so
rb

a
n

ce
 (

a
.u

.)

Wavenumber (cm-1)

1613

b)

0.09

10

mbar
C

2
H

4

 

Figure S8. FTIR spectra in the C-H stretching (a) and bending (b) regions of 

ethylene adsorbed at -100 ºC on pristine H-beta zeolite at increasing ethylene doses 

(from 0.09 to 10 mbar). Spectra have been up-shifted for clarity. 

Ethylene adsorbs only physically on the surface OH groups of Ni-free H-beta zeolite, 

as inferred from the presence of IR bands of CH2 groups in the C-H stretching (3093, 

3065, 3005, and 2975 cm-1, left graph) and bending (1440 and 1340 cm-1) regions 

and the ν[C=C] stretching band at 1613 cm-1. Broad IR bands peaking at around 

3340 and 3210 cm-1 correspond to the shift towards lower frequencies of the O-H 

stretching bands of the zeolite perturbed by ethylene. 
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Figure S9. FTIR spectra recorded in different IR regions (a-c) upon adsorption of 

ethylene at -100 ºC on 5Ni-beta catalyst at increasing ethylene doses from 0.09 to 10 

mbar. Spectra have been up-shifted for clarity. The bands related to ethylene π-

bonded to Ni2+ cations and acetylenic species (see main text) are highlighted in bold. 
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Figure S10. FTIR spectra acquired in the Ni-H region for 5Ni-beta upon adsorption of 

ethylene from -100 ºC to 120 ºC (a) and of deuterated ethylene at -100 ºC and 

increasing coverage from 0.09 to 10 mbar (b). Spectra have been up-shifted for 

clarity. 
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Figure S11. a) Temperature-resolved FTIR spectra for 5Ni-beta in the OH stretching 

region after in situ pretreatment in flowing N2 at 300ºC (blue bold line) and during in 

situ reaction of ethylene (black lines) at a constant pressure of 1.5 mbar in the 

temperature range of : (1) -100ºC, (2) -58ºC, (3)  48ºC, (4) -33ºC, (5) -25ºC, (6) -

15ºC, (7) -4ºC, (8) 5ºC, (9) 26ºC, (10) 55ºC, (11) 66ºC, (12) 88ºC, (13) 107ºC, (14) 

120ºC. Spectra have been up-shifted for the sake of clarity; b) FTIR spectra in the 

OH stretching region of pristine H-beta zeolite after in situ pretreatment in flowing N2 

at 300ºC (1), and upon ethylene adsorption (10 mbar ) at -100 ºC (2). 

As seen in Figure S11a, when ethylene is contacted with 5Ni-Beta catalyst at -100ºC, 

it physisorbs on the catalyst surface resulting in a pronounced decrease of the silanol 

band at ca. 3736 cm-1 that shifts to lower frequencies producing an intense broad 

band with maxima at ca. 3605 cm-1.10 Indeed, the perturbed OH band (Si-OH⋅⋅⋅C2H4 

molecular complex) is also detected when ethylene was adsorbed over pristine H-

beta zeolite at -100ºC (Figure S11b). As observed in Figure S11a, the IR spectra in 

the OH region is dominated from -100 ºC to -33 ºC by the broad perturbed OH band 

vibrating in the region where the formation of new OH groups would be observed (ca. 

3610 and 3640 cm-1)14,15. This makes an unequivocal conclusion on the possible 

formation of new OH groups in this temperature range unfeasible. However, at 

temperatures above ca. -33ºC (at which vinyl intermediates start to be detected), 
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where the perturbed OH band at 3605 cm-1 does no longer disturb the peaks in this 

region, there are no spectroscopic signs evidencing the formation of new OH groups. 
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