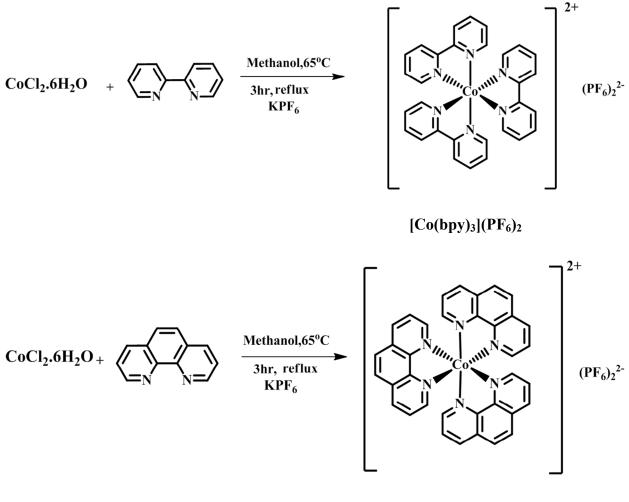
Supporting Information

Probing Recombination Mechanism and Realization of Marcus Normal Region Behavior in DSSCs Employing Cobalt Electrolytes and Triphenylamine Dyes

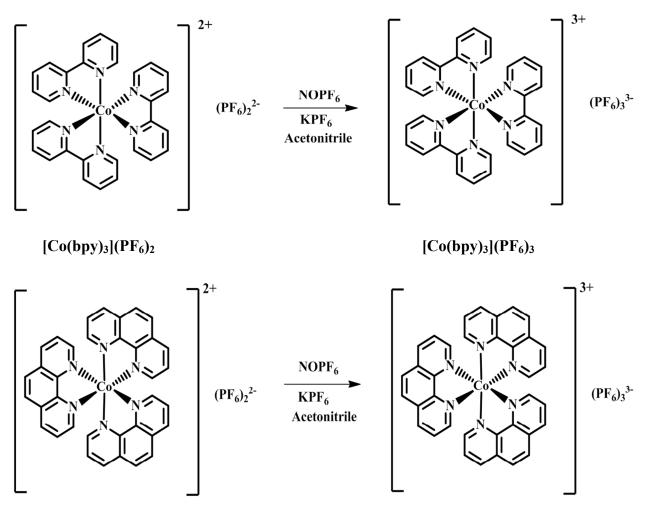

Suraj Soman,^{*a,b**} Sourava C. Pradhan,^{*a*} Muhammed Yoosuf,^{*a*} Manikkedath V. Vinayak,^{*a*} Sivasankaran Lingamoorthy,^{*a,b*} and Karical R. Gopidas ^{*a,b**}

^aPhotosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India. ^bAcademy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India.

E-mail: suraj@niist.res.in; suraj.csir@gmail.com; gopidaskr@gmail.com

General procedure for the synthesis of cobalt complexes

leq. of $CoCl_2$.6H₂O and 3eq. of polypyridine ligand were dissolved in minimal amount of methanol, and the solution was stirred at 65 °C and reflux for 3-4 hours. An excess of potassium hexafluorophosphate was then added to the solution to precipitate the compound that was filtered, washed with methanol and ethanol, dried under vaccum and used without purification.



[Co(phen)₃](PF₆)₂

General procedure for the oxidation of cobalt (II) to cobalt (III)

Oxidation of cobalt (II) complexes was performed by adding a slight excess of NOPF₆ to dry acetonitrile solution of the complex and then by removing the acetonitrile solution by rotary evaporation. The complex was then re-dissolved in acetonitrile and a large amount of KPF₆ was added to the solution. The final product was precipitated with diethyl ether, filtered, dried under vaccum and used without further purification. It is characterized using ¹H NMR and COSY shown in Figure S1,S2,S3 and S4

All the synthesis was carried out using the already reported procedures.^{1,2,3,4}

[Co(phen)₃](PF₆)₂

[Co(phen)₃](PF₆)₃

Synthesis of cobalt (II) trisbipyridine hexafluorophosphate $[Co(bpy)_3](PF_6)_2$ and cobalt (III) trisbipyridine hexafluorophosphate $[Co(bpy)_3](PF_6)_3$

 $[Co(bpy)_3](PF_6)_2$: 3g (0.0126moles) of cobalt dichloride hexahydrate, 5.9g (0.0378moles) of 2,2'-bipyridine excess amount of potassium hexafluorophosphate. Yield-71.83%

 $[Co(bpy)_3](PF_6)_3$: 2g of $[Co(bpy)_3](PF_6)_2$, Catalytic amount of NOPF₆, excess amount of potassium hexafluorophosphate. Yield-98%

¹H NMR (CD₃CN, 500MHz): δ 6 (d,1H), 7.739-7.709 (m, 1H), 8.484-8.450 (m, 1H), 8.6 (dd, 1H, J₁=1, J₂=8) ppm.

Synthesis of cobalt (II) trisphenanthroline hexafluorophosphate $[Co(phen)_3](PF_6)_2$ and cobalt (III) trisphenanthroline hexafluorophosphate $[Co(phen)_3](PF_6)_3$

For $[Co(phen)_3](PF_6)_2$: 2g (0.00845 moles) of cobalt dichloride hexahydrate 4.99 g (0.0252 moles) phenanthroline, excess amount of potassium hexafluorophosphate. Yield-90.33%

For $[Co(phen)_3](PF_6)_3$: 1g of $[Co(phen)_3](PF_6)_2$, Catalytic amount of NOPF₆, excess amount of potassium hexafluorophosphate. Yield-22%

¹H NMR (CD₃CN, 500 MHz): δ 5.5 (d, 1H), 7.8 (dd, 1H, J₁=5.5, J₂=8), 8.4 (s, 1H), 9 (dd, 1H, J₁=1, J₂=8.5) ppm.

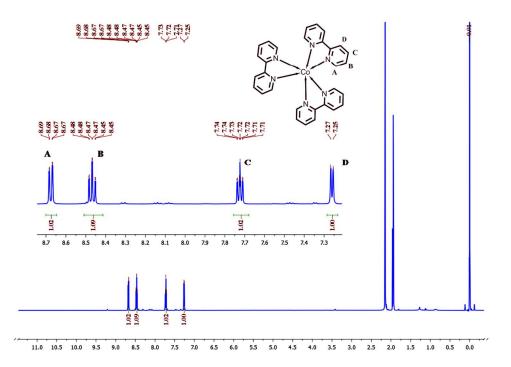


Figure S1. ¹HNMR of [Co(bpy)₃](PF₆)_{3.}

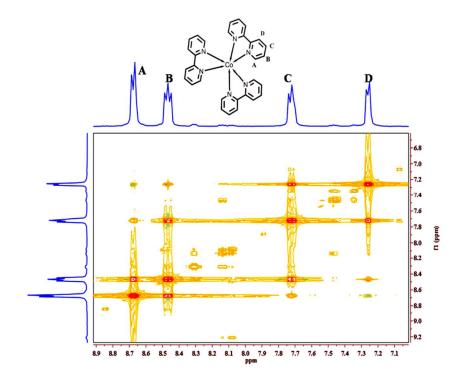


Figure S2. COSY of $[Co(bpy)_3](PF_6)_3$.

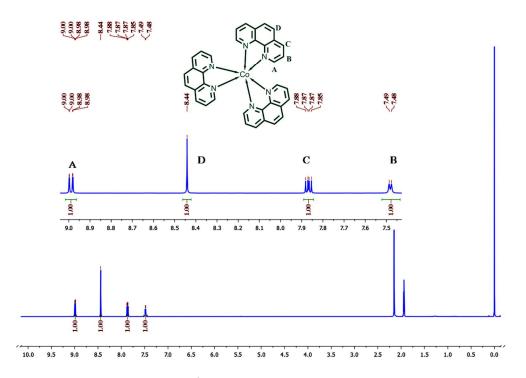


Figure S3. 1 H NMR of [Co(phen)₃](PF₆)₃.

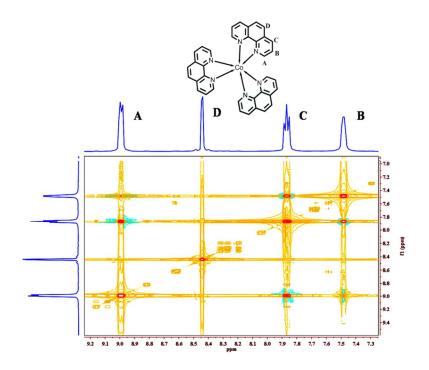
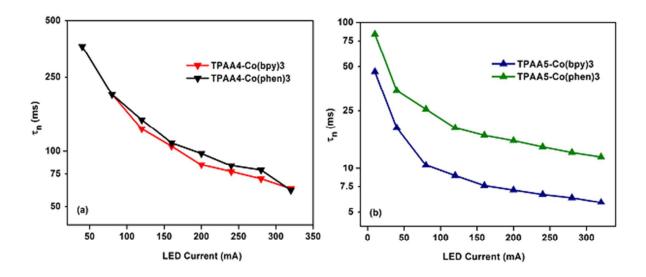
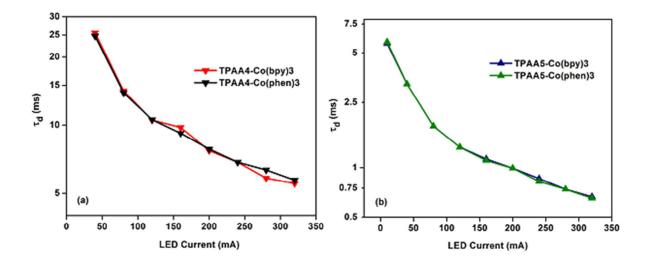




Figure S4. COSY of $[Co(phen)_3](PF_6)_3$.

Figure S5. Electron Lifetime as a function of LED current measured by IMVS technique for devices fabricated using (a) TPAA4 employing $[Co(bpy)_3]^{3+/2+}$ and $[Co(phen)_3]^{3+/2+}$ (b) TPAA5 employing $[Co(bpy)_3]^{3+/2+}$ and $[Co(phen)_3]^{3+/2+}$.

Figure S6. Transport time as a function of LED current measured by IMPS technique for devices fabricated using (a) TPAA4 employing $[Co(bpy)_3]^{3+/2+}$ and $[Co(phen)_3]^{3+/2+}$ (b) TPAA5 employing $[Co(bpy)_3]^{3+/2+}$ and $[Co(phen)_3]^{3+/2+}$.

REFERENCES

- Nusbaumer, H.; Moser, J. E.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Grätzel, M. Co^{II}(dbbip)₂²⁺ Complex Rivals Tri-iodide/Iodide Redox Mediator in Dye-Sensitized Photovoltaic Cells. *J. Phys. Chem. B* 2001, *105*, 10461-10464.
- Sapp, S. A.; Elliott, C. M.; Contado, C.; Caramori, S.; Bignozzi, C. A. Substituted Polypyridine Complexes of Cobalt(II/III) as Efficient Electron-Transfer Mediators in Dye-Sensitized Solar Cells. J. Am. Chem. Soc. 2002, 124, 11215-11222
- 3) Elliott C. M., Out with both baby and bathwater. *Nat. Chem* 2011, *3*, 188.
- Soman, S.; Xie, Y.; Hamann, T. W. Cyclometalated sensitizers for DSSCs employing cobalt redox shuttles. *Polyhedron* 2014, *82*, 139–147