Supporting Information

Synthesis and Spectroscopic Properties of Fluorinated Coumarin Lysine Derivatives

Lakshmi Shukla, Lindon W. K. Moodie, Tomas Kindahl and Christian Hedberg*

Umeå University, Department of Chemistry, 90187 Umeå, Sweden

E-mail:<u>Christian.Hedberg@chem.umu.se</u>

Table of Contents

1.	Copies of ¹ H, ¹³ C and ¹⁹ F NMR spectra	.S2
2.	Spectroscopic Studies	S41

1. Copies of ¹H, ¹³C and ¹⁹F NMR spectra

¹H NMR (600 MHz, DMSO-d₆) of 8a

¹³C NMR (100 MHz, DMSO-d₆) of 8a

¹H NMR (600 MHz, DMSO-d₆) of 8b

¹³C NMR (150 MHz, DMSO-*d*₆) of 8b

¹⁹F NMR (376 MHz, DMSO-*d*₆) of 8b

¹H NMR (400 MHz, DMSO-d₆) of 8c

¹³C NMR (150 MHz, DMSO-d₆) of 8c

¹H NMR (400 MHz, DMSO-d₆) of 8d

¹³C NMR (151 MHz, DMSO-d₆) of 8d

¹⁹F NMR (376 MHz, DMSO-d₆) of 8d

¹H NMR (400 MHz, CDCl₃) of 9a

¹³C NMR (100 MHz, CDCl₃) of 9a

¹H NMR (400 MHz, CDCl₃) of 9b

¹³C NMR (100 MHz, CDCl₃) of 9b

¹⁹F NMR (376 MHz, CDCl₃) of 9b

¹H NMR (600 MHz, CDCl₃) of 9c

¹³C NMR (151 MHz, CDCl₃) of 9c

¹⁹F NMR (376 MHz, CDCl₃) of 9c

¹H NMR (600 MHz, CDCl₃) of 9d

¹³C NMR (151 MHz, CDCl₃) of 9d

¹⁹F NMR (376 MHz, CDCl₃) of 9d

¹H NMR (400 MHz, CDCl₃) of 11a

¹³C NMR (100 MHz, CDCl₃) of 11a

¹H NMR (400 MHz, CDCl₃) of 11b

¹³C NMR (100 MHz, CDCl₃) of 11b

¹⁹F NMR (376 MHz, CDCl₃) of 11b

¹H NMR (400 MHz, CDCl₃) of 11c

¹³C NMR (100 MHz, CDCl₃) of 11c

¹⁹F NMR (376 MHz, CDCl₃) of 11c

¹H NMR (600 MHz, CDCl₃) of 11d

¹³C NMR (151 MHz, CDCl₃) of 11d

¹⁹F NMR (376 MHz, CDCl₃) of 11d

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 ppm

¹H NMR (400 MHz, CDCl₃) of 12a

¹³C NMR (100 MHz, CDCl₃) of 12a

¹H NMR (600 MHz, CDCl₃) of 12b

¹³C NMR (151 MHz, CDCl₃) of 12b

¹⁹F NMR (376 MHz, CDCl₃) of 12b

¹H NMR (600 MHz, CDCl₃) of 12c

¹³C NMR (151 MHz, CDCl₃) of 12c

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 ppm

¹H NMR (600 MHz, CDCl₃) of 12d

¹³C NMR (151 MHz, CDCl₃) of 12d

¹⁹F NMR (376 MHz, CDCl₃) of 12d

¹H NMR (400 MHz, CDCl₃) of 14a

¹³C NMR (100 MHz, CDCl₃) of 14a

¹H NMR (600 MHz, CDCl₃) of 14b

¹³C NMR (100 MHz, CDCl₃) of 14b

¹⁹F NMR (376 MHz, CDCl₃) of 14b

¹H NMR (600 MHz, CDCl₃) of 14c

¹³C NMR (151 MHz, CDCl₃) of 14c

¹⁹F NMR (376 MHz, CDCl₃) of 14c

¹H NMR (600 MHz, CDCl₃) of 14d

¹³C NMR (151 MHz, CDCl₃) of 14d

¹⁹F NMR (376 MHz, CDCl₃) of 14d

¹H NMR (600 MHz, DMSO-d₆) of 1

¹³C NMR (100 MHz, DMSO-d₆) of 1

¹H NMR (600 MHz, DMSO-d₆) of 4

¹³C NMR (151 MHz, DMSO-d₆) of 4

¹⁹F NMR (565 MHz, CDCl₃) of 4

¹H NMR (600 MHz, DMSO-d₆) of 5

¹³C NMR (100 MHz, DMSO-d₆) of 5

¹⁹F NMR (565 MHz, CDCl₃) of 5

¹H NMR (600 MHz, DMSO-d₆) of 6

¹³C NMR (151 MHz, DMSO-d₆) of 6

¹H NMR (400 MHz, CDCl₃) of 16

¹⁹F NMR (376 MHz, CDCl₃) of 6

¹³C NMR (100 MHz, DMSO-*d*₆) of 16

¹H NMR (400 MHz, CDCl₃) of 13

¹³C NMR (400 MHz, CDCl₃) of 13

¹H NMR (400 MHz, CDCl₃) of over-benzylation by-product

¹³C NMR (400 MHz, CDCl₃) of over-benzylation by-product

¹H NMR (400 MHz, CDCl₃) of elimination by-product

2. Spectroscopic Studies

UV-vis absorbance spectra were recorded on a Shimadzu UV-3101PC instrument with a compound concentration of 10 μ M in KCl–HCl, citric acid–Na₂HPO₄, trizma HCl–trizma base and Na₂CO₃–NaHCO₃ buffer solutions. Emission spectra and lifetimes were obtained with a HORIBA Jobin Yvon Fluorolog TCSPC instrument; the absorbance in the emission wavelength range was lower than 0.1 in all measurements. The steady-state emission spectra were obtained by excitation at 320 and 360 nm, while decays were measured using LEDs at 278 and 370 nm. The quantum yields were determined relative to quinine sulfate in 0.5 M H₂SO₄ ($\Phi_f = 0.546$). Emission decays were monitored at 460 nm, and the lifetimes were analyzed using the Tcspcfit software package.¹ Solutions of the compounds in respective buffer were prepared from stock solutions in DMSO, giving a residual stock solvent concentration of $\leq 0.1\%$.

Figure S1. Absorbance of compound $\mathbf{1}$ (10 μ M) at various pH:s.

Figure S2. Absorbance of compound 4 (10 μ M) at various pH:s.

Figure S3. Absorbance of compound **5** (10 μ M) at various pH:s.

Figure S4. Absorbance of compound $6 (10 \mu M)$ at various pH:s.

Figure S5. Fluorescence lifetime decay with fit for compound **1** (pH 10.1, ex 370 nm).

Figure S6. Fluorescence lifetime decay with fit for compound 4 (pH 10.1, ex 370 nm).

Figure S7. Fluorescence lifetime decay with fit for compound **5** (pH 10.1, ex 370 nm).

Figure S8. Fluorescence lifetime decay with fit for compound 6 (pH 10.1, ex 370 nm).

Figure S9. Smoothed and normalized emission spectra of compounds 1 and 4-6 (ex 360)

Scheme S1. Benzylation of coumarin

Table S1. Reaction screening conditions for benzylation of coumarin

Entry	BnBr/BnCl	K ₂ CO ₃	Solvent	Temp./time	Product
	(eq.)	(eq.)			(A:B:C)
1	BnBr(2.5)	3	DMF	RT/2h	C+Trace
					А
2	BnBr (2)	2.1	DMF	RT/2h	C+Trace
					А

3	BnBr (2)	2.1	Acetone	RT/9h	Trace A
4	BnBr (2)	2.1	Acetone	Reflux/24h	A and C
5	BnBr (2)	2.1	Triglyme	RT/9h	Trace A
6	BnBr (2)	2.1	Triglyme	70 °C/24h	A and C
7	BnBr (2)	2.1	Toluene	RT/9h	No
					reaction
8	BnBr (2)	2.1	Toluene	70 °C/24h	No
					reaction
9	BnCl(2.0)	2.1	DMF	RT/14h	Trace A
10	BnCl(2.0)	2.1	DMF	50 °C/1.5h	20:0:0
11	BnCl(2.0)	2.1	DMF	60 °C/3.5h	40:0:0
12	BnCl(2.0)	2.1	DMF	80 °C/2.5h	100:0:0
13	BnCl(4.0)	4.2	DMF	80 °C/16h	100:0:0
14	BnCl(3.0)	3	DMF	100 °C/6h	100:0:0

Table S2. Optimization for difluoro coumarin carbonate synthesis

_
D
D

Entry	Base and/or	Solvent	Temp/time	A:B based on	Yield
	additive (eq.)			crude NMR	
1	Et ₃ N (1.1 equiv.)	MeCN	0 °C-rt/1h	SM+A+B	nd
2	DIPEA (1.1 equiv.)	CH ₂ Cl ₂	0 °C-rt/12h	0:100	nd
3	Et ₃ N (1.0 equiv.)	CH ₂ Cl ₂	rt/1.5h	87:13	nd
4	DIPEA (1.0 equiv.)	CH ₂ Cl ₂	0 °C-rt/3h	68:32	nd

	+				
	DMAP (0.1 equiv.)				
5	DIPEA (1.0 equiv.)	CH ₂ Cl ₂	0 °C-rt/3h	35:65	nd
	+				
	DMAP (0.1 equiv.)				
6	DMAP (0.5 equiv.)	CH ₂ Cl ₂	rt/15min.	95:5	nd
7	DMAP (0.2+0.2	CH ₂ Cl ₂	0 °C-	97:3	nd
	equiv.)		rt/30min		
8	DMAP (total 0.15	CH ₂ Cl ₂	0 °C-rt/42h	100:0	Quant.
	equiv. in 2 portions)				
9	DMAP (0.15 equiv.)	CH ₂ Cl ₂	0 °C-rt/15h	100:0	Quant.

nd: yield not determined

Scheme S2. Synthesis of CBz and benzyl protected lysine hydrochloride

References

(1) J. Enderlein, R. Erdmann, Optics Communications 1997, 134, 371.