Supporting Information

Tin-Free Access to the ABC Core of the Calyciphylline A Alkaloids and Unexpected Formation of a D-Ring-Contracted Tetracyclic Core

Alberto M. Lopez,[‡] Ahmad A. Ibrahim,[‡] Gregory J. Rosenhauer, Hansamali S. Sirinimal, and Jennifer L. Stockdill

Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, United States

Table of Contents

General Information	S2
Experimental Procedures and Spectroscopic Data	S3
Spectra	S18

General Information. Unless otherwise specified, all commercially available reagents were purchased from Aldrich, Alfa Aesar, Acros Organics, or Oakwood Chemical and used without further purification. Anhydrous THF, Et₂O, PhH, PhMe, *n*-hexane, ACN, DMF, DMSO, DCM were passed through a commercial solvent purification system (2 columns of alumina) and used without further drying. Triethylamine, diisopropylamine, pyridine, and Hünig's base were distilled over CaH₂ immediately prior to use. Unless otherwise noted, all reactions were performed in flame-dried glassware under 1 atm of pre-purified anhydrous N_2 or Ar gas. All purifications were performed on SiliaFlash® P60 40-63µm (230-400 mesh) 60Å Irregular Silica Gels (SiliCycle cat. # R12030B) or on a Biotage Isolera IV flash purification system using SNAP cartridges (Biotage cat. # FSKO-1107-0XXX-depending on the size). Thin layer chromatography was performed using glass-backed SiliaPlate™ TLC Plates (SiliCycle cat. # TLG-R10011B-323) cut to the desired size. Products and reactants were then visualized with short-wave UV lamps and KMnO₄, CAM, PMA, or anisaldehyde stains prepared according to standard recipes.¹ All yields refer to chromatographically and spectroscopically pure products.¹H NMR spectra and ¹³C NMR spectra were recorded on a Varian Mercury 400, Varian MR-400, Agilent MR-400, Varian V-500, or an Agilent DD2-600 MHz instrument with a multinuclear broadband probe at ambient temperature unless otherwise stated. Chemical shifts are reported in parts per million relative to residual solvent peaks.² All ¹³C spectra are recorded with complete proton decoupling. Highresolution mass spectral analyses were performed by the Lumigen Instrument Center, Wayne State University on a Thermofisher scientific LTQ Orbittrap XL mass spectrometer. All spectra were acquired in positive ionization mode unless otherwise noted. The MS survey scan was set from 150 - 1000. The resolution was set to 60000. In all cases only one microscan was used in the analysis. IR data were obtained on a Varian/Digilab Excalibur 3100 High Resolution FT-IR or Shimadzu MIRacle 10 Single Reflection ATR Accessory, and optical rotation data was collected on a Perkin-Elmer 341 automated Polarimeter at the concentration noted.

¹ Leonard, J.; Lygo, B.; Procter, G. In *Advanced Practical Organic Chemistry*; CRC Press: Boca Raton, FL, 2013; pp 158. (ISBN: 978-1-4398-6097-7)

²Fulmer, G. R.; Miller, A. J.; Sherdan, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I. NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist. *Organometallics*, **2010**, *29*, 2176–2179.

Experimental Procedures and Spectroscopic Data

2-methyl-2-(prop-2-yn-1-yl)-1,3-dioxolane (alkyne 8).³ To a cooled (–78 °C) solution of ethyl (2-methyl-1,3-dioxolan-2-yl)acetate (10 g, 57.41 mmol, 1 equiv) and DCM (140 mL) was added a solution of DIBAL–H (54.97 g, 68.89 mmol, 1.2 equiv) in hexanes (50 mL) dropwise via positive pressure cannulation. After 10 min, MeOH (25 mL) was added, the flask was opened to air, a solution of dimethyl (1-diazo-2-oxopropyl)phosphonate (13.23 g, 68.89, 1.2 equiv) in MeOH (25 mL) was added followed by K₂CO₃ (15.87 g, 114.8 mmol, 2 equiv), and the flask was placed in 0 °C bath. After 21 h, the reaction was quenched with water (140 mL), the layers were separated, the aqueous layer was extracted with DCM (3 x 100 mL), and the combined organic layers were dried over Na₂SO₄. The solvent was removed under reduced pressure and the crude material was purified by flash chromatography, eluted with 0–5% diethyl ether/pentane. The product was isolated as a light-yellow oil, 4.94 g (68% yield). Spectra are consistent with the literature report.⁴

4-(2-methyl-1,3-dioxolan-2-yl)but-2-yn-1-ol (propargylic alcohol 9). To a cooled (–78 °C) solution of 2-methyl-2-(prop-2-yn-1-yl)-1,3-dioxolane (**8**) (170.0 mg, 1.348 mmol, 1 equiv) in THF (2.2 mL) was added *n*-BuLi (2.3 M in hexanes, 0.645 mL, 1.482 mmol, 1.1 equiv) dropwise. After 1 h, paraformaldehyde (80.94 mg, 2.695 mmol, 2 equiv) was added and reaction was allowed to warm slowly to ambient temperature (24 ± 1 °C) in the dewar overnight. After 20 h, the reaction was quenched with ethyl acetate (5 mL) and water (5 mL). The layers were separated and the aqueous layer was extracted with ethyl acetate (3 x 15 mL). The combined organic layers were washed with brine and then dried over MgSO₄. The solvent was removed under reduced pressure and the material was purified by flash chromatography, eluted with ethyl acetate/hexanes (0-60%). The product was isolated as a yellow oil, 138 mg (67% yield). R_f = 0.27 (40% ethyl acetate/hexanes); ¹H NMR (400 MHz, CDCl₃) δ 4.27 (t, *J* = 2.18 Hz, 2H), 4.00 (m, 4H), 2.57 (t, *J* = 2.12 Hz, 2H), 1.46 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 108.69, 81.78, 80.39, 65.22, 51.36, 30.27, 23.87; IR neat 3418, 2986, 2886, 1443, 1381, 1211, 1142, 1096, 1042, 1011, 910, 748 cm⁻¹; HRMS [M+Na]⁺ m/z ESI calc'd for [C₈H₁₂O₃Na]⁺ = 179.0679, observed: 179.0674.

³ Modified from Dickson, H. D.; Smith, S. C.; Hinkle, K. W. A convenient scalable one-pot conversion of esters and Weinreb amides to terminal alkynes. *Tetrahedron Lett.* **2004**, *45*, 5597–5599.

⁴ Spectra for **8** matches specta reported in: Yamasaki, R.; Sotome, I.; Komagawa, S.; Azumaya, I.; Masu, H.; Saito, S. Ni-catalyzed [3+2+2] cycloaddition of ethyl cyclopropylideneacetate and 1,3-diynes. Applications to the three-component cyclozaddition. *Tetrahedron Lett.* **2009**, *50*, 1143–1145.

2-(4-azidobut-2-yn-1-yl)-2-methyl-1,3-dioxolane (propargylic azide 7b). To a cooled (0 °C) solution of 4-(2-methyl-1,3-dioxolan-2-yl)but-2-yn-1-ol (**9**) (248.9 mg, 1.590 mmol, 1 equiv) in ACN (3.2 mL) was added MsCl (184.0 mg, 1.606 mmol, 1.1 equiv) and TEA (162.5 mg, 1.606 mmol, 1.1 equiv). The reaction was allowed to warm to ambient temperature ($24 \pm 1 \circ C$) over 3 h. After 3 h, sodium azide (2.297 g, 35.33 mmol, 10 equiv) was added and the solution was stirred overnight. **CAUTION:** AZIDES ARE EXPLOSIVE AND SHOULD BE HANDLED IN A FUME HOOD BEHIND A BLAST SHIELD. After 20 h, the reaction was quenched with water (20 mL), the layers were separated, and the aqueous later was extracted with diethyl ether (8 x 10 mL). The combined organic layers were washed with brine and dried over MgSO₄ and the solvent was removed under reduced pressure. The resulting red-orange liquid, 225.2 mg (78% crude yield), was used without further purification. $R_f = 0.65$ (30% ethyl acetate/hexanes); ¹H NMR (400 MHz, CDCl₃) δ 4.00 (m, 4H), 3.92 (s, 2H), 2.62 (t, *J* = 2.17 Hz, 2H), 1.47 (s, 3 H); ¹³C NMR (101 MHz, CDCl₃) δ 108.37, 83.70, 73.91, 65.14, 40.26, 30.09, 23.79; IR neat 2986, 2091, 1381, 1242, 1211, 1142, 949, 880, 833, 756 cm⁻¹; HRMS [2M+H⁺] m/z ESI calc'd for [C₁₆H₂₃N₆O₄]+: 363.1775 observed: 363.1765.

(1*R*,5*R*)-2-methyl-5-((*R*)-1-((4-(2-methyl-1,3-dioxolan-2-yl)but-2-yn-1-yl)amino)propan-2-yl)cyclohex-2-en-1-ol (allylic alcohol 10). To a solution of (1R,4R,5R)-4,8-dimethyl-2oxabicyclo[3.3.1]non-7-en-3-ol (ent-6)5 (1.160 g, 6.91 mmol, 1 equiv) and 2-(4-azidobut-2-yn-1yl)-2-methyl-1,3-dioxolane (7b) (1.313 g, 7.250 mmol, 1.05 equiv) in THF (27.6 mL) was added PPh₃ (3.622 g, 13.81 mmol, 2 equiv) and the reaction was stirred overnight. After 20 h, the reaction was cooled to 0 °C and LAH (786.0 mg, 20.71 mmol, 3 equiv) was added in 3 equal portions every 15 min. After 3 h, the LAH guenched with ethyl acetate (10 mL, dropwise) and a saturated solution of potassium sodium tartrate was added slowly (20 mL). The resulting suspension was allowed to stir for 3 h. The layers were separated and aqueous layer extracted with DCM (5 x 20 mL). The combined organic layers were dried over Na₂SO₄ and the solvent was removed under reduced pressure. To the crude material was added hexane (10 mL) and the mixture was heated to 70 °C for 30 min. After 30 min, the flask sealed stored in the -30 °C freezer overnight. After 16 h, the solids were filtered with hexane and solvent was removed under reduced pressure. The crude material was purified by flash chromatography in a 50 g Biotage SNAP column packed with SiO₂ and eluted with 0-10% MeOH/DCM. The product was isolated as a yellow oil, 1.830 g (86% yield). $R_f = 0.22$ (7% MeOH/DCM); ¹H NMR (400 MHz,

⁵ Compound *ent*-6 was previously reported in Ibrahim, A. A.; Golonka, A. N.; Lopez, A. M.; Stockdill, J. L. *Org. Lett.* **2014**, *16*, 1072–1075.

CDCl₃) δ 5.47 (bs, 1H), 4.17 (bs, 1H), 3.99 (m, 4H), 3.41 (t, *J* = 2.09 Hz, 2H), 2.70 (dd, *J* = 11.50, 5.63, 1H), 2.53 (m, 3H), 2.09 (m, 1H), 1.89 (m, 2H), 1.89 (m, 1H) 1.71 (m, 4H), 1.49 (m, 8H), 1.22 (td, *J* = 12.24, 10.31 Hz, 1H), 0.92 (d, *J* = 6.84 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 136.54, 124.30, 108.83, 80.16, 79.19, 71.33, 65.21, 52.60, 39.02, 37.35, 36.37, 35.95, 30.28, 23.89, 18.93, 14.96. IR neat 2970, 2886, 1450, 1381, 1211, 1150, 1049, 910 cm⁻¹; [α]²²_{*D*} -10.1 (c 0.215, CHCl₃); HRMS [M+H⁺] m/z ESI calc'd for [C₁₈H₃₀NO₃]⁺: 308.2226 observed: 308.2209.

(R)-5-((R)-1-(chloro(4-(2-methyl-1,3-dioxolan-2-yl)but-2-yn-1-yl)amino)propan-2-yl)-2 methylcyclohex-2-en-1-one (N-chloroamine ent-5b). To a cooled (-78 °C) solution of (1R.5R)-2-methyl-5-((R)-1-((4-(2-methyl-1.3-dioxolan-2-yl)but-2-yn-1-yl)amino)propan-2-yl)cyclohex-2-en-1-ol (10) (132.0 mg, 0.430 mmol, 1 equiv) in DCM (2.2 mL) was added NCS (63.2 mg, 0.473 mmol, 1.1 equiv). The reaction was allowed to warm to 0 °C slowly in the acetone/dry ice bath over 2 h. After 2 h, DMP (273.5 mg, 0.645 mmol, 1.5 equiv) was added. For this addition, the flask was temporarily opened to air and then it was sealed with a glass stopper. The apparatus was covered in aluminum foil and stirred overnight. After 20 h, the mixture was diluted with hexane (1 mL) and loaded onto a plug of SiO₂. The pure product was eluted with 0-30% ethyl acetate/hexane. The product was isolated as a colorless oil,132.0 mg (90% yield). $R_f = 0.64$ (40% ethyl acetate/hexanes); ¹H NMR (400 MHz, CDCl₃) δ 6.75 (dd, J =4.56, 2.67 Hz, 1H), 4.00 (m, 4H), 3.80 (q, J = 1.86 Hz, 2H), 2.96 (dd, J = 13.05, 6.83 Hz, 1H), 2.75 (dd, J = 13.04, 7.06 Hz, 1H), 2.59 (m, 2H), 2.42 (m, 1H), 2.22 (m, 4H), 1.95 (ddt, J = 9.80, 6.84, 2.90 Hz, 1H), 1.77 (g, J = 1.69 Hz, 3H), 1.48 (s, 3H), 0.93 (d, J = 6.88 Hz, 3H); ¹³C NMR $(101 \text{ MHz}, \text{ CDCl}_3) \delta$ 145.36, 135.60, 108.74, 83.20, 75.84, 65.71, 65.29, 53.80, 40.26, 37.81, 35.26, 30.59, 30.32, 24.06, 15.86, 14.14; IR neat 3017, 1721, 1667, 1381, 1211, 1134, 1103, 1049, 748 cm⁻¹⁻; $[\alpha]_{p}^{22}$ –15.2 (c 0.0025, CHCl₃); HRMS [M+H⁺] m/z ESI calc'd for [C₁₈H₂₇NO₃Cl]⁺: 340.1679 observed: 340.1661.

(3a S,6R,7a S,8R)-3a,8-dimethyl-3-(2-(2-methyl-1,3-dioxolan-2-yl)ethylidene)hexahydro-6,1ethanoindol-4(2H)-one (tricycle 11). To a Biotage microwave vial was added (R)-5-((R)-1-(chloro(4-(2-methyl-1,3-dioxolan-2-yl)but-2-yn-1-yl)amino)propan-2-yl)-2-methylcyclohex-2-en-1one (*ent*-5b) (49.0 mg, 0.144 mmol, 1 equiv), THF (16 mL), AIBN (4.7 mg, 0.029 mmol, 0.2 equiv), and *i*-Pr₃Si–H (45.7 mg, 0.288 mmol, 2 equiv). The vial was sealed and placed in an oil bath preheated to 100 °C and the solution was stirred for 2 h. **CAUTION:** REACTIONS UNDER PRESSURE SHOULD BE HANDLED IN A FUME HOOD BEHIND A BLAST SHIELD. After 2 h, the solution was allowed to cool to ambient temperature (24 ± 1 °C), then it was transferred to a round bottom flask, and the solvent removed under reduced pressure. The crude material was dissolved in PhH (3 mL) and the solution was purified on basic alumina. The product was eluted with 0-60% ethyl acetate/hexane. The product was isolated as a yellow oil, 30.0 mg (68% yield). $R_f = 0.25$ (10% MeOH/ethyl acetate); ¹H NMR (400 MHz, CDCl₃) δ 5.82 (ddt, J = 7.66, 5.59, 2.62 Hz, 1H), 5.62 (t, J = 7.09 Hz, 1H), 3.95 (m, 7H), 3.58 (dd, J = 46.93, 15.14 Hz 2H), 3.31 (d, J = 15.42 Hz, 1H), 3.12 (d, J = 15.22, 1H), 3.09 (s, 1H), 2.93 (dd, J = 15.24, 6.88 Hz, 1H), 2.81 (dd, J = 15.41, 7.88 Hz, 1H) 2.63 (m, 4H), 2.38 (m, 1H), 2.23 (dd, J = 13.21, 4.31 Hz, 1H), 2.06 (s, 1H), 1.90 (s, 1H), 1.85 (m, 3H), 1.41 (s, 2H), 1.37 (s, 2H), 1.34 (s, 3H), 1.27 (d, J = 7.09 Hz, 6H), 1.25 (d, J = 2.39 Hz, 7H), 0.85 (m, 5H); ¹³C NMR (101 MHz, CDCl₃) δ 215.25, 212.96, 124.87, 108.76, 80.66, 78.61, 77.36, 65.21, 65.17, 64.83, 60.18, 60.07, 50.31, 50.16, 49.13, 47.42, 45.22, 44.88, 41.74, 36.34, 34.53, 34.07, 33.79, 32.03, 30.41, 30.24, 29.81, 29.47, 28.34, 27.62, 23.94, 23.91, 23.36, 22.80, 20.18, 19.66, 17.90, 15.80, 14.30, 14.24; IR neat 3017, 2886, 1721, 1667, 1435, 1381, 1211, 1150, 1103, 1049, 748 cm⁻¹; HRMS [M+H⁺] m/z ESI calc'd for [C₁₈H₂₈NO₃]⁺: 306.2064 observed: 306.2069.

(3aS,6R,7aS,8R)-3a,8-dimethyl-3-(3-methylbut-3-en-1-ylidene)hexahydro-6,1-ethanoindol-4(2H)-one (tricycle 16).⁶ To a Biotage microwave vial was added (R)-5-((R)-1-(chloro(5methylhex-5-en-2-yn-1-yl)amino)propan-2-yl)-2-methylcyclohex-2-en-1-one (ent-5a) (27.9 mg, 0.095 mmol, 1 equiv), THF (10.6 mL), AIBN (3.1 mg, 0.019 mmol, 0.2 equiv), and *i*-Pr₃Si-H (30.1 mg, 0.190 mmol, 2 equiv). The vial was sealed and placed in an oil bath preheated to 100 °C and the solution was stirred for 2 h. CAUTION: REACTIONS UNDER PRESSURE SHOULD BE HANDLED IN A FUME HOOD BEHIND A BLAST SHIELD. After 2 h, the solution was allowed to cool to ambient temperature (24 ± 1 °C), then it was transferred to a round bottom flask, and the solvent removed under reduced pressure. The crude material was purified by flash chromatography in a 10 g Biotage SNAP column packed with SiO₂ and eluted with 0-10% MeOH/DCM. The product was isolated as a yellow oil, 17.0 mg (71% yield). $R_f = 0.30$ (5% methanol/methylene chloride); ¹H NMR (400 MHz, CDCl₃) δ 5.84 (ddd, J = 7.68, 5.48, 2.22 Hz, 1H), 5.62 (t, J = 7.66 Hz, 1H), 4.71 (t, J = 11.53 Hz, 4H), 3.75 (d, J = 13.07 Hz, 1H), 3.62 (d, J = 15.65 Hz, 1H), 3.34–3.06 (m, 6H), 2.78–2.62 (m, 5H), 2.49–2.37 (m, 5H), 2.29 (dd, J = 13.46, 4.44 Hz, 1H), 2.09 (s, 2H), 1.95–1.81 (m, 5H), 1.76 (s, 3H), 1.71 (s, 3H), 1.42 (s, 3H), 1.33–1.22 (m, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 211.70, 211.04, 145.13, 143.61, 140.46, 135.39, 126.86, 126.03, 110.68, 110.32, 67.27, 65.69, 61.35, 57.37, 55.49, 54.96, 50.59, 49.91, 46.08, 45.59, 37.70, 37.24, 33.24, 33.14, 32.85, 29.68, 23.37, 22.90, 22.64, 21.92, 20.43, 20.36, 18.40, 18.27; IR neat 3077.9, 2958.2, 2929.2, 2901.0, 1702.4, 1674.8, 1448.6, 1375.9 cm⁻¹; HRMS [M+H⁺] m/z ESI calc'd for [C₁₇H₂₆NO]+: 260.2009 observed: 260.2003.

⁶ Compounds *ent-5a* and 16 were previously reported in Stockdill, J. L.; Lopez, A. M.; Ibrahim, A. A. *Tetrahedron Lett.* 2015, *56*, *3503–3506*.

(3a*S*,6*R*,7a*S*,8*R*)-3a,8-dimethyl-3-(3-methylbut-3-en-1-ylidene)hexahydro-6,1-ethanoindol-4(2*H*)-one (tricycle 16). To a Biotage microwave vial was added (*R*)-5-((*R*)-1-(chloro(5methylhex-5-en-2-yn-1-yl)amino)propan-2-yl)-2-methylcyclohex-2-en-1-one (*ent*-5a) (10.3 mg, 0.035 mmol, 1 equiv), THF (3.9 mL), AIBN (1.2 mg, 0.007 mmol, 0.2 equiv), and Et₃Si–H (8.2 mg, 0.070 mmol, 2 equiv). The vial was sealed and placed in an oil bath preheated to 100 °C and the solution was stirred for 2 h. **CAUTION:** REACTIONS UNDER PRESSURE SHOULD BE HANDLED IN A FUME HOOD BEHIND A BLAST SHIELD. After 2 h, the solution was allowed to cool to ambient temperature (24 ± 1 °C), then it was transferred to a round bottom flask, and the solvent removed under reduced pressure. The crude material was purified by flash chromatography in a 10 g Biotage SNAP column packed with SiO₂ and eluted with 0-10% MeOH/DCM. The product was isolated as a yellow oil, 6.2 mg (69% yield). Spectral data match the above data for this compound.

(3aS,6R,7aS,8R)-3a,8-dimethyl-3-(3-methylbut-3-en-1-ylidene)hexahydro-6,1-ethanoindol-

4(2*H***)-one (tricycle 16).** To a Biotage microwave vial was added (*R*)-5-((*R*)-1-(chloro(5-methylhex-5-en-2-yn-1-yl)amino)propan-2-yl)-2-methylcyclohex-2-en-1-one (*ent-5a*) (10.1 mg, 0.034 mmol, 1 equiv), THF (3.8 mL), AIBN (1.1 mg, 0.007 mmol, 0.2 equiv), and Ph₃Si–H (8.0 mg, 0.069 mmol, 2 equiv). The vial was sealed and placed in an oil bath preheated to 100 °C and the solution was stirred for 2 h. **CAUTION:** REACTIONS UNDER PRESSURE SHOULD BE HANDLED IN A FUME HOOD BEHIND A BLAST SHIELD. After 2 h, the solution was allowed to cool to ambient temperature (24 ± 1 °C), then it was transferred to a round bottom flask, and the solvent removed under reduced pressure. The crude material was purified by flash chromatography in a 10 g Biotage SNAP column packed with SiO₂ and eluted with 0-10% MeOH/DCM. The product was isolated as a yellow oil, 6.6 mg (75% yield). Spectral data match the above data for this compound.

(3aS,6R,7aS,8R)-3a,8-dimethyl-3-(3-methylbut-3-en-1-ylidene)hexahydro-6,1-ethanoindol-4(2H)-one (tricycle 16). To a Biotage microwave vial was added (R)-5-((R)-1-(chloro(5-methylhex-5-en-2-yn-1-yl)amino)propan-2-yl)-2-methylcyclohex-2-en-1-one (*ent*-5a) (9.6 mg, 0.033 mmol, 1 equiv), THF (3.6 mL), AIBN (1.1 mg, 0.007 mmol, 0.2 equiv), and PhSiH₃ (7.1

mg, 0.065 mmol, 2 equiv). The vial was sealed and placed in an oil bath preheated to 100 °C and the solution was stirred for 2 h. **CAUTION:** REACTIONS UNDER PRESSURE SHOULD BE HANDLED IN A FUME HOOD BEHIND A BLAST SHIELD. After 2 h, the solution was allowed to cool to ambient temperature (24 ± 1 °C), then it was transferred to a round bottom flask, and the solvent removed under reduced pressure. The crude material was purified by flash chromatography in a 10 g Biotage SNAP column packed with SiO₂ and eluted with 0-10% MeOH/DCM. The product was isolated as a yellow oil, 5.9 mg (63% yield). Spectral data match the above data for this compound.

(3a S,6*R*,7a S,8*R*)-3a,8-dimethyl-3-(methylene-*d*)hexahydro-6,1-ethanoindol-4(2*H*)-one (ketone 18).⁷ To a Biotage microwave vial was added (*R*)-5-((*R*)-1-(chloro(prop-2-yn-1-yl)amino)propan-2-yl)-2-methylcyclohex-2-en-1-one (17) (17.3 mg, 0.072 mmol, 1 equiv), THF (8 mL), AIBN (2.3 mg, 0.014 mmol, 0.2 equiv), and *i*-Pr₃Si-H (22.9 mg, 0.144 mmol, 2 equiv). The vial was sealed and placed in an oil bath preheated to 100 °C and the solution was stirred for 3 h. **CAUTION:** REACTIONS UNDER PRESSURE SHOULD BE HANDLED IN A FUME HOOD BEHIND A BLAST SHIELD. After 3 h, the solution was allowed to cool to ambient temperature (24 ± 1 °C), then it was transferred to a round bottom flask, and the solvent removed under reduced pressure. The crude material was purified by flash chromatography in a 10 g Biotage SNAP column packed with SiO₂ and eluted with 0-10% MeOH/chloroform. The product was isolated as a yellow oil, 3.7 mg (25% yield). ¹H NMR (400 MHz, CDCl₃) δ 5.39 (dd, J = 2.95, 1.81 Hz, 1H), 5.20 (dd, J = 2.55, 1.51 Hz, 0.21H), 3.56 (dd, J = 15.20, 2.89 Hz, 1H), 3.19 (dd, J = 15.44, 1.77 Hz, 1H), 3.05 (s, 1H), 2.64 (dd, J = 18.27, 6.01 Hz, 1H), 2.60 (d J = 13.30 Hz, 3H), 2.41 (m, 1H), 2.24 (dd, J = 13.24, 4.38 Hz, 1H), 2.07 (s, 1H), 1.86 (m, 3H), 1.26 (s, 2H), 1.26 (s, 6H).

Expected Masses	[C ₁₃ H ₂₀ NO]+:	[C ₁₃ H ₁₉ DNO]+:	[C ₁₃ H ₁₈ D ₂ NO]+:
(m/z for M+H ⁺)	206.15	207.16	208.17
Relative Intensities	6.22	100.00	16.32

⁷ Compounds **17** and **18** were previously reported in Ibrahim, A. A.; Golonka, A. N.; Lopez, A. M.; Stockdill, J. L. *Org. Lett.* **2014**, *16*, 1072–1075.

5-((*tert***-butyldimethylsilyl)oxy)pent-2-yn-1-ol (propargylic alcohol SI-2).**⁸ To a cooled (–78 °C) solution of 4-(tert-Butyldimethylsilyloxy)-1-butyne (**SI-1**) (21.76 g, 118.0 mmol, 1 equiv) in THF (167 mL) was added *n*-BuLi (2.03 M in hexanes, 51.9 mL, 129.817 mmol, 1.1 equiv) dropwise. After 1 h, paraformaldehyde (8.86 g, 295.0 mmol, 2 equiv) was added and reaction was allowed to warm slowly to ambient temperature (24 ± 1 °C) in the dewar overnight. After 20 h, the reaction was quenched with ethyl acetate (10 mL) and then water (150 mL). The layers were separated and the aqueous layer was extracted with ethyl acetate (3 x 75 mL). The combined organic layers were washed with brine and then dried over MgSO₄. The solvent was removed under reduced pressure and the material, pale yellow oil, 26.0 g (>99% crude yield), was used without further purification. R_f = 0.43 (20% ethyl acetate/hexane); Spectra matched the reported data: ¹H NMR (400 MHz, CDCl₃) δ 4.24 (m, 2H), 3.72 (t, *J* = 7.14 Hz, 2H), 2.43 (tt, *J* = 7.24, 2.08 Hz, 2H), 1.61 (d, *J* = 1.89 Hz, 1H) 0.90 (s, 9H), 0.07 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 83.52, 79.64, 61.97, 51.46, 26.02, 23.27, 18.48, –5.14; IR neat 3355, 2930, 2858, 1103, 837 cm⁻¹; HRMS [M+Na]⁺ m/z ESI, calc'd = 237.1281, observed: 237.1277.

((5-azidopent-3-yn-1-yl)oxy)(tert-butyl)dimethylsilane (propargylic azide 7c). To a cooled (0 °C) solution of 5-((tert-butyldimethylsilyl)oxy)pent-2-yn-1-ol (SI-2) (25.30 g, 118.0 mmol, 1equiv) in ACN (197 mL) was added MsCl (14.87 g, 129.8 mmol, 1.1 equiv) and TEA (13.14 g, 129.800 mmol, 1.1 equiv). The reaction was allowed to warm to ambient temperature ($24 \pm 1 \circ C$) over 1 h and then sodium azide (76.71 g, 1180.0 mmol, 10 equiv) was added. CAUTION: AZIDES ARE EXPLOSIVE AND SHOULD BE HANDLED IN A FUME HOOD BEHIND A BLAST SHIELD. After 40 h, the reaction was guenched with water (100 mL), the ACN was removed under reduced pressure, and the aqueous later was extracted with diethyl ether (4 x 75 mL). The combined organic layers were washed with brine, dried over MgSO₄, and the solvent was removed under reduced pressure. The crude material was purified by flash chromatography, eluted with 0-10% ether/pentanes. The product was isolated as a yellow-green oil, 22.60 g (80% yield). $R_f = 0.73$ (10% ethyl acetate/hexanes); ¹H NMR (400 MHz, CDCl₃) δ 3.89 (m, 2H), 3.74 (t, J = 6.98, 2H), 2.47 (tt, J = 7.04, 2.22 Hz, 2H), 0.90 (s, 10H), 0.08 (m, 5H); ¹³C NMR (101 MHz, CDCl₃) & 85.43, 73.27, 61.88, 40.43, 26.01, 23.22, 18.47, -5.16; IR neat 2956, 2927, 2854, 1253, 1100, 836, 776 cm⁻¹; HRMS [2M+H⁺] m/z ESI calc'd for [C₂₂H₄₄N₆O₂Si₂]⁺: 479.2986 observed: 479.2971.

⁸ Jensen, T.; Pedersen, H.; Bang-Andersen, B.; Madsen, R.; Jørgensen, M. Angew. Chem. Int. Ed. 2008, 47, 888– 890.

(1R,5R)-5-((R)-1-((5-((tert-butyldimethylsilyl)oxy)pent-2-yn-1-yl)amino)propan-2-yl)-2-

methylcyclohex-2-en-1-ol (allylic alcohol 19). To a solution of (1R,4R,5R)-4,8-dimethyl-2oxabicyclo[3.3.1]non-7-en-3-ol (ent-6) (2.570 g, 15.24 mmol, 1 equiv) and ((5-azidopent-3-yn-1yl)oxy)(tert-butyl)dimethylsilane (7c) (3.695 g, 15.45 mmol, 1.01 equiv) in THF (61.2 mL) was added PPh₃ (8.025 g, 30.60 mmol, 2 equiv) and the reaction was stirred overnight. After 34 h, the reaction was cooled to 0 °C and LAH (1.742 g, 45.89 mmol, 3 equiv) was added and the reaction was stirred for 1.5 h. After 1.5 h, the LAH guenched with a saturated solution of potassium sodium tartrate and suspension was allowed to stir for 30 min. The layers were separated and aqueous laver extracted with ethyl acetate (4 x 10 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, and then the solvent removed under reduced pressure. The crude material was purified by flash chromatography with a 50 g Biotage SNAP column packed with SiO₂ and eluted with 0-10% MeOH/DCM. The product was isolated as a yellow oil, 4.660 g (84% yield). R_f = 0.38 (5% MeOH/DCM); ¹H NMR (400 MHz, CDCl₃) δ 5.46 (dq, J = 5.71, 1.88 Hz, 1H), 4.15 (d, J = 9.46 Hz, 1H), 3.70 (m, 2H), 3.37 (qd, J = 2.30, 1.19 Hz)2H), 2.66 (dd, J = 11.45, 5.55 Hz, 1H), 2.50 (dd, J = 11.52, 7.56 Hz, 1H), 2.40 (tt, J = 7.27, 2.22 Hz, 2H), 2.07 (ddt, J = 11.74, 5.52, 2.23, 1H), 1.88 (m, 2H), 1.73 (m, 4H), 1.65 (m, 6H), 1.54 (ddd, J = 12.69, 7.24, 5.63 Hz, 1H), 1.21 (td, J = 12.38, 10.08 Hz, 1H), 0.91 (d, J = 7.00 Hz, 4H),0.89 (d, J = 0.69 Hz, 9H), 0.06 (d, J = 0.76 Hz, 6H); ¹³C NMR (121 MHz, CDCl₃) δ 136.53, 124.30, 80.63, 79.32, 71.32, 62.22, 52.66, 38.97, 37.34, 36.38, 35.93, 30.26, 30.11, 26.03, 23.27, 18.94, 18.48, 14.90, -5.13; IR neat 3078, 2900, 2754, 1589, 1520, 1404, 1350, 1304, 1165, 1065, 972 cm⁻¹; $[\alpha]_D^{22}$ -7.0 (c 0.0067, CHCl₃); HRMS [M+H⁺] m/z ESI calc'd for [C₂₁H₄₀NO₂Si]⁺: 366.2828 observed: 366.2813.

(*R*)-5-((*R*)-1-((5-((*tert*-butyldimethylsilyl)oxy)pent-2-yn-1-yl)chloroamino)propan-2-yl)-2methylcyclohex-2-en-1-one (*N*-chloroamine ent-5c). To a cooled (-78 °C) solution of

(1R,5R)-5-((R)-1-((5-((tert-butyldimethylsilyl)oxy)pent-2-yn-1-yl)amino)propan-2-yl)-2methylcyclohex-2-en-1-ol (**19**) (1.032 g, 2.824 mmol, 1 equiv) in DCM (11.4 mL) was added NCS (414.8 mg, 3.106 mmol, 1.1 equiv). The reaction was allowed to warm to 0 °C slowly in the acetone/dry ice bath over 3 h. After 3 h, NaHCO₃ (335.9 mg, 4.236 mmol, 1.5 equiv), water (76 μ L, 1.5 equiv), and DMP (1.797 g, 4.236 mmol, 1.5 equiv) were added. For this addition, the flask was temporarily opened to air and then it was sealed with a glass stopper. The apparatus was covered in aluminum foil and stirred overnight. After 17 h, the mixture was diluted with hexane (5 mL) and loaded onto a plug of SiO₂ and the product was eluted with 0-10% ethyl acetate/hexane. The product was isolated as a yellow oil, 929.2 mg (83% yield). R_f = 0.64 (10% ethyl acetate/hexanes); ¹H NMR (400 MHz, CDCl₃) δ 6.75 (ddt, *J* = 5.61, 2.82, 1.24 Hz, 1H), 3.77 (t, *J* = 2.14 Hz, 4H), 2.91 (dd, *J* = 13.06, 7.00 Hz, 1H), 2.73 (dd, *J* = 13.06, 6.98 Hz, 1H), 2.46 (tt, *J* = 7.07, 2.14 Hz, 3H), 2.23 (m, 4H), 1.95 (qd, *J* = 6.95, 3.05 Hz, 1H), 1.77 (q, *J* = 1.62, 3H), 1.58 (s, 2H), 0.92 (d, *J* = 6.87 Hz, 4H), 0.90 (s, 9H), 0.07 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 200.35, 145.38, 135.59, 84.63, 75.01, 65.70, 61.97, 53.81, 40.18, 37.70, 35.21, 30.64, 26.03, 23.33, 18.47, 15.87, 14.05, -5.12; IR neat 3017, 2955, 2855, 1667, 1458, 1435, 1381, 1250, 1211, 1103, 903, 841, 748 cm⁻¹; $[\alpha]_D^{22}$ -5.8 (c 0.005, CHCl₃); HRMS [M+H⁺] m/z ESI calc'd for [C₂₁H₃₇NO₂SiCl]⁺: 398.2282 observed: 398.2264.

(3a*S*,6*R*,7a*S*,8*R*)-3-(3-((*tert*-butyldimethylsilyl)oxy)propylidene)-3a,8-dimethylhexahydro-6,1-ethanoindol-4(2*H*)-one (tricycle SI-3).

This procedure was performed in parallel on 1.248 g and 1.641 g of *N*-chloroenone **ent-5c, yielding 420.1 mg + 530.4 mg of **SI-3** and 546.3 mg + 544.0 mg of mixed fractions **SI-3** and **SI-4**. The pure **SI-3** fractions were combined and the mixed fractions were combined, and the hydrogenations were performed as described below. The pure product obtained from each (863.3 mg + 1.0642 mg) was combined to calculate the overall yield (2.8887 g, 7.26 mmol **ent-5c** yields 1.9275 g, 5.27 mmol **20** = 73% yield).**

Cyclization A: To a ChemGlass pressure vessel, heavy wall, round bottom (CG-1880-R-13) flask was added (*R*)-5-((*R*)-1-((5-((*tert*-butyldimethylsilyl)oxy)pent-2-yn-1-yl)chloroamino)propan-2-yl)-2-methylcyclohex-2-en-1-one (*ent-5c*) (1.248 g, 3.135 mmol, 1 equiv), THF (349 mL, total concentration= 0.009 M), AIBN (103.0 mg, 0.627 mmol, 0.2 equiv), and *i*-Pr₃Si–H (992.8 mg, 6.269 mmol, 2 equiv). The vessel was sealed and placed in an oil bath preheated to 120 °C and the temperature was immediately set to 100 °C. **CAUTION:** REACTIONS UNDER PRESSURE SHOULD BE HANDLED IN A FUME HOOD BEHIND A BLAST SHIELD. The solution was stirred for 3 h. After 3 h, the solution was allowed to cool to ambient temperature (24 ± 1 °C), then it was transferred to a round bottom flask, and the solvent removed under reduced pressure. The crude material was purified by flash chromatography with a 25 g Biotage SNAP column packed with SiO₂ and eluted with 0-10% MeOH/chloroform. The product (**SI-3**) was isolated as a brown oil, 420.1 mg. Additionally, a mixture of **SI-3** and (3a*S*,6*R*,7a*S*,8*R*)-3-(3-((*tert*-butyldimethylsilyl)oxy)-1-chloropropylidene)-3a,8-dimethylhexahydro-6,1-ethanoindol-4(2*H*)-one (**SI-4**) was obtained, 546.3 mg, R_f = 0.78 (10% MeOH/chloroform).

Cyclization B: In a separate ChemGlass pressure vessel, heavy wall, round bottom (CG-1880-R-12) flask was added (*R*)-5-((*R*)-1-((5-((*tert*-butyldimethylsilyl)oxy)pent-2-yn-1yl)chloroamino)propan-2-yl)-2-methylcyclohex-2-en-1-one (*ent*-5c) (1.641 g, 4.122 mmol, 1 equiv), THF (83 mL, total concentration= 0.05 M), AIBN (135.5 mg, 0.824 mmol, 0.2 equiv), and *i*-Pr₃Si–H (1.306 g, 8.244 mmol, 2 equiv). The vessel was sealed and placed in an oil bath preheated to 120 °C and the temperature was immediately set to 100 °C. The solution was stirred for 3 h. After 3 h, the solution was allowed to cool to ambient temperature (24 ± 1 °C), then it was transferred to a round bottom flask, and the solvent removed under reduced pressure. The crude material was purified by flash chromatography with a 25 g Biotage SNAP column packed with SiO₂ and eluted with 0-10% MeOH/chloroform. The product (**SI-3**) was isolated as a brown oil, 530.4 mg. Additionally, a mixture of **SI-3** and **SI-4** was obtained, 544.0 mg, $R_f = 0.78$ (10% MeOH/chloroform). Pure **SI-3**: $R_f = 0.65$ (10% MeOH/chloroform); ¹H NMR (400 MHz, CDCl₃) δ 5.84 (m, 1H), 5.70 (t, *J* = 7.49 Hz, 1H), 3.87 (dd, *J* = 37.46, 15.11 Hz, 2H), 3.75 (ddd, *J* = 10.09, 6.75, 5.66 Hz, 1H), 3.66 (m, 3H), 3.43 (d, *J* = 15.11 Hz, 3H), 3.26 (d, *J* = 14.86 Hz, 1H), 2.90 (t, *J* = 12.41 Hz, 2H), 2.70 (m, 4H), 2.48 (m, 4H), 2.19 (m, 5H), 1.95 (d, *J* = 12.87 Hz, 4H), 1.49 (s, 3H), 1.38 (dd, *J* = 7.21, 2.26 Hz, 6H), 1.30 (s, 2H), 0.87 (d, *J* = 1.52Hz, 9H), 0.05 (m, 13H); ¹³C NMR (101 MHz, CDCl₃) δ 210.34, 209.89, 128.21, 126.87, 67.13, 65.78, 62.89, 62.25, 60.84, 57.52, 55.26, 54.85, 50.46, 49.69, 45.89, 45.38, 33.54, 33.08, 33.02, 32.90, 32.53, 32.48, 26.09, 26.05, 23.47, 21.93, 20.05, 19.95, 18.64, 18.51, 18.46, -5.11, -5.14, -5.19; IR neat 2932, 2855, 1712, 1466, 1265, 1096, 910, 725 cm⁻¹; HRMS [M+H⁺] m/z ESI calc'd for [C₂₁H₃₈NO₂Si]⁺: 364.2672 observed: 364.2655.

(3*R*,3a*S*,6*R*,7a*S*,8*R*)-3-(3-((*tert*-butyldimethylsilyl)oxy)propyl)-3a,8-dimethylhexahydro-6,1ethanoindol-4(2*H*)-one (ketone 20).

Hydrogenation of pure SI-3: To a flask containing pure **SI-3** (950.5 mg, 2.614 mmol, 1 equiv) and PtO_2 (108.4 mg, 0.478 mmol, 0.18 equiv) was added MeOH (24 mL). The flask was sealed, the atmosphere was evacuated and then purged with H₂ (3x). After 46.5 h, the reaction was filtered through a Whatman® GD/X syringe filter with MeOH. The solvent was removed under reduced pressure and the product was isolated as an orange solid, 863.3 mg.

Hydrogenation of pure SI-3 and SI-4: To a flask containing **SI-3** and **SI-4** (1.090 g, 2.998 mmol, 1 equiv) and PtO_2 (136.2 mg, 0.600 mmol, 0.2 equiv) was added MeOH (30 mL). The flask was sealed, the atmosphere was evacuated and then purged with H₂ (3x). After 46.5 h, the reaction was filtered through a Whatman® GD/X syringe filter with MeOH. The solvent was removed under reduced pressure and the product was isolated as an orange solid, 1.064 g.

Materials from both hydrogenation reactions were combined to afford 1.928 g orange solid (73% yield, 2 steps). $R_f = 0.45$ (10% MeOH/DCM); ¹H NMR (400 MHz, CDCl₃) δ 3.79 (m, 2H), 3.62 (td, J = 6.62, 1.32 Hz, 2H), 3.07 (dd, J = 13.89, 9.41 Hz, 1H), 2.73 (dd, J = 13.90, 5.23 Hz, 1H), 2.60 (dd J = 17.18, 5.22 Hz, 1H), 2.54 (t, J = 11.29 Hz, 1H), 2.41 (m, 2H), 2.05 (m, 3H), 1.83 (t, J = 8.76 Hz, 1H), 1.66 (m, 1H), 1.50 (m, 2H), 1.29 (s, 3H), 1.17 (d, J = 6.97 Hz, 3H), 0.89 (s, 9H), 0.05 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 210.93, 65.11, 62.70, 56.66, 55.34, 50.36, 48.96, 47.26, 32.52, 32.37, 29.74, 25.21, 21.58, 21.09, 19.23, 18.47, -5.14; IR neat 2955, 2932, 2855, 2338, 1705, 1466, 1381, 1358, 1250, 1096, 1011, 941, 833, 779 cm⁻¹; $[\alpha]_D^{22} - 17.2$ (c 0.006, CHCl₃); HRMS [M+H⁺] m/z ESI calc'd for [C₂₁H₄₀NO₂Si]⁺: 366.2828 observed: 366.2810.

ethyl-5-((3R,3aS,6R,7aS,8R)-3a,8-dimethyl-4-oxooctahydro-6,1-ethanoindol-3-yl)-3-

oxopentanoate (β -keto ester ent-4b). To a solution of tricycle 20 (515.8 mg, 1.411 mmol, 1 equiv) in diethyl ether (14 mL) was added HCl (14 mL). After 5 min, the reaction was diluted with water (15 mL) and the aqueous layer was extracted with diethyl ether (1 x 20 mL). The diethyl ether layer was checked for product by LCMS, and no product was observed. To the aqueous layer was added 6 M NaOH until pH ~11, and the basic aqueous layer was extracted with chloroform (10 x 15 mL). The combined organic layers were dried over Na₂SO₄ and the solvent was removed under reduced pressure. The crude material was dissolved in chloroform (14 mL) and TFA (160.9 mg, 1.411 mmol, 1 equiv) was added to the solution. After 15 min, DMP (897.5 mg, 2.116 mmol, 1.5 equiv) as added and the flask was sealed. The apparatus was placed in an oil bath preheated to 60 °C. At t= 1.5 h, the reaction was incomplete and DMP (310.0 mg, 0.731 mmol, 0.5 equiv) was added. At t= 2 h, the reaction was diluted with saturated NaHCO₃ solution (10 mL) and water (10 mL). The aqueous layer was extracted with chloroform (10 x 15 mL), the combined organic layers were dried over Na₂SO₄, and the solvent was removed under reduced pressure. The crude aldehyde was dissolved in chloroform (28 mL) and to the solution was added SnCl₂ (535.1 mg, 2.822 mmol, 2 equiv) and ethyl diazoacetate (1.326 g, 9.887 mmol, 7 equiv). The flask was sealed and placed in an oil bath preheated to 60 °C. At t= 15 min the reaction was diluted with saturated NaHCO₃ solution (15 mL) and water (15 mL). The aqueous layer was extracted with chloroform (10 x 15 mL), the combined organic layers were dried over Na₂SO₄, and the solvent was removed under reduced pressure. Crude material was purified by flash chromatography, eluted with 0-20% MeOH/DCM. The product was isolated as a yellow oil, 255.5 mg (54% yield). R_f = 0.48 (10% MeOH/DCM); ¹H NMR (600 MHz, CDCl₃) δ 4.10 (qd, J = 7.15, 2.31 Hz, 2H), 3.35 (s, 2H), 3.30 (dd, J = 11.13, 7.63 Hz, 1H), 2.69 (dd, J = 13.77, 7.63 Hz, 1H), 2.61 (m, 1H), 2.51 (m, 1H), 2.45 (m, 2H), 2.34 (dd, J = 11.07, 8.77 Hz, 1H), 2.26 (dt, J = 11.07, 8.7717.37, 2.55 Hz, 1H), 1.90 (s, 2H), 1.78 (p, J = 8.98, 8.24 Hz, 3H), 1.72 (d, J = 14.88 Hz, 2H), 1.18 (t, J = 7.14, 3H), 1.14 (m, 5H), 1.00 (d, J = 7.00 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 213.23, 202.43, 167.24, 128.40, 77.37, 65.40, 61.48, 57.77, 55.59, 51.08, 49.74, 49.29, 47.59, 42.63, 33.01, 31.28, 24.19, 22.39, 21.45, 18.99, 14.20; IR neat 3017, 2932, 1713, 1466, 1265, 1211, 1088, 1018, 934, 748 cm⁻¹; $[\alpha]_{D}^{22}$ –2.1 (c 0.0014, CHCl₃); HRMS [M+H⁺] m/z ESI calc'd for [C₁₉H₃₀NO₄]⁺: 336.2175 observed: 336.2162.

1-((3a*R*,7*R*,8*S*,9a*S*,9b*R*)-7,9b-dimethyl-3a,4,6,7,8,9,9a,9b-octahydro-3*H*-1,8-

methanocyclopenta[a]indolizin-2-yl)ethan-1-one (tetracycle 21) To a Biotage microwave vial containing *ent*-4b (54.8 mg, 0.163 mmol, 1 equiv) was added *t*-BuOH (2 mL) and CsF (446.7 mg, 2.941 mmol, 18 equiv). The solution was submerged in an oil bath preheated to 100 °C and

stirred for 17 h. After 17 h, the *t*-BuOH was removed under reduced pressure. The crude material was passed through a pad of Celite 545 with chloroform. The chloroform was removed under reduced pressure and the crude material was dissolved in MeOH (3 mL). The solution was diluted with water, frozen with liquid N₂, and then lyophilized. The crude material was purified by flash chromatography and eluted with 0-10% MeOH/chloroform. The product was isolated as a yellow oil, 4.2 mg (11% yield); R_f = 0.39 (10% MeOH/DCM); ¹H NMR (600 MHz, CDCl₃) δ 3.44 (dd, *J* = 11.06, 8.91 Hz, 1H), 3.27 (dt, *J* = 14.23, 2.88 Hz, 1H), 3.18 (s, 1H), 2.86 (ttt, *J* = 15.79, 5.16, 3.98 Hz, 1H), 2.58 (dd, *J* = 14.19, 10.47 Hz, 1H), 2.42 (dd, *J* = 14.16, 5.82 Hz, 1H), 2.25 (s, 3H), 2.20, (m, 2H), 2.08 (td, *J* = 3.83, 2.02 Hz, 1H), 1.75 (m, 6H), 1.61 (dt, *J* = 14.18, 2.53 Hz, 1H), 1.47 (m, 1H), 1.06 (s, 3H), 0.83 (d, *J* = 6.88 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 198.48, 160.15, 135.07, 64.14, 60.44, 58.77, 52.94, 46.50, 36.03, 35.10, 33.40, 30.64, 29.70, 29.14, 22.91, 20.29, 18.44; IR neat 3742, 3017, 2955, 2338, 1651, 1604, 1358, 1219, 910 cm⁻¹; $[\alpha]_D^{22}$ –7.3 (c 0.0011, CHCl₃); HRMS [M+H⁺] m/z ESI calc'd for [C₁₆H₂₄NO]⁺: 246.1852 observed: 246.1840.

4.7 mg of (3*R*,3a*S*,6*R*,7a*S*,8*R*)-3a,8-dimethyl-3-(3-oxobutyl)hexahydro-6,1-ethanoindol-4(2*H*)-one (methyl ketone 22) (11% yield) was also isolated. $R_f = 0.52$ (10% MeOH/DCM); ¹H NMR (600 MHz, CDCl₃) δ 3.17 (m, 1H), 3.01 (m, 1H), 2.60 (dd, *J* = 13.84, 6.52 Hz, 1H), 2.55 (m, 3H), 2.47 (m, 1H), 2.41 (dd, *J* = 13.73, 5.04 Hz, 1H), 2.33 (m, 3H), 2.22 (m, 2H), 2.12 (s, *J* = 1.12 Hz, 1H), 1.92 (s, 2H), 1.78 (m, 4H), 1.70 (d, *J* = 14.19 Hz, 2H), 1.46 (d, *J* = 1.15 Hz, 1H), 1.29 (m, 1H), 1.17 (d, *J* = 1.11 Hz, 1H), 1.04 (dd, *J* = 7.01, 1.10 Hz, 4H); ¹³C NMR (151 MHz, CDCl₃) δ 214.78, 209.04, 65.73, 58.78, 55.86, 51.70, 50.90, 47.98, 43.81, 33.50, 32.47, 29.98, 28.12, 25.82, 23.05, 21.79, 18.97; IR neat 2878, 2330, 1713, 1697, 1450, 1357, 1219, 949 cm⁻¹; $[\alpha]_D^{22}$ 11.8 (c 0.0011, CHCl₃); HRMS [M+H⁺] m/z ESI calc'd for [C₁₇H₂₆NO₂]⁺: 264.1964 observed: 264.1947.

(3*R*,3a*S*,6*R*,7a*S*,8*R*)-3a,8-dimethyl-3-(3-oxobutyl)hexahydro-6,1-ethanoindol-4(2*H*)-one (methyl ketone 22). To a vial containing *ent*-4b (53.4 mg, 0.159 mmol) was added *t*-BuOH (2.5 mL). The vial was sealed and placed in an oil bath heated to 100 °C. After 4 d, the was diluted with water and lyophilized. Crude material was purified by flash chromatography and eluted with 0-3% chloroform/MeOH. The product was isolated as a colorless oil, 23.3 mg (55% yield). Spectra matched the above data.

Supporting Information

Supporting Information

Lopez,[‡] Ibrahim,[‡] Rosenhauer, Sirinimal, Stockdill

Zoomed in ¹H NMR (400 MHz, CDCl₃) of allylic alcohol 19

3.05 3.00 2.95 2.90 2.85 2.80 2.75 2.70 2.65 2.60 2.55 2.50 2.45 2.40 2.35 2.30 2.25 2.20 2.15 2.10 2.05 2.00 1.95 1.90 1.85 f1 (ppm) Zoomed in ¹H NMR (400 MHz, CDCl₃) of *N*-chloroamine *ent*-5c

Zoomed in ¹H NMR (400 MHz, CDCl₃) of tricycle SI-3

Zoomed in ¹H NMR (400 MHz, CDCl₃) of tricycle SI-3

