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1. GENERATION OF THE SIERPINSKI CARPETS

A Lindenmayer system (L-system)1 is a deterministic approach to iteratively generate

complex fractal objects starting from a finite alphabet of symbols and a collection of pro-

duction rules. These rules are simple prescriptions, such as inflations, that expand each

symbol into larger strings of symbols starting from an initial axiom, which is considered the

seed of the recursive construction. L-systems provide a computationally efficient and general

method to produce many fractal shapes. In Figure S1, a L-system implementation for the

generation of the first five order of complexity of a Sierpinski carpet (SC) is depicted. The

initial axiom is F , while the rules to iterate are (F → F+F−F−F−UGD+F+F+F−F ),

(G→ GGG). Both the variables F and G means “draw forward”, while +/− stand respec-

tively for “turn right/left by 90◦”, and U/D are respectively “pen up/down”.

FIG. S1. a-f, L-system algorithm for the SC generation at different fractal orders t = 0-5.

2. EXPERIMENTAL SIERPINSKI CARPETS

The main properties of the experimental SCs shown in Figure S2 are summarized as

follows. The size of the sub-cells at a fractal order t is Lt = L03−t, where L0 = 10 µm is

the size of the initial cell. At each iteration the side of the sub-cells is reduced by a factor

L = 3. Since the number of empty sub-cells in the SC increases by a factor N = 8 at

every iteration, the fractal dimension is dH = logN / logL ≈ 1.89. The total area of the

fractal is At =
∑

NtAt, with Nt = 8t−1 and At = L2
t the number and area of the squaret

elements, respectively, while the fractal spatial filling fraction is f = At/L
2
0. In Table S1, the 

experimental main quantities associated to the five orders of the Au SC are reported.
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FIG. S2. a-e, Color-coded SEM micrographs of 35 ± 3 nm thick Au SCs deposited on a Si/

SiO2 substrate for fractal orders t = 1 (black), t = 2 (red), t = 3 (green), t = 4 (blue), t = 5 

(magenta). f-j, Micrographs of 35 ± 3 nm thick Au periodic arrays with square size L1 (black), 

L2 (red), L3 (green), L4 (blue), L5 (magenta), as a comparison.

t Nt Nt Lt (µm) At (µm2) At (µm2) f

1 8 1 3.382± 0.050 11.438± 0.338 11.438± 0.338 0.114± 0.003

2 64 8 1.121± 0.011 1.257± 0.025 21.494± 0.200 0.214± 0.002

3 512 64 0.390± 0.017 0.152± 0.013 31.222± 0.832 0.312± 0.008

4 4096 512 0.130± 0.007 0.017± 0.002 39.926± 1.024 0.399± 0.010

5 32768 4096 0.044± 0.003 0.002± 0.001 48.118± 4.096 0.481± 0.041

TABLE S1. Summary of the Au SC experimental main quantities.

3. FRACTAL ANALYSIS OF THE CARPET RECIPROCAL LATTICE

We employed the box-counting algorithm2 (Gwyddion) to determine the fractal dimension

of a SC reciprocal lattice for fractal order t = 5, as shown in Figure S3. The algorithm works

as follows. A square array with periodicity x is superimposed on the reciprocal lattice image.

Initially x is set at ε/2 (where ε is the size of the image), resulting in an array of 22 boxes.

Then N(x) is the number of all the squares containing at least one pixel of the image. The

array periodicity x is then reduced stepwise by factor of 2 and the process is repeated until
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x equals to the distance between two adjacent pixels. The slope of the logN(x)-log 1/x plot

gives a fractal dimension dH = 1.91± 0.02.

FIG. S3. a, Reciprocal lattice of the SC at t = 5 calculated by fast Fourier transform of its SEM 

micrograph. The ∆ = ΓX and Σ = ΓM direction in the fractal reciprocal lattice are marked 

along with the first pseudo-Brillouin zones [−π/at, π/at]2 for the different orders. b, Box-counting 

algorithm applied on the SC reciprocal lattice. The fit returns a fractal dimension dH = 1.91±0.02.
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4. POLARIZATION-INDEPENDENT AU SIERPINSKI CARPETS

FIG. S4. Experimental extinction spectra of SCs at t = 5 for unpolarized light (magenta 

solid curve) and horizontal (black solid curve), diagonal (red solid curve), and vertical (blue solid 

curve) polarization.

5. FANO RESONANCES OF DIFFRACTION-MEDIATED PLASMONS

Generally, the microscopic origin of the Fano resonance arises from the constructive

and destructive interference of a narrow discrete resonance with a broad spectral line or

continuum3. The interference of the incident and re-emitted light generates a complex near-

field pattern and may give rise to either strong enhancement (constructive interference)

or strong suppression (destructive interference) of the electromagnetic field. The first ob-

servation of this asymmetric lineshape in optics is related to the Wood anomaly4. This

phenomenon can be explained by the interaction between the diffracted orders of a grating

coupler and the plasmon resonances, as a result of radiative coupling. Also, Fano resonances

may occur when Mie dipolar modes mix with higher-order modes.

In figure S5, we fitted the extinction resonances in a 45 nm thick SC for t = 5 with the

Fano total scattering cross-section3

σ =

(
qΓ
2

+ ω − ω0

)2(
Γ
2

)2
+ (ω − ω0)2

, (1)
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with Γ the resonance width, ω0 the resonance center, and q the Fano parameter, which

measures the ratio of the scattering amplitudes related to the two different modes. The fit

returns q1 = 0.9 ± 0.2 (dipole), q2 = 1.3 ± 0.2 (dipole), q3 = 3.5 ± 0.1 (quadrupole), and

q4 = 7.9± 0.4 (octapole) Fano parameters.

FIG. S5. Experimental extinction spectrum of a 45 nm thick SC for t = 5. Fit of the ω1
(5)

, ω2
(5)

, ω3
(5)

, 

and ω4
(5) 

resonances with the Fano function (red solid curve).

6. SCALING OF DIFFRACTION-MEDIATED PLASMONS

FIG. S6. a, Scaling relation between the experimental LSP resonance λ(
n
t) 

and the lattice parameter 

at. b, Experimental wavelength of LSP resonance as a function of wt = Lt/h. At short wavelengths 

plasmons are cut off by Au interband transitions, while at long wavelengths they are damped by 

radiative diffracted orders.
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7. ELECTROMAGNETIC SIMULATION OF THE AU SIERPINSKI CARPETS

We used CST Microwave Studio software for finite elements method simulations in order

to evaluate the electromagnetic near-field distributions of the Au SCs, and highlight the

differences between the fractal orders and their related periodic square lattices. For our

study we considered Au SCs deposited on CaF2 substrates. The complex dielectric constant

of the Au squares constituting the fractals was described by Rakic et al.5, while the dielectric

constant of the CaF2 substrate was given by Malitson6. The design of our structures is

illustrated in the inset of Figure S7. A linearly polarized plane wave (TM) radiation source

with a varying wavelength is placed above the structure at normal incidence. A perfectly

matched layer bounding box was implemented. The boundary conditions of the system

were considered as periodic. We used a sufficiently fine mesh that gave steady and mesh-

independent results for the near-field distributions. A direct solver was chosen for the

solution method (MUMPS), which allowed cluster computing for parallelization.

In the main text, we discussed the electric near-field distribution on Au SCs. Here,

analogous conclusions can be drawn for the magnetic near-field distribution, as shown for

orders t = 1-4 in Figure S7. Under quasi-static conditions (λ � L), the dipolar magnetic

near-field of the central element is remarkably affected by the dipoles of the neighboring

elements smaller in size, corresponding to the successive orders of the SC. Therefore, the

near-field couples with elements of different size, redistributing the local scattered radiation

on the overall structure, thus hierarchically localizing the magnetic near-field on the self-

similar structures7. In this way, an efficient transfer of LSP excitations towards progressively

smaller length scales occurs in the SC, as its order of complexity increases.
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FIG. S7. Finite element method simulations of plasmonic Au SCs. Simulated magnetic near-field 

enhancement (Hz/H0) distribution of SCs for orders t = 1-4 (from left to right) at their resonances 

λ
(
1
t) 

(a-d), λ(
2
t) 

(e-g), λ(
3
t) 

(h-i), λ(
4
t) 

(j). The incident wave points in the θ = 0 direction orthogonal 

to the plane of incidence with the magnetic field in the φ = 0 direction. The phase is set to zero in 

order to maximize the field intensity. Inset, a sketch of the modeled Au SC deposited on a CaF2 

substrate.
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8. SURFACE ENHANCED RAMAN SPECTROSCOPY

8.1. Enhancement factor

The SERS enhancement factor was calculated for orders t = 1-5 of the SC by the relation

EFsers =
〈Isample〉
〈IAu〉

AAu

AsampleNsample

, (2)

where 〈Isample〉 is the average Raman intensity in adu units (1 adu = 1 count/mWs) at

ω? = 1655 cm−1 measured over the SC maps, AAu = 0.785 µm2 is the area of the laser beam

spot on the reference Au film, Asample = L2
t is the area of the smallest square of the fractal

at order t for which the Raman enhancement is maximum, Nsample is the number of the

smallest squares within the beam spot area (Figure S8), and 〈IAu〉 is the average Raman

intensity in adu units at ω? measured over the map of the ideally smooth reference Au film.

Notably, electromagnetic simulations showed that the reference Au film surface roughness

(≈ 3 nm) provides itself an electric field enhancement factor of about 2, therefore a Raman

intensity factor 〈Iref〉/〈IAu〉 ≈ 16 with respect to an ideally smooth Au surface. It is worth

noting that all the experimental conditions for the sample and the reference are exactly the

same.

FIG. S8. Scanning electron microscopy micrograph of a SC for t = 5. Red solid circles mark the 

size of the Raman laser beam spots in order to estimate the number Nsample of the smallest 

structures that contribute to the maximum SERS enhancement factor. For t = 1-5, Nsample = 1, 

1, 1, 4, 30.
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8.2. Mapping

The experimental enhanced electric field Ez/E0 distribution of a SC for t = 5 order

obtained from SERS mapping the BCB vibrational mode ω? at λex = 633 nm, together with

its cross section along the marked solid red line are reported in Figure S9a. The cross section

in Figure S9b clearly shows a field enhancement of a factor about 10 between the region on

the central square of size L1 and the adjacent region with squares of size L4 and L5.

FIG. S9. a, Experimental electric field enhancement Ez/E0 distribution of a SC for fractal order t = 

5. b, Cross section of the map along the marked solid red line.
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5 A. D. Rakić, A. B. Djurǐsic, J. M. Elazar, and M. L. Majewski, Optical Properties of Metallic

Films for Vertical-Cavity Optoelectronic Devices, Appl. Opt. 37, 5271 (1998).

6 I. H. Malitson, A Redetermination of Some Optical Properties of Calcium Fluoride, Appl. Opt.

2, 1103 (1963).

7 S. V. Boriskina, A. Gopinath, and L. D. Negro, Optical Gap Formation and Localization Prop-

erties of Optical Modes in Deterministic Aperiodic Photonic Structures, Opt. Express 16, 11813

(2008).

S11




