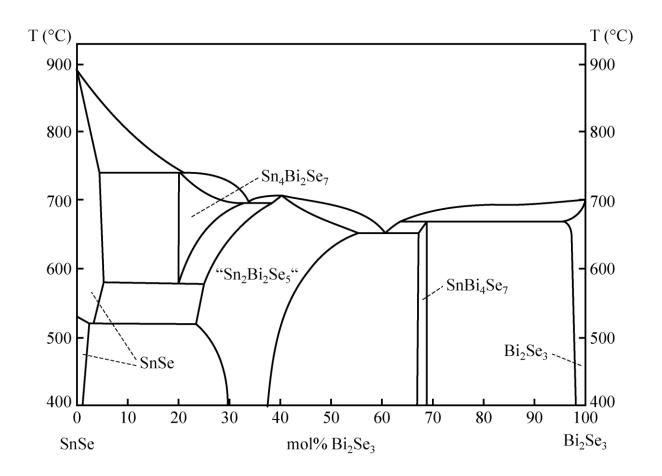
Supporting Information

Title: The cornucopia of structures in the pseudobinary system (SnSe)xBi2Se3 - A crystal-

chemical copycat


Authors: Frank Heinke,^a Philipp Urban,^a Anton Werwein,^a Christina Fraunhofer,^{a,b} Tobias

Rosenthal,^b Stefan Schwarzmüller,^a Daniel Souchay,^a Felix Fahrnbauer,^a Vadim Dyadkin,^c

Gerald Wagner^a and Oliver Oeckler^{a,*}

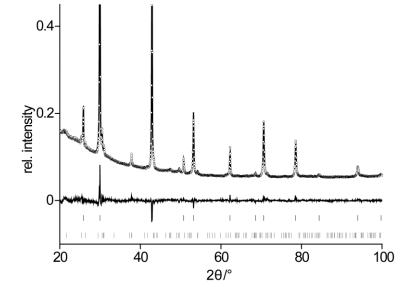
a) Leipzig University, Faculty of Chemistry and Mineralogy, IMKM, Scharnhorststr. 20, 04275 Leipzig, Germany
b) LMU Munich, Department of Chemistry, Butenandtstr. 5-13 (D), 81377 Munich, Germany

c) European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble, France

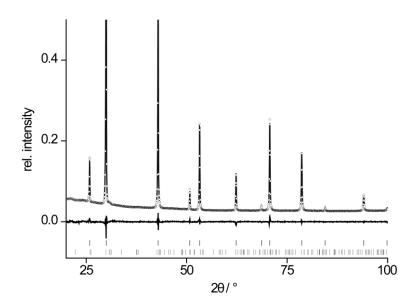
Figure S1: Phase diagram for the pseudo-binary system SnSe-Bi₂Se₃, redrawn from: Adouby, K.; Elidrissi Moubtassim, M. L.; Vicente, C. P.; Jumas, J. C.; Touré, A. A. X-ray diffraction, ¹¹⁹Sn Mössbauer and thermal study of SnSe–Bi₂Se₃ system. *J. Alloys Compd.* **2008**, *453*, 161-166.

Table S1: Synthesis parameters of ternary tin bismuth selenides: nominal compositions, local sample names, melting conditions, annealing conditions (including remarks on quenching to room temperature) and parameters for chemical transport reaction as well as information on the utilization of the respective samples.

nominal	used for	melting at	annealing at	chemical transport		
composition sample name		- quenched in …	- then quenched in	temperature (hot/cold)	transport agent	
(SnSe) ₃ Bi ₂ Se ₃	a) PXRD b) SEM-EDX	950 ℃ (for 21 h) - H₂O				
PUT062	-) -					
(SnSe) ₄ Bi ₂ Se ₃ **	a) PXRD b) SCXRD	940 °C (for 17.5 h) - H₂O		640 °C / 585 °C (for 19 h)	3.6 mg l ₂	
PUT060	c) SEM-EDX					
(SnSe)4Bi2Se3 ***	a) thermoelectric characterization	940 °C (for 2.5 h) - air				
PUT078	b) PXRD					
(SnSe) ₄ Bi ₂ Se ₃	a) thermoelectric characterization	940 °C (for 4 h) - air				
PU086	b) PXRD					
(SnSe)₅Bi₂Se₃ *	a) PXRD	940 °C (for 19.5 h) - N₂ (liquid)				
PUT066						
(SnSe) _{0.5} Bi ₂ Se ₃ **	a) PXRD b) SCXRD	940 °C (for 21.5 h) - H₂O	620 °C (for 167 h) - air	547 °C / 445 °C (for 94 h)	4.6 mg l ₂	
PUT069	c) TEM study	-		, , , , , , , , , , , , , , , , , , ,		
(SnSe) _{0.5} Bi ₂ Se ₃ ***	a) thermoelectric characterization	900 °C (for 48.5 h) - air	500 °C (for 167 h) - H₂O			
FRHW13	b) PXRD c) TEM study	2				
(SnSe) ₂ Bi ₂ Se ₃	a) PXRD b) SCXRD	940 °c (for 3 h) - H2O	620 °C (163 h) - H₂O			
PUT071	6,00,00	1120	1120			
(SnSe)2Bi2Se3 ***	a) thermoelectric	900 °C (for 0.5 h)	620 °C (for 264 h)			
FRHW32	characterization b) PXRD c) TEM study d) resonant SCXRD measurements	- slow cooling	- H ₂ O			
(SnSe) _{~1.86} Bi ₂ Se ₃	a) PXRD	900 °C (for 24 h)	530 °C (for 120 h)			
FRHW09	b) resonant SCXRD measurements	- H ₂ O	- H ₂ O			
$(SnSe)_{1.5}Bi_2Se_3$	a) PXRD b) SCXRD	a) 900 °C (for 72 h) - air b) 900 °C (19)	550 °C (for 90 h) - air			
PU089	c) SEM-EDX	- slow cooling to 550 °C				


* For quenching in liquid nitrogen, an ampoule containing the melt was removed from the furnace at 940 °C and cracked open at a predetermined breaking point so that the liquid melt could be poured on an aluminium plate cooled with liquid nitrogen.

** For chemical vapor transport, ~150 mg of fused and air-quenched materials were crushed and sealed in silica glass ampoules (length ~20 cm, diameter 15 mm) under vacuum with ~3 wt% iodine (Alfa Aesar, sublimed, 99.8 %) as transport agent. Chemical vapor transport took place in a two-zone furnace.


*** Samples for the thermoelectric characterization of $(SnSe)_4Bi_2Se_3$, $(SnSe)_{0.5}Bi_2Se_3$ and $(SnSe)_2Bi_2Se_3$ (total weight ~3 g each) were synthesized in a similar way as the melt-quenched or annealed samples of smaller total weight, using ampoules with a flat bottom (length ~10 cm, diameter 15 mm). After removing them from the furnace, they were fixed in vertical orientation in order to solidify the melt as a flat ingot on the bottom of the ampoule. These ingots were polished with SiC grinding powder and cut to cuboid shapes when necessary.

chemical composition	structure type	experimental density in g/cm ³	theoretical density in g/cm ³	percentage of theoretical density
Sn ₄ Bi ₂ Se ₇	NaCl	6.500	6.581 (single crystal data)	98.8 %
SnBi ₄ Se ₇	GeSb ₂ Te ₄	7.218	7.324	98.6 %
"Sn2Bi2Se5"	L4,4 lillianite	6.828	6.854"	99.6 %

Table S2: Experimental densities of samples for thermoelectric characterization compared with the corresponding theoretical ("X-ray") densities derived from crystal structure data.

Figure S2: Rietveld refinement for a melt-quenched sample with the nominal composition $Sn_5Bi_2Se_8$ (x = 5, the strongest reflection is truncated at 45% of the maximum intensity): data points are drawn as circles, calculated data as a black line, difference plot as a black line below, reflection positions indicated by vertical lines for the cubic phase (top row) and for SnSe (bottom row).

Figure S3: Rietveld refinement for a melt-quenched sample with the composition $Sn_4Bi_2Se_7$ (x = 4, the strongest reflection is truncated at 50% of the maximum intensity): data points are drawn as circles, calculated data as a black line, difference plot as a black line below, reflection positions indicated by vertical lines for the cubic phase (top row) and for SnSe (bottom row).

formula	Sn _{0.582} Bi _{0.279} Se *	SnSe
phase fraction	90 wt-%	10 wt-%
formula mass	205.39 gmol ⁻¹	197.67 gmol ⁻¹
crystal system	cubic	orthorhombic
space group	Fm3m	Pnma
cell parameters	a = 5.95931(13)Å	a = 11.541(2) Å b = 4.1663(9) Å c = 4.3976(11) Å
cell volume	211.636(2) Å ³	211.45(8) Å ³
X-ray density	6.4764 (4) gcm ⁻³	6.209(2) gcm ⁻³
Ζ	4	4
R _{Bragg}	0.036	0.022
radiation	Cu- <i>K</i> α1 (λ =	1.54051 Å)
2θ range	4° < 20	< 100°
refined parameters	31, thereof 18 f	or background
R _p / R _{wp}	0.016 /	0.023
GooF	1.1	48

Table S3: Crystal data and results of the Rietveld refinement of quenched $Sn_5Bi_2Se_8 = Sn_{0.625}Bi_{0.25}Se_9$. Also note the footnote of Table S3.

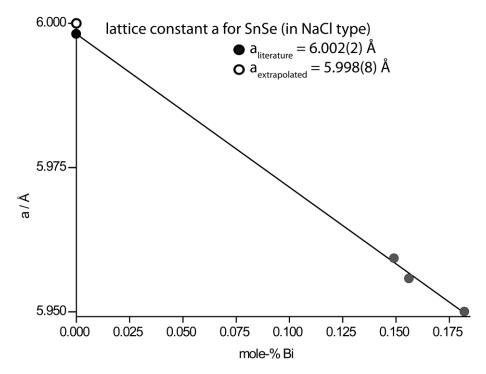
* The composition was constrained to Sn_{0.582}Bi_{0.279}Se. This takes into account the exsolution of SnSe according to the following reaction equation: Sn_{0.625}Bi_{0.25}Se \rightarrow 0.104 SnSe + Sn_{0.521}Bi_{0.25}Se_{0.896} (= Sn_{0.582}Bi_{0.279}Se).

Table S4: Coordinates, site occupancies and equivalent isotropic displacement parameters of rocksalt-type $Sn_{0.582}Bi_{0.279}Se$ in a sample with the nominal composition $Sn_5Bi_2Se_8 = Sn_{0.625}Bi_{0.25}Se$.

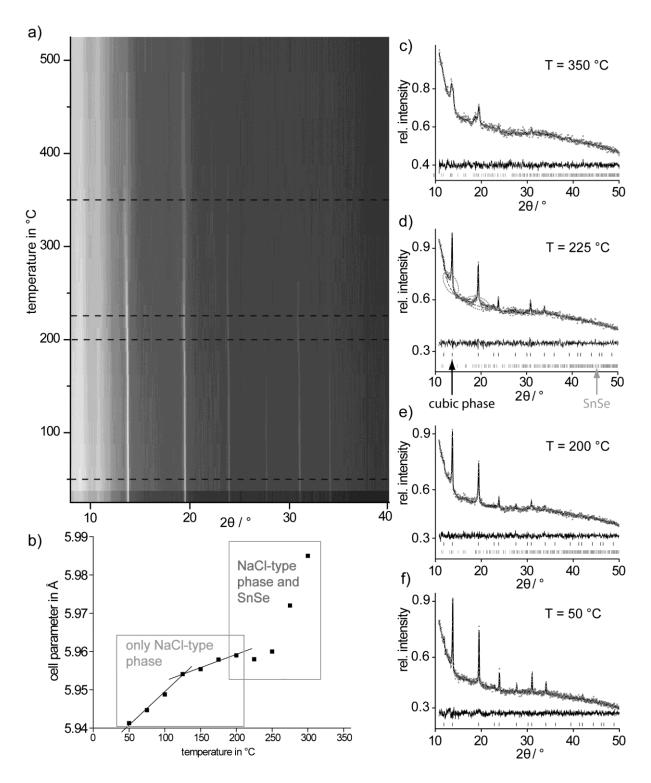
Atom	Wyckoff position	x	у	z	s.o.f. *	B _{iso} / Ų
Se1	4 <i>a</i>	0	0	0	1	1.32(6)
Sn2/Bi2	4b	1/2	1/2	1/2	0.582 / 0.279	1.53(5)

* site occupancies constrained to composition $Sn_{0.582}Bi_{0.279}Se$.

changed significantly by the small amount of SnSe as a side phase).	*
$Sn_{0.57}Bi_{0.29}Se$ (x = 4, the composition was constrained to the no	ominal composition, which is not
Table S5: Crystallographic data and results of the Rietveld refin	nement of quenched $Sn_4Bl_2Se_7 =$


formula	Sn _{0.57} Bi _{0.29} Se ₁	SnSe
phase fraction	98 wt-%	2 wt-%
formula mass	206.54 gmol ⁻¹	197.67 gmol ⁻¹
crystal system	cubic	orthorhombic
space group	Fm3m	Pnma
cell parameters	a = 5.95581(4)Å	a = 11.63(2) Å b = 4.196(7) Å c = 4.243(8) Å
cell volume	211.262(5) Å ³	207.0(6) Å ³
X-ray density	6.4935(2) gcm ⁻³	6.34(2) gcm ⁻³
Ζ	4	4
R _{Bragg}	0.009	0.008
radiation	$Cu-K_{\alpha 1}$ ($\lambda = 1$	1.54051 Å)
2θ range	4° < 20	< 100°
refined parameters	25	5
background parameter	12	2
Rp / Rwp	0.016 /	0.022
GooF	0.95	55

* For the rocksalt-type phases with x = 3 (see main text) and x = 4, microstrain peak broadening was considered by a Lorentzian function and crystallite-size broadening by a Gaussian function for Sn₃Bi₂Se₆ (x = 3) and a convolution of a Gaussian and a Lorentzian function for Sn₄Bi₂Se₇ and Sn₅Bi₂Se₈ (x = 4, x = 5), respectively. The peak broadening of SnSe due to crystallite size effects was described with a Gaussian function. Preferred orientation of SnSe was taken into account by spherical harmonics of the fourth order. The atomic parameters of SnSe were taken from literature [Adouby, K.; Pérez Vicente, C.; Jumas, J. C. *Z. Kristallogr.* **1998**, *213*, 343-349] and not refined, only the unit-cell parameters were refined.


Table S6: Coordinates, site occupancies and equivalent isotropic displacement parameters of
rocksalt-type $Sn_4Bi_2Se_7 = Sn_{0.57}Bi_{0.29}Se$ (x = 4).

Atom	Wyckoff position	x	у	Z	s.o.f.	B _{iso} / Ų
Se1	4a	0	0	0	1	0.74(3)
Sn2/Bi2	4b	1/2	1/2	1/2	0.57 / 0.29*	1.03(2)

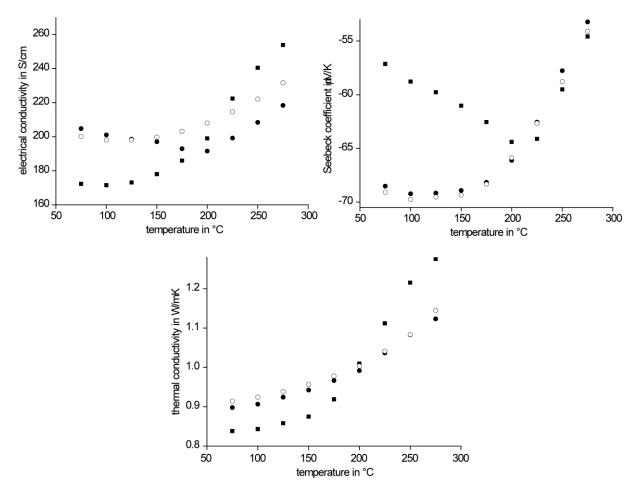

* s.o.f. constrained to match the nominal composition of $Sn_{0.57}Bi_{0.28}Se$.

Figure S4: Lattice parameters of quenched rocksalt-type phases (SnSe)_xBi₂Te₃ (gray points) as a function of the Bi content (Vegard's law) with the extrapolated lattice parameter of SnSe in the NaCl structure type (black point) and the value reported for thin films of NaCl-type SnSe in the literature (empty circle; I. R. Nuriev, A. K. Sharifova, *Sov. Phys. Crystallogr.* **1989**, *34*, 635-636). The lattice parameters of the rocksalt-type phases decrease with increasing Bi₂Se₃ content, which can be explained by the simultaneously increasing number of vacancies and Bi³⁺ ions incorporated in the structure; Bi³⁺ ions are expected to be smaller than Sn²⁺ ions due to their higher charge. However, an explanation by means of the different ionic radius on Sn²⁺ is not as straightforward as for other main group element ions because the ionic radius on Sn²⁺ is not determined reliably (cf. Shannon, R. D.; *Acta Crystallogr. Sect. A* **1976**, *32*, 751-767).

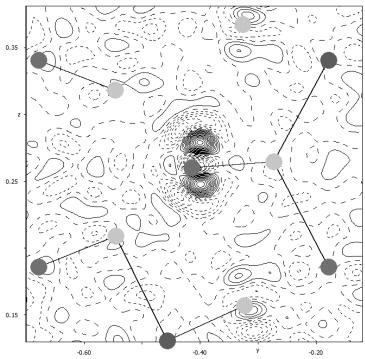
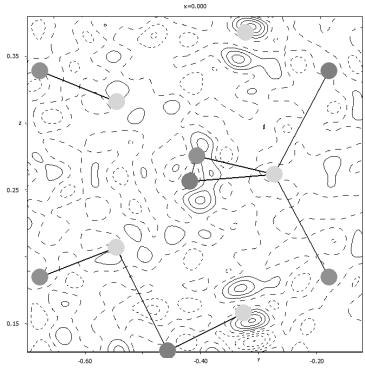
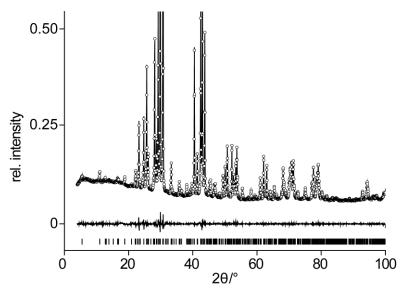

Figure S5: a) HT-PXRD plot for a quenched sample with the nominal composition Sn₄Bi₂Se₇ up to 500 °C, dotted lines indicate the patterns shown on the right [c)-f)]; b) progression of the cubic lattice parameter *a* upon heating with changing slope at 125 °C; c)-f) Rietveld refinements for selected patterns at different temperatures: data points are drawn as circles, calculated data as a black line, difference plot as a black line below, reflection positions indicate by vertical lines for the cubic phase (black) and for SnSe (gray); in d) dotted ellipsoids indicate misfits and the broken line represents the background fit.

Figure S6: Thermal conductivity (bottom), Seebeck coefficient (top right) and electrical conductivity (top left) of a sample with the nominal composition $Sn_4Bi_2Se_7$ (black spheres = averaged heating curves and hollow spheres = averaged cooling curved after the decomposition, black squares = first heating step).


Difference Fourier maps:

The off-edge dataset of the L7,7-type structure was tested regarding a possible description as a twin in the lower symmetric space group $Cmc2_1$ instead of Cmcm. The following figures depict the residual electron densities around the interconnecting cation site between the NaCl-type slabs.



<=0.000

Figure S7: Residual electron densities around the cation site interconnecting the NaCl-type slabs for the structure refinement in space $Cmc2_1$ with a mirror plane perpendicular [001] as twin law; light gray circles depict Se atoms and dark gray circles depict the cation positions, contour = 0.5 electrons.

Figure S8: Residual electron densities around the cation site interconnecting the NaCl-type slabs for the structure refinement in space $Cmc2_1$ with split position for the interconnecting cation site. Light gray circles depict Se atoms and dark gray circles depict the cation positions, contour = 0.5 electrons.

Figure S9: Rietveld refinement of a sample (annealed at 940 °C, then water-quenched) with the nominal composition $(SnSe)_2Bi_2Se_3$ (strongest reflection truncated at 55 % of max. intensity), data points drawn as circles, calculated data as black line; difference plot as black line below; reflection positions indicated by vertical lines; L7,7 model taken from the single crystal refinement of $Sn_{3.6}Bi_{3.6}Se_9$ (cf. Tables 5 and S7; cell parameters refined, atom coordinates fixed, refined overall isotropic displacement for anions and cations each); $R_p = 0.021$, $R_{wp} = 0.027$, GooF = 1.246 (preferred orientation taken into account by 6th order spherical harmonics with individual sets of parameters; crystallite size by convolution of a Gaussian and a Lorentzian function, microstrain by a Lorentzian function).

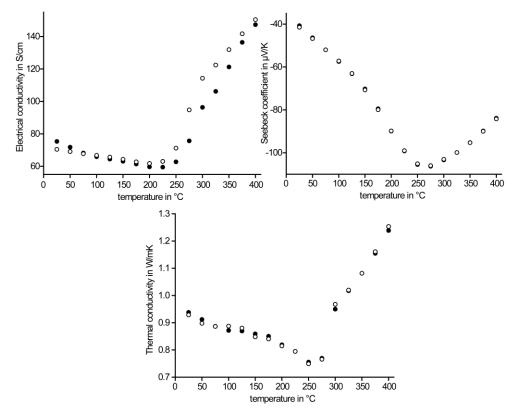
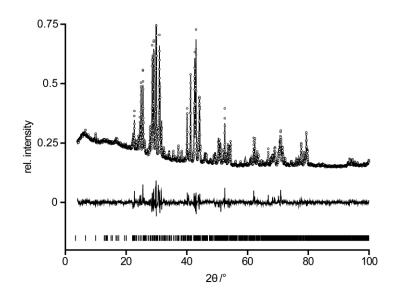

Atom	Site	x	У	Z	U _{eq}	s.o.f.	overall occupancy
Sn1 Bi1	8d	0	0.178251(19)	0.172730(9)	0.03128(10)	0.581(14) 0.376(7)	0.957(14)
Sn2 Bi2	8d	0	0.26869(2)	0.557211(11)	0.03052(13)	0.470(7) 0.291(4)	0.761(7)
Sn3 Bi3	8d	0	0.91382(5)	0.24109(3)	0.0496(4)	0.318(8) 0.149(4)	0.467(8)*
Sn4 Bi4	4 <i>d</i>	0	0	0	0.03356(13)	0.379(11) 0.526(6)	0.905(11)
Sn5 Bi5	8d	0	0.456713(14)	0.117269(7)	0.03116(9)	0.241(7) 0.721(4)	0.962(7)
Se1	8 <i>d</i>	0	0.09178(3)	0.083945(16)	0.02735(14)	1	1
Se2	8 <i>d</i>	0	0.17557(4)	0.64464(2)	0.03905(18)	1	1
Se3	8 <i>d</i>	0	0.36279(3)	0.027132(14)	0.02821(15)	1	1
Se4	8 <i>d</i>	0	0.54594(3)	0.195491(17)	0.03029(14)	1	1
Se5	4 <i>d</i>	0	0.27297(5)	0.25	0.0317(2)	1	1

Table S7: Atom positions, site occupancies and equivalent isotropic displacement parameters (in Å²) of Sn_{3.6}Bi_{3.6}Se₉ at RT, $U_{eq} = 1/3 \cdot [U_{11} + U_{22} + U_{33}]$.


* This site generates the split position between the NaCl-like slabs. The maximum occupancy is therefore limited to 0.5.

Atom	U 11	U 22	U ₃₃	U 12	U 13	<i>U</i> ₂₃
Sn1 / Bi1	0.02925(17)	0.03174(17)	0.03284(19)	0	0	0.00018(10)
Sn2 / Bi2	0.0290(2)	0.0284(2)	0.0342(2)	0	0	-0.00116(13)
Sn3 / Bi3	0.0401(3)	0.0499(4)	0.0588(10)	0	0	0.0125(3)
Sn4 / Bi4	0.0330(2)	0.0343(2)	0.0334(2)	0	0	-0.00114(14)
Sn5 / Bi5	0.02860(15)	0.03082(15)	0.03406(16)	0	0	-0.00127(8)
Se1	0.0268(2)	0.0281(2)	0.0272(3)	0	0	0.00062(18)
Se2	0.0258(3)	0.0330(3)	0.0583(4)	0	0	-0.0144(2)
Se3	0.0269(3)	0.0271(2)	0.0306(3)	0	0	0.00115(19)
Se4	0.0305(2)	0.0317(2)	0.0287(3)	0	0	0.00046(17)
Se5	0.0336(3)	0.0323(3)	0.0291(4)	0	0	0

Table S8: Anisotropic displacement parameters (in Å²) of Sn_{3.6}Bi_{3.6}Se₉ at RT, defined as exp [$-2\pi^2$ (U₁₁h² a^{*2} + U₂₂k²b^{*2} + U₃₃l²c^{*2} + U₁₂hka^{*}b^{*} + U₁₃hla^{*}c^{*} + U₂₃klb^{*}c^{*})].

Figure S10: Thermoelectric characterization of Sn₂Bi₂Se₅ in the L4,4-lillianite type with full spheres for the averaged heating curved and empty spheres for the averaged cooling curved.

Figure S11: Rietveld refinement of a sample (annealed at 530 °C, then water-quenched) with the nominal composition (SnSe)_{1.86}Bi₂Se₃ (strongest reflection truncated at 75 % of max. intensity), data points drawn as circles, calculated data as black line; difference plot as black line below; reflection positions indicated by vertical lines; L4,7 model taken from the single crystal refinement of Sn_{11.49}Bi_{12.39}Se₃₀ (cf. Tables 6 and S9; cell parameters refined, atom coordinates fixed, refined overall isotropic displacement for anions and cations each); $R_p = 0.024$, $R_{wp} = 0.038$, GooF = 1.545 (preferred orientation taken into account by 8th order spherical harmonics with individual sets of parameters; crystallite size and microstrain by a Lorentzian function).

Atom	Site	x	у	Z	U _{eq}	s.o.f.	overall occupancy
Bi1 Sn1	4d	0.07005(2)	0.5	0.141175(10)	0.02552(9)	0.759(16) 0.21(3)	0.97(3)
Bi2 Sn2	4d	0.13068(2)	0.5	0.460970(10)	0.02280(9)	0.624(6) 0.330(10)	0.954(10)
Bi3 Sn3	2d	0	0	0	0.0300(2)	0.552(9) 0.35(2)	0.902(9)
Bi4 Sn4	4d	0.28113(3)	0	0.068288(16)	0.02496(14)	0.330(6) 0.407(10)	0.737(10)
Bi5 Sn5	4d	0.89381(2)	0	0.393771(12)	0.02533(10)	0.523(6) 0.404(10)	0.927(10)
Bi6 Sn6	4d	0.86202(3)	0	0.207953(13)	0.02516(11)	0.428(5) 0.495(10)	0.923(10)
Bi7a Sn7a	4d	0.14645(14)	0	0.31380(19)	0.0446(7)	0.078(7) 0.451(16)	
Bi7b Sn7b	4 <i>d</i>	0.14368(13)	0	0.2890(2)	0.0487(9)	0.079(8) 0.400(16)	1.01(2)
Se8	4 <i>d</i>	0.92760(4)	0	0.10109(2)	0.0197(2)	1	1
Se9	2d	0	0	0.5	0.0206(2)	1	1
Se10	4 <i>d</i>	0.20920(5)	0	0.17447(3)	0.0336(2)	1	1
Se11	4 <i>d</i>	0.25176(5)	0	0.42492(3)	0.0295(2)	1	1
Se12	4 <i>d</i>	0.78336(5)	0	0.30005(2)	0.0264(2)	1	1
Se13	4 <i>d</i>	0.02230(5)	0.5	0.36742(2)	0.02291(15)	1	1
Se14	4 <i>d</i>	0.99936(5)	0.5	0.23563(2)	0.0229(2)	1	1
Se15	4 <i>d</i>	0.14354(4)	0.5	0.03273(2)	0.0210(2)	1	1

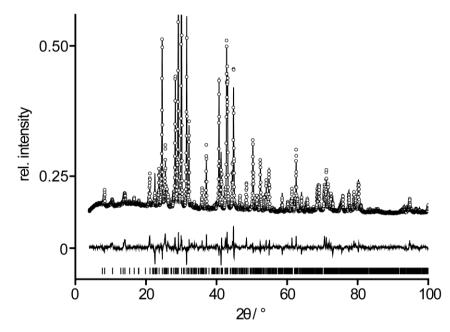
Table S9: Atom positions, site occupancies and equivalent isotropic displacement parameters (in Å²) of Sn_{11.49}Bi_{12.39}Se₃₀ at RT; $U_{eq} = 1/3 [U_{22} + 1/sin^2\beta \cdot (U_{11} + U_{33} + 2U_{13} \cdot cos\beta)]$.

Atom	U ₁₁	U ₂₂	U ₃₃	U 12	<i>U</i> ₁₃	U ₂₃
Bi1/Sn1	0.02592(16)	0.0223(2)	0.02880(15)	0	0.00495(10)	0
Bi2/Sn2	0.02132(16)	0.0203(2)	0.02692(15)	0	0.00291(10)	0
Bi3/Sn3	0.0323(3)	0.0277(3)	0.0304(3)	0	0.0052(2)	0
Bi4/Sn4	0.0227(3)	0.0228(2)	0.0293(2)	0	0.0024(2)	0
Bi5/Sn5	0.02404(18)	0.02265(17)	0.02960(17)	0	0.00422(12)	0
Bi6/Sn6	0.0245(2)	0.02238(18)	0.02848(18)	0	0.00201(13)	0
Bi7a/Sn7a	0.0468(7)	0.0384(6)	0.0498(17)	0	0.0101(7)	0
Bi7b/Sn7b	0.0487(8)	0.0353(7)	0.060(2)	0	-0.0036(8)	0
Se8	0.0198(3)	0.0188(3)	0.0201(2)	0	0.0008(2)	0
Se9	0.0230(4)	0.0192(3)	0.0203(3)	0	0.0052(3)	0
Se10	0.0232(3)	0.0176(3)	0.0570(4)	0	-0.0112(3)	0
Se11	0.0240(3)	0.0185(3)	0.0485(4)	0	0.0155(3)	0
Se12	0.0270(3)	0.0263(3)	0.0259(3)	0	0.0035(2)	0
Se13	0.0218(3)	0.0221(3)	0.0251(3)	0	0.0034(2)	0
Se14	0.0239(3)	0.0231(3)	0.0215(2)	0	0.0018(2)	0
Se15	0.0199(3)	0.0187(3)	0.0240(3)	0	0.0010(2)	0

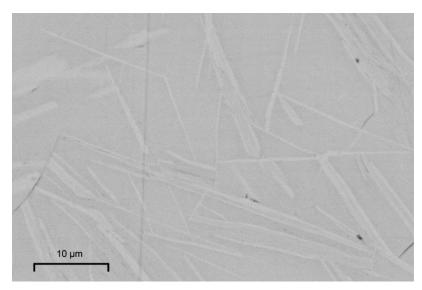
Table S10: Anisotropic displacement parameters (in Å²) of Sn_{11.49}Bi_{12.39}Se₃₀ at RT, defined as exp [- $2\pi^2$ (U₁₁h² a^{*2} + U₂₂k²b^{*2} + U₃₃l²c^{*2} + U₁₂hka^{*}b^{*} + U₁₃hla^{*}c^{*} + U₂₃klb^{*}c^{*})].

AtomSitexyz U_{eq} OccupancyBi1 Sn12d0.04893(4)0.250.38866(8)0.0222(2)0.6555(6) 0.3445(6)Bi2 Sn22d0.13565(4)0.750.16529(9)0.0248(3)0.5304(8) 0.4694(9)Bi3 Sn32d0.95145(4)0.250.11162(8)0.0224(3)0.5567(6) 0.4433(6)Bi4 Bi42d0.13129(5)0.250.66363(10)0.0239(3)0.4170(8)	overall occupancy 1.0 (constrained) 0.9998(9) 1.0 (constrained)
Sn1 0.3445(6) Bi2 Sn2 2d 0.13565(4) 0.75 0.16529(9) 0.0248(3) 0.5304(8) 0.4694(9) Bi3 Sn3 2d 0.95145(4) 0.25 0.11162(8) 0.0224(3) 0.5567(6) 0.4433(6) Bi4 2d 0.13129(5) 0.25 0.66363(10) 0.0239(3) 0.4170(8)	(constrained) 0.9998(9) 1.0 (constrained)
Sn2 0.4694(9) Bi3 Sn3 2d 0.95145(4) 0.25 0.11162(8) 0.0224(3) 0.5567(6) 0.4433(6) Bi4 2d 0.13129(5) 0.25 0.66363(10) 0.0239(3) 0.4170(8)	1.0 (constrained)
Sn3 0.4433(6) Bi4 2d 0.13129(5) 0.25 0.66363(10) 0.0239(3) 0.4170(8)	(constrained)
	0.0745(0)
Sn4 0.4545(9)	0.8715(9)
Bi5a 2 <i>d</i> 0.2319(2) 0.25 0.9326(4) 0.0421(9) 0.2022(9) Sn5a 0.2486(9)	(-)
Bi5b 2 <i>d</i> 0.2568(3) 0.25 0.9250(5) 0.058(2) 0.1601(9) Sn5b 0.2580(9)	0.8689(9)
Se6 2 <i>d</i> 0.16865(9) 0.25 0.29901(17) 0.0253(5) 1	1
Se7 2 <i>d</i> 0.00057(12) 0.75 0.2477(3) 0.0219(3) 1	1
Se8 2 <i>d</i> 0.83461(9) 0.25 0.20255(16) 0.0238(5) 1	1
Se9 2 <i>d</i> 0.09576(11) 0.25 0.0168(2) 0.0312(5) 1	1
Se10 2 <i>d</i> 0.25193(11) 0.75 0.06892(10) 0.0285(3) 1	1
Se11 2 <i>d</i> 0.09016(10) 0.75 0.51786(19) 0.0292(5) 1	1

Table S11: Atom positions, site occupancies and equivalent isotropic displacement parameters (in Å²) of Sn_{2.22}Bi_{2.52}Se₆ at RT, $U_{eq} = 1/3 \cdot [U_{11} + U_{22} + U_{33}]$.


Atom	U ₁₁	U ₂₂	U ₃₃	U_{12}	U ₁₃	U ₂₃
Bi1/Sn1	0.0271(4)	0.0187(6)	0.0207(5)	0	0.0002(3)	0
Bi2/Sn2	0.0302(5)	0.0207(6)	0.0236(6)	0	-0.0012(4)	0
Bi3/Sn3	0.0260(4)	0.0186(6)	0.0226(5)	0	-0.0015(3)	0
Bi4/Sn4	0.0276(5)	0.0208(8)	0.0232(7)	0	-0.0004(4)	0
Bi5a/Sn5a	0.0437(15)	0.038(2)	0.0451(19)	0	0.011(2)	0
Bi5b/Sn5b	0.084(4)	0.036(2)	0.054(2)	0	0.027(4)	0
Se6	0.0244(8)	0.0244(14)	0.0271(13)	0	-0.0003(7)	0
Se7	0.0216(5)	0.0191(6)	0.0250(6)	0	-0.0036(4)	0
Se8	0.0252(8)	0.0227(13)	0.0234(12)	0	-0.0007(7)	0
Se9	0.0525(12)	0.0181(14)	0.0231(12)	0	-0.0091(9)	0
Se10	0.0292(6)	0.0279(7)	0.0285(6)	0	0.0038(11)	0
Se11	0.0442(11)	0.0194(14)	0.0239(11)	0	-0.0098(9)	0

Atom	Site	x	У	Z	$U_{ m eq}$	Occupancy	overall occupancy
Bi1 Sn1	2d	0.14995(4)	0	0.54479(3)	0.02237(16)	0.437(2) 0.563(2)	1.0 (constrained)
Bi2 Sn2	4 <i>d</i>	0	0	0	0.0233(4)	0.144(12) 0.441(7)	0.585(12)
Bi3 Sn3	2d	0.49428(4)	0	0.16127(3)	0.0248(2)	0.430(6) 0.529(4)	0.959(6)
Bi4 Sn4	2d	0.75263(4)	0	0.08414(3)	0.0252(2)	0.050(6) 0.823(4)	0.873(6)
Bi5 Sn5	2d	0.55408(4)	0	0.37756(3)	0.02387(18)	0.565(2) 0.435(2)	1.0 (constrained)
Bi6a Sn6a	2d	0.2652(2)	0	0.2824(3)	0.0459(9)	0.623(7) 0.022(6)	
Bi6b Sn6b	2d	0.2517(4)	0	0.2560(3)	0.0415(12)	0.203(7) 0.148(6)	0.996(7)
Se7	2 <i>d</i>	0.08739(9)	0	0.65320(6)	0.0237(3)	1	1
Se8a	2 <i>d</i>	0.1222(15)	0	0.1171(11)	0.022(2)	0.59(10)	1.0
Se8b	2 <i>d</i>	0.140(2)	0	0.133(2)	0.027(3)	0.41(10)	(constrained)
Se9	2 <i>d</i>	0.13055(9)	0	0.80592(6)	0.0234(3)	1	1
Se10	2d	0.21088(9)	0	0.41436(8)	0.0305(3)	1	1
Se11	2d	0.37515(8)	0	0.03943(5)	0.0204(2)	1	1
Se12	4 <i>d</i>	0	0.5	0.5	0.0212(3)	1	1
Se13	2 <i>d</i>	0.61927(9)	0	0.26934(6)	0.0256(3)	1	1


Table S13: Atom positions, site occupancies and equivalent isotropic displacement parameters (in Ų)of Sn_{9.52}Bi_{10.96}Se₂₆ at RT; $U_{eq} = 1/3 [U_{22} + 1/sin^2 \beta \cdot (U_{11} + U_{33} + 2U_{13} \cdot cos \beta)].$

Atom	U ₁₁	U ₂₂	<i>U</i> ₃₃	<i>U</i> ₁₂	<i>U</i> ₁₃	<i>U</i> ₂₃
Bi1/Sn1	0.0212(3)	0.0193(3)	0.0266(3)	0	0.0038(2)	0
Bi2/Sn2	0.0215(6)	0.0217(7)	0.0277(7)	0	0.0065(4)	0
Bi3/Sn3	0.0247(3)	0.0210(3)	0.0288(4)	0	0.0043(2)	0
Bi4/Sn4	0.0249(3)	0.0223(3)	0.0279(3)	0	0.0023(2)	0
Bi5/Sn5	0.0239(3)	0.0212(3)	0.0265(3)	0	0.0038(2)	0
Bi6a/Sn6a	0.0407(11)	0.0322(12)	0.061(2)	0	-0.0053(13)	0
Bi6b/Sn6b	0.0418(19)	0.0297(15)	0.056(3)	0	0.0165(19)	0
Se7	0.0236(5)	0.0225(6)	0.0246(6)	0	0.0020(4)	0
Se8a	0.021(3)	0.0176(14)	0.028(4)	0	0.009(3)	0
Se8b	0.024(4)	0.020(2)	0.037(8)	0	0.008(5)	0
Se9	0.0251(5)	0.0234(7)	0.0219(6)	0	0.0041(4)	0
Se10	0.0206(5)	0.0184(6)	0.0496(9)	0	-0.0040(5)	0
Se11	0.0212(5)	0.0188(6)	0.0215(6)	0	0.0044(4)	0
Se12	0.0224(7)	0.0191(8)	0.0211(8)	0	0.0003(6)	0
Se13	0.0266(6)	0.0258(7)	0.0242(6)	0	0.0036(5)	0

Table S14: Anisotropic displacement parameters (in Å²) of Sn_{9.52}Bi_{10.96}Se₂₆ at RT, defined as exp [- $2\pi^2$ (U₁₁h² a^{*2} + U₂₂k²b^{*2} + U₃₃l²c^{*2} + U₁₂hka^{*}b^{*} + U₁₃hla^{*}c^{*} + U₂₃klb^{*}c^{*})].

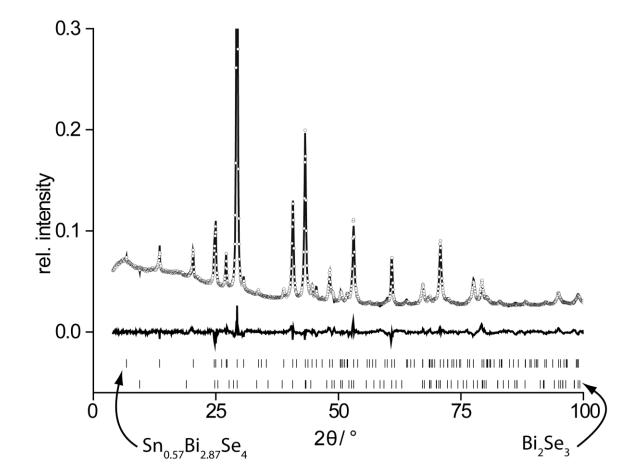

Figure S12: Rietveld refinement of a sample (annealed at 620 °C, then water-quenched) with the nominal composition $(SnSe)_2Bi_2Se_3$ (strongest reflection truncated at 55 % of max. intensity), data points drawn as circles, calculated data as black line; difference plot as black line below; reflection positions indicated by vertical lines; L4,4 model taken from the single crystal refinement of $Sn_{11.49}Bi_{12.39}Se_{30}$ (cf. Tables 7 and S11; cell parameters refined, atom coordinates fixed, refined overall isotropic displacement for anions and cations each); $R_p = 0.027$, $R_{wp} = 0.042$, GooF = 1.615 (preferred orientation taken into account by 6th order spherical harmonics with individual sets of parameters; crystallite size by a Lorentzian function and microstrain by convolution of a Gaussian and a Lorentzian function).

Figure S13: Backscattered electron SEM image of a sample with the nominal composition Sn₂Bi₂Se₅ after heating cycles of transport measurements with light gray areas showing the Bi-enriched phase (phase 1) and the dark gray areas showing the Sn-enriched phase (phase 2).

Table S15: Results of the chemical analyses of the sample (nominal composition: Sn₂Bi₂Se₅) shown in Fig. S13 (phase assignment according to Fig. S13).

	SEM-EDX	TEM-EDX
Phase 1 (bismuth-enriched)	$Sn_{16(1)}Bi_{28(1)}Se_{56(1)}$ (from 3 points)	Sn15Bi25Se60
Phase 2 (tin-enriched)	$Sn_{23.6(8)}Bi_{22.8(7)}Se_{53.6(3)} \text{ (from 10 points)}$	Sn ₂₂ Bi ₁₉ Se ₅₉

Figure S14: Rietveld refinement of sample with the nominal composition $(SnSe)_{0.5}Bi_2Se_3$ (annealed at 620 °C, then air-quenched); strongest reflection truncated at 30 % of max. intensity, data points drawn as circles, calculated data as black line; difference plot as black line below; reflection positions indicated by vertical lines for Sn_{0.571}Bi_{2.286}Se_4 (top row) and Bi₂Se₃ (bottom row).

Table S16: Results of the Rietveld refinement for a sample with the nominal compo	sition (annealed at
620 °C, then air-quenched).	

Atom	Wyckoff position	x	у	z	s.o.f.	<i>B</i> iso / Å ²
Sn0.571Bi2.286Se4						
Se1	6 <i>d</i>	1/3	2/3	0.5325(3)	1	1.1(1)
Se2	6 <i>d</i>	1/3	2/3	0.3773(4)	1	1.1(1)
Bi1 Sn1	12d	1/3	2/3	2/3	0.443 *** 0.418 ***	1.1(1)
Bi2 Sn2	6 <i>d</i>	1/3	2/3	0.2386(2)	0.917 *** 0.083 ***	1.1(1)
Bi ₂ Se ₃						
Se1	6 <i>c</i>	0	0	0.190(1)	1	1 **
Bi1	6 <i>c</i>	0	0	0.391(5)	1	1 **
Se2	3 <i>a</i>	0	0	0	1	1 **

Tab. S17: Coordinates, site occupancies and equivalent isotropic displacement parameters of $Sn_{0.584}Bi_{2.277}Se_4$ and Bi_2Se_3 as obtained in the Rietveld refinement (cf. Figure S14 and Table S16).*

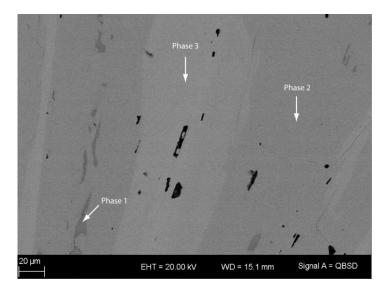
* Peak broadening due to microstrain was taken into account by a Lorentzian function for $Sn_{0.571}Bi_{2.286}Se_4$ and a Gaussian function for Bi_2Se_3 . Preferred orientation was taken into account by spherical harmonics of the eighth order for $Sn_{1.71}Bi_{6.86}Se_{12}$ and of the sixth order for Bi_2Se_3 with an individual set of parameters each.

** Displacement parameters were not refined as Bi_2Se_3 is a side phase with only ≈ 5 wt-%.

*** s.o.f.'s for Sn_{0.584}Bi_{2.277}Se₄ are derived from the results of the single crystal refinement of Sn_{0.571}Bi_{2.286}Se₄ according to the exsolution of Bi₂Se₃ based on the follwing reaction equation: Sn_{0.571}Bi_{2.286}Se₄ --> 0.95 Sn_{0.584}Bi_{2.277}Se₄ + 0.5 Bi₂Se₃. The alteration of the composition compared to Sn_{0.571}Bi_{2.286}Se₄ was assumed on position Bi1/Sn1.

Figure S15: Rietveld refinement of the ~3 g sample (annealed at 500 °C for 9 d, then waterquenched) with the composition $SnBi_4Se_7 = (SnSe)_{0.5}Bi_2Se_3$ used for thermoelectric measurements (the strongest reflection truncated at 30 % of max. intensity): data points drawn as circles, calculated data as black line; difference plot as black line below; reflection positions indicated by vertical lines for $Sn_{0.571}Bi_{2.286}Se_4$ (top row) and Bi_2Se_3 (bottom row).

formula	Sn _{0.571} Bi _{2.286} Se ₄
formula mass	2584.05 gmol ⁻¹
crystal system	trigonal
space group	R3m
lattice parameters *	a = 4.1831(2) Å c = 39.181(4) Å
cell volume	593.73(9) ų
X-ray density	7.23 gcm ⁻³
Ζ	3
radiation	Cu- <i>K</i> α1 (λ = 1.54051 Å)
2θ range	4° < 2θ < 100°
refined parameters	45, thereof 24 for background
R _p / R _{wp} / GooF	0.024 / 0.035 / 1.589
R _{Bragg}	0.012


Table S18: Results of the Rietveld refinement of the ~3 g sample of $Sn_{0.571}Bi_{2.286}Se_4$ (annealed at 500 °C for 9 d, then water-quenched).

* Deviations from the cell parameters determined for the single crystal may arise from different cooling rates.

Table S19: Coordinates,	site	occupancies	and	equivalent	isotropic	displacement	parameters	of
annealed Sn _{0.571} Bi _{2.286} Se ₄ .								

Atom	Wyckoff position	x	у	Z	s.o.f. *	<i>B</i> iso / Ų
Se1	6 <i>d</i>	1/3	2/3	0.5305(3)	1	0.74(9)
Se2	6 <i>d</i>	1/3	2/3	0.3753(4)	1	0.74(9)
Bi1 Sn1	12 <i>d</i>	1/3	2/3	2/3	0.452 0.405	0.74(9)
Bi2 Sn2	6 <i>d</i>	1/3	2/3	0.2387(2)	0.917 0.083	0.74(9)

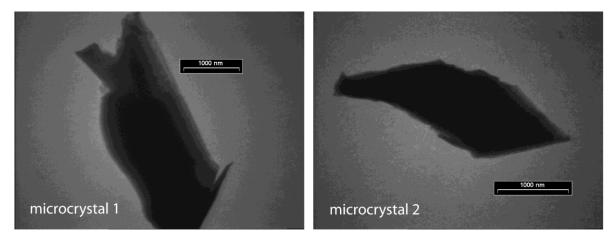

* s.o.f.'s taken from single crystal refinement.

Figure S16: SEM-BSE image of a thermally treated sample (3 times cycled up to 500 °C) with the nominal composition SnBi₄Se₇. The image shows the presence of 2 majority and one minority phase after the thermal treatment during the thermoelectric measurements.

Table S20: SEM-EDX analyses for the sample with the nominal composition SnBi ₄ Se ₇ after thermal
treatment (3 times cycled up to 500 °C).

Element	nominal	Phase 1 (minority phase)	Phase 2 (majority phase)	Phase 3 (majority phase)
Sn / at-%	8.3%	21.9(6)	9.6(5)	5.6(5)
Bi / at-%	33.3%	24.3(4)	35.9(3)	39.9(4)
Se / at-%	58.3%	53.8(9)	54.5(10)	54.6(10)

Figure S17: TEM images of two crystallites from a thermally treated sample (3 times cycled up to 500 °C) with the nominal composition SnBi₄Se₇.

Table S21: TEM-EDX analyses for the microcrystals from SnBi₄Se₇ after the thermal treatment (3 times cycled up to 500 °C).

Element	microcrystal 1	microcrystal 2
Sn / at-%	10.1(9)	7.1(8)
Bi / at-%	30.5(6)	34.5(8)
Se / at-%	59.3(9)	58.4(6)

formula	Sn _{0.85} Bi _{2.15} Se ₄
formula mass	2597.3 gmol ⁻¹
crystal system	trigonal
space group	R3m
cell parameters	a = 4.1829(2) Å c = 39.158(3) Å
cell volume	593.34(6) Å ³
X-ray density	7.2689 gcm ⁻³
Ζ	3
absorption coefficient	8.096 mm ⁻¹
<i>F</i> (000)	1071
radiation	synchrotron radiation (0.29470 Å)
2θ range	4.68° < 2θ < °26.2
absorption correction	semiempirical from equivalents (<i>SADABS</i> Version 2.05, Bruker AXS Inc., Madison, Wisconsin, USA, 2001)
measured reflections	2282
independent data	254 [233 with <i>I</i> > 2σ(<i>I</i>)]
parameter	19
weighting scheme	$w = 1/[\sigma^2 F_0 + 0.0001 F^2]$
R1 / wR2 [/ > 2σ(<i>l</i>)]	0.0278 / 0.0343
R1 / wR2 (all data)	0.0319 / 0.0371
GooF (all data)	1.54
Δho_{min} / Δho_{max}	-1.37 <i>e</i> Å ⁻³ / 1.72 <i>e</i> Å ⁻³

Table S22: Crystallographic data and structure refinement of $Sn_{0.85}Bi_{2.15}Se_4$ (microcrystal 1 in Figure S17).*

* The initial refinement was based on the structure model described in Section 3.3.2 with Sn and Bi restricted to the same atom positions and displacement parameters when sharing one site. However, a refinement constrained to charge neutrality yielded occupancies of both cation positions of ~1 resulting in a rather Sn-rich sum formula ($Sn_{0.85}Bi_{2.15}Se_4 = Sn_{12.1}Bi_{30.7}Se_{57.1}$) as expected from EDX analysis (Table S21). Residual electron densities next to Se1 suggested using anharmonic displacement parameters up to the fourth order (Table S25). An explanation might be a reaction of the Se layer at the van der Waals gap to the additional Sn on the neighboring cation site, resulting in a slightly undulated Se layer.

Atom	Wyckoff position	x	У	z	s.o.f. *	U _{eq} / Ų
Se1	4b	0	0	0.13537(13)	1	0.0235(11)
Se2	4a	0	0	0.28963(4)	1	0.0204(4)
Sn3 Bi3	3d	0	0	0	0.613 0.385	0.0252(3)
Sn4 Bi4	6 <i>d</i>	0	0	0.42820(2)	0.120 0.881	0.0236(2)

Table S23: Coordinates, site occupancies and equivalent isotropic displacement parameters of $Sn_{0.75}Bi_{2.15}Se_4$; $U_{eq} = 1/3 [U_{33} + 4/3(U_{11} + U_{22} - U_{12})]$.

* from harmonic SHELX refinement, e.s.d.'s ca. 0.002.

Atom	Wyckoff position	$U_{11} = U_{22}$	U ₃₃	U 12	U ₁₃ = U ₂₃
Se1	4 <i>b</i>	0.142(10)	0.042(2)	0.0071(5)	0
Se2	4a	0.0210(5)	0.0192(7)	0.0105(2)	0
Sn3/Bi3	3 <i>d</i>	0.0229(4)	0.0297(6)	0.0115(2)	0
Sn4/Bi4	6 <i>d</i>	0.0216(3)	0.0278(4)	0.0108(2)	0

Table S24: Anisotropic displacement parameters of Sn_{0.75}Bi_{2.15}Se₄.

Table S25: Anharmonic displacement parameters site 4b (Se1) of Sn_{0.75}Bi_{2.15}Se₄.

C 111	C 112	C ₁₁₃	C ₁₂₂	C ₁₂₃	C ₁₃₃	C ₂₂₂	C ₂₂₃
-0.001(3)	-0.0006(14)	-0.0005(4)	0.0006(14)	-0.0002(2)	0	0.001(3)	-0.0005(4)
C ₂₃₃	C 333						
0	0.000116(16)						
D ₁₁₁₁	D ₁₁₁₂	D ₁₁₁₃	D ₁₁₂₂	D ₁₁₂₃	D ₁₁₃₃	D ₁₂₂₂	D ₁₂₂₃
-0.041(12)	-0.021(6)	0.0003(4)	-0.021(6)	0.00014(19)	-0.00011(6)	-0.021(6)	-0.00014(19)
D ₁₂₃₃	D ₁₃₃₃	D ₂₂₂₂	D ₂₂₂₃	D ₂₂₃₃	D ₂₃₃₃	D ₃₃₃₃	
-0.00006(3)	0	-0.041(12)	-0.0003(4)	-0.00011(6)	0	-0.000001(3)	

Table S26: Comparison of the reported structures in the pseudo-binary system $SnSe-Bi_2Se_3$ with structure types, sum formulae and formulae normaized according to $(SnSe)_{\underline{x}}Bi_2Se_3$.

sum formula as used in the manuscript	structure type	sum formula according to (SnSe) _x (Bi₂Se₃)		
Sn _{0.582} Bi _{0.279} Se*	NaCI-type	(SnSe) _{4.17} (Bi ₂ Se ₃), x ≈ 4.17		
Sn _{0.57} Bi _{0.29} Se	NaCI-type	$(SnSe)_4(Bi_2Se_3), x = 4$		
Sn _{0.5} Bi _{0.33} Se	NaCI-type	(SnSe) ₃ (Bi ₂ Se ₃), x = 3		
Sn _{3.6} Bi _{3.6} Se ₉	L7,7-type	$(SnSe)_2(Bi_2Se_3), x = 2$		
Sn _{11.49} Bi _{12.39} Se ₃₀	L4,7-type	(SnSe) _{1.85} (Bi₂Se₃), x ≈ 1.85		
Sn _{2.22} Bi _{2.52} Se ₆	L4,4-type	(SnSe) _{1.76} (Bi₂Se₃), x ≈ 1.76		
Sn _{9.52} Bi _{10.96} Se ₂₆	L4,5-type	(SnSe) _{1.74} (Bi₂Se₃), x ≈ 1.74		
Sn _{0.85} Bi _{2.15} Se ₄ **	GeSb ₂ Te ₄ -type	(SnSe) _{0.79} (Bi₂Se₃), x ≈ 0.79		
Sn _{0.571} Bi _{2.286} Se ₄	GeSb ₂ Te ₄ -type	(SnSe) _{0.5} (Bi ₂ Se ₃), x = 0.5		
Sn _{4.11} Bi _{22.60} Se ₃₈ ***	its own structrue type	(SnSe) _{0.36} (Bi₂Se₃), x ≈ 0.36		

* nominal composition of the sample: Sn_{0.625}Bi_{0.25}Se

** decomposition product of Sn_{0.571}Bi_{2.286}Se₄, cf. Tables S22 to S25.

*** Structure is described in: Heinke, F.; Werwein, A.; Oeckler, O. Cation disorder and vacancies in the sulfosalt-like phase Sn_{4.11}Bi_{22.60}Se₃₈ - A resonant X-ray diffraction study. *J. Alloys Compd.* **2016**, *701*, 581-586.