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Part I. Characterization of NR dispersion state and the NRs/polymer 

interface 

 

 

Figure S1. The changes of (a) stretching energy and (b) bending energy of the 

nanorods (NRs) during the tensile process. The grafting density is equal to 4gN   

and 12gN  , respectively, and the grafted chain length is 6gL  . 

 

 

 

Figure S2. Plots of the specific volume V(T) with respect to temperature for (a) pure 

polymer and (b) 5V% NR-filled polymer. The cooling rate is set as 0.01τ
-1
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Figure S3. Comparison of stress-strain curves for different systems at tensile rate of 

(a) 0.0327/τ and (b) 0.00327/τ 

 

 

 

 

 

Figure S4. Inter-rod radial distribution functions g(r) corresponding to different 

grafting densities ( gN ). The grafted chain length is 6gL  . 
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Figure S5. Influence of grafting density on the monomer density profiles of matrix 

chains as a function of separation from the NR surface. 

 

 

 

 

Figure S6. Monomer density profiles as a function of position from the NR 

diametrical axis of grafted chains that are grafted to the reference NR. The curves are 

shifted by the NR radius. 
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Figure S7. Mean-square radius of gyration of grafted chains plotted vs. tensile strain. 

The grafting density is 12gN   and the grafted chain length is 6gL  . 

 

 

 

 

Figure S8. Snapshots of NR-filled polymer systems with different grafted chain 

lengths (Lg). 
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Figure S9. Inter-rod radial distribution functions g(r) corresponding to different 

grafted chain lengths (Lg). For better comparison, the bare system is not shown in 

Figure S9b. The grafting density is 10gN  . 

 

 

 

 

Figure S10. Inter-rod radial distribution functions g(r) corresponding to different 

graft-matrix interactions (εgm). The grafting density is 12gN  , and the grafted chain 

length is 6gL  . 
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Figure S11. (a) Total number of direct contacts of NRs with polymer segments as a 

function of the graft-matrix interaction (εgm); (b) Direct contacts of NRs with grafted 

chain segments and matrix chain segments. The grafting density is 12gN  , and the 

grafted chain length is 6gL  . 

 

 

 

 

Figure S12. Average bridging contacts of matrix chains with two grafted layers or 

NRs with regard to (a) grafting density and (b) grafted chain length. 
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Part II. Computation of side-by-side alignment and site-to-site contact 

between NRs 

        As the rigid NRs in our simulations can be regarded as incompressible neo-

Hookean solids (see Figure S1), we can borrow the definition of shaft alignment from 

mechanical engineering. As illustrated by Figure S13, for two NRs to be called “side-

by-side aligned”, their shaft centerlines need to be parallel, and meanwhile the 

distance between their center of mass needs to be equal to the diameter of NR. 

Besides, there are three types of misalignment, i.e., radial misalignment, axial 

misalignment, and angular misalignment, as sketched in Figure S14. 

 

Figure S13. (a) Side-by-side alignment; (b) Snapshot of our PNC system filled with 

bare-NRs. For clarity, matrix chains are not shown. 

 

Figure S14. Three types of misalignment: (a) Radial misalignment; (b) Axial 

misalignment; and (c) Angular misalignment 



 11 

However, within our NR model the perfect arrangement of NRs aligning side-by-

side is not likely to exist as a persistent state in our simulations. As the NR in our 

simulation is constructed through the bead-spring model, despite the tight constraint 

imposing the NR beads by the stiff harmonic potential and bending potential, the NR 

beads can still move slightly around their thermodynamic equilibrium position, even 

if they are in the side-by-side alignment state. In that case, the perfect side-by-side 

alignment of NRs would be instantaneous, and probably two NR could be mostly 

aligned parallel to each other but with a slight angle between them, which can be also 

confirmed by the snapshot in Figure S13(b). Taking into account the possibility of 

imperfect side-by-side alignment, we expand the definition of side-by-side alignment. 

To this end, a weaker criterion of “side-by-side alignment” is used to include the 

slight misalignment caused by the thermal motion of NR beads, as follows: 

1. Angular misalignment: At the beginning, a simple linear-fitting procedure is 

applied to determine the shaft centerline of each rigid NR with the unit direction 

vector 
0 0 0 0( , )x , y zD . As illustrated in Figure S15(a), the 3 components of vector 

0 0 0 0( , )x , y zD  are equal to the cosine of their corresponding direction angle 

(
0 cosx  , 

0 cosy  , 
0 cosz  , and 2 2 2

0 0 0 1x y z   ). Then, we need a 

criterion to judge whether any two shaft centerlines are in the “acceptable” parallel 

orientation. Here for our measurement, two NRs are considered to be acceptably 

parallel only when the angle between the two direction vectors of their shaft 

centerlines is less than the small angle of 8   , as shown in Figure S15(b). Using the 

vector inner product, the acceptable side-by-side alignment of NRs is expressed as 

follows: 

   

1 2 1 2 1 2 1 2

2 2 2 2 2 2
1 2 1 1 1 2 2 2

cos 0.99 0.99
x x y y z z

or
x y z x y z


 

    
   

D D

D D


     (2.1) 

where cos 0.99   holds for two vectors in the same direction, and cos 0.99    for 

the vectors in the opposite direction. Our setting of this angle ( 8 ) is driven by two 

considerations: first, the angle should be appropriately large so that the slight 
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misalignment caused by the thermal motion of NR beads can be fully covered; second, 

when the first condition is satisfied, the angle value should be sufficiently small. 

 

Figure S15. (a) Unit direction vector 
0D  in three dimensional Cartesian coordinate 

system; (b) The angle between two vectors 

2. Axial misalignment: For two NRs in the angular alignment, their unit direction 

vectors can be unified as 
0 0 0 0( , )x , y zD , and the position vector from the center of one 

NR to the other can be expressed as 1 1 1( , )c x , y zD . Consequently, using the vector 

operation, we can obtain the axial offset, as follows: 

                  1 0 1 0 1 00
1 0 1 0 1 0

2 2 2
0 0 0 0

c
A

x x y y z z
D x x y y z z

x y z

 
    

 

D D

D


                     (2.2) 

In our standard of acceptable axial misalignment, the axial offset should be no 

more than the distance between two adjacent NR beads, i.e., 0.66AD  . 

3. Radial misalignment: Given the distance between two centers of NRs and the 

axial offset, we then obtain the radial offset RD  by the laws of geometry. The radial 

offset should be no more than the radius of NR beads, i.e., 0.5RD  . 

Although the choices of maximum permissible angle, axial offset and radial 

offset are arbitrary, the appropriateness of our choice is reflected by the slight 

fluctuation in the side-by-side alignment in equilibrium state and also the changes of 

side-by-side alignment being well-correlated to the mechanical behavior. Besides, a 

simple validation of our computation method is to count the NRs in side-by-side 

alignment one by one in several representative snapshots. 
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Now that the definition of “side-by-side alignment” has been clarified, the 

characterization of “site-to-site contact” is easier to understand. The site-to-site 

contacts between two NRs refer to the direct contacts between those which are not 

side-by-side aligned to each other, such as the end-to-end and end-to-side contacts. 

Those NRs which have no contact with all other NRs are classified as isolated NRs. 

By the way, the NRs which are side-by-side aligned to at least one other NR are 

categorized as NRs in side-by-side alignment, while the NRs contacting with other 

NRs only by site-to-site are categorized as NRs via site-to-site contact. According to 

our simulation results, when the simulation system reaches equilibrium, the site-to-

site aggregates and side-by-side aggregates hardly transform into each other. However, 

with the increase of grafting density or grafted chain length, the side-by-side 

aggregates are most likely to transform into site-to-site aggregates, into isolated NRs. 

The transformation between them will also occur during the deformation process. 

As the NR is likely to be side-by-side aligned to one NR but site-to-site contacts 

with the other, we then use the ensemble averaged coordination number, Cn, which is 

defined as the average number of neighboring NR beads (connected by either site-to-

site or side-by-side). Two NR beads belonging to different NRs are considered to 

contact with each other (or “neighboring”) if their center-to-center distance is smaller 

than 1.25 . That is to say, the cutoff distance for the calculation of the averaged 

coordination number is 1.25 .  
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Part III. Curving-fitting of the stress-strain relation calculated in the tensile 

test 

        In order to obtain a smooth elastic modulus-strain curve, we need to first fit the 

stress-strain curve with an appropriate function and subsequently calculate the 

derivative. Considerable effort has been devoted to the stress-strain relation of 

polymers, such as the famous semi-empirical Mooney-Rivlin equation 

                                          22
1( )( 1/ )

C
C  


     

where the parameter 
1C  denotes the contribution of chemical cross-links, and the 

parameter 
2C  denotes the entanglement contribution. 

        We list some other well-known nonlinear stress-strain relations below: 

                                 22
1

1.84
( )( 1/ )

0.84 /

C
C  

 
  


  (ref. 1)                           (3.1)  

                                 22
1( )( 1/ )

1/ 1

C
C  

 
  

     

(ref. 2)                           (3.2) 

                                22
1( )( 1/ )

0.72 0.61/ 0.35

C
C  

 
  

 
  (ref. 3)           (3.3) 

However, these stress-strain relations with two adjustable parameters only apply 

to unfilled cross-linked polymer networks. As we discussed in detail in our previous 

paper[ref. 4], these equations are not suitable for our PNC systems, with the square of 

correlation coefficient (R
2
) much lower than 1.0.  

In an attempt to better fit the simulated stress-strain curves, we proposed a 

modified stress-strain equation with three additional parameters so as to take in the 

effects of fillers. The equation is expressed as 

                        
22

1

3 4 5

( )( 1/ )
* /

C
C

C C C
  

 
  

 
  

(ref. 4)               

 

(3.4) 

Although the parameters 
1C  and 

2C  are known to describe the cross-linking 

effect and the entanglement effect respectively, the physical meaning of the additional 
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three parameters (
3C , 

4C  and 
5C ) are however not get clear. Thus, this modified 

stress-strain equation is based purely on mathematical considerations. Nevertheless, it 

fits the simulated stress-strain curves well with R
2
=0.99, as shown in Figure S16. 

 

Figure S16. The stress-strain curve of the Ng=4 system calculated in the tensile test 

and its nonlinear curve-fittings. 
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