Supporting Information

Rational Design of Dimeric Lysine N-Alkylamides as Potent and Broad-Spectrum Antibacterial Agents

Youhong Niu,^{†,*} Minghui Wang,[‡] Yafei Cao,[†] Alekhya Nimmagadda,[‡] Jianxing Hu,[†]
Yanfen Wu,[†] Jianfeng Cai,^{‡,*} and Xin-Shan Ye^{†,*}

[†]State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing 100191, China

[‡]Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620, United States

Content:

- 1. Correlation of antibacterial activity (MIC) against MRSA and E. coli vers AlogP of compounds 3a-3i
- 2. ¹H NMR and ¹³C NMR spectra of compounds 1, 2, 3a-3i
- 3. HPLC analysis of compounds 3a-3i

1. Correlation of antibacterial activity (MIC) against MRSA and *E. coli* vers AlogP of compounds **3a-3i**

Figure S1. Correlation of antibacterial activity (MIC) against MRSA and *E. coli* with HPLC retention time of compounds **3a-3i**

Figure S2. Correlation of antibacterial activity (MIC) against MRSA and *E. coli* with ALogP of compounds **3a-3i**

2. ¹H NMR and ¹³C NMR spectra of compounds **1, 2, 3a-3i**

^{1}H NMR (400MHz, CDCl $_{3}$) spectrum of compound 1

¹³C NMR (101 MHz, CDCl₃) spectrum of compound 1

1H NMR (400MHz, $\mbox{CD}_3\mbox{OD})$ spectrum of compound 2

$^{13}\mathrm{C}$ NMR (101 MHz, CD₃OD) spectrum of compound 2

¹H NMR (400MHz, CD₃OD) spectrum of compound 3a

 $^{13}\mathrm{C}$ NMR (101 MHz, CD₃OD) spectrum of compound 3a

¹H NMR (400MHz, CD₃OD) spectrum of compound 3b

$^{13}\mathrm{C}$ NMR (101 MHz, CD₃OD) spectrum of compound 3b

¹H NMR (400MHz, CD₃OD) spectrum of compound 3c

$^{13}\mathrm{C}$ NMR (101 MHz, CD₃OD) spectrum of compound 3c

¹H NMR (400MHz, CD₃OD) spectrum of compound 3d

 $^{13}\mathrm{C}$ NMR (101 MHz, CD_3OD) spectrum of compound 3d

^{1}H NMR (400MHz, CD₃OD) spectrum of compound 3e

 $^{13}\mathrm{C}$ NMR (101 MHz, CD₃OD) spectrum of compound 3e

¹H NMR (400MHz, CD₃OD) spectrum of compound 3f

$^{13}\mathrm{C}$ NMR (101 MHz, CD₃OD) spectrum of compound 3f

¹H NMR (400MHz, CD₃OD) spectrum of compound 3g

$^{13}\mathrm{C}$ NMR (101 MHz, CD_3OD) spectrum of compound 3g

¹H NMR (400MHz, CD₃OD) spectrum of compound 3h

 $^{13}\mathrm{C}$ NMR (101 MHz, CD₃OD) spectrum of compound 3h

¹H NMR (400MHz, CD₃OD) spectrum of compound 3i

 $^{13}\mathrm{C}$ NMR (101 MHz, CD_3OD) spectrum of compound 3i

3. HPLC analysis of compounds **3a-3i**

Table S1. HPLC purities and retention time of compounds 3a-3i

compounds	3a	3b	3c	3d	3e	3f	3g	3h	3i
Retention time(min)	11.4	14.9	18.6	21.6	26.4	35.7	40.8	46.9	19.7
Purities (%)	96.4	96.3	97.3	99	>99	98.5	98.2	95.9	97.9

Figure S3. HPLC spectra of compound 3a-3i