Supporting Information

A Turn-on Fluorescent Probe for Detection of Sub-ppm level of a

Sulfur Mustard Simulant with High Selectivity

Yuanlin Zhang^a, Yanlin Lv^a, Xuefei Wang^a, Aidong Peng^b, Kaiquan Zhang^a, Xiaoke Jie^a, Jijun Huang^{b,*} and Zhiyuan Tian^{a,*}

^a School of Chemical Sciences, University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China.

^bCollege of Materials Sicence and Opto-Electronic Technology, University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China.

*E-mail: zytian@ucas.ac.cn, jjh@ucas.ac.cn

Table of contents

Table S1. Summary of merits of representative fluorescent probes for sulfur mustard (simultant) sensing.

Figure S1. Fluorescence responses of DPXT (10 μ M) to 2-CEES (100 equiv.) recorded at 2 min interval and time-dependent fluorescence responses recorded at 593 nm.

Figure S2. Fluorescence intensity (at 593 nm) enhancement of DPXT in various solvents (10 μ M) upon addition of 100 equiv. of 2-CEES.

Figure S3. (a) Fluorescence emission spectra of DPXT/DCM solution upon gradually increasing the concentration 2-CEES (0-5 μ M). (b) A plot of the fluorescence intensity (at 593 nm) as a function of 2-CEES concentration. The red line is a linear fit to the experimental data ($R^2 = 0.993$).

Figure S4. (a) Photographs of a TLC plate patterned with "CEES" using DPXT/DCM solution acquired before and after exposure to 2-CEES vapor with concentration of 0.5 ppm upon illumination of 365-nm light. (b) Fluorescence emission spectra of the abovementioned TLC plate before (black curve) and after (red curve) exposure to 2-CEES vapor ($\lambda_{ex} = 570$ nm).

Figure S5. UV-vis absorption (a) and fluorescence emission spectra (b) of DPXT/DCM solution and the DCM solution containing the reference compound xanthene-9-thione (XTT), respectively, in the presence of 100 equiv. of 2-CEES.

Figure S6. Partial ¹H NMR (400 MHz) characterization results of DPXT probe and the thiopyronin product in CD₂Cl₂.

Figure S7. ¹H NMR characterization result of the DPXT probe (CDCl₃, 400 MHz)

Figure S8. ¹³C NMR characterization result of the DPXT probe (CDCl₃, 100 MHz)

Figure S9. MALDI-MS characterization result of the DPXT probe.

Figure S10. ¹H NMR characterization result of thiopyronin derivative (CDCl₃, 400 MHz)

Figure S11. ¹³C NMR characterization result of thiopyronin derivative (DMSO- d_6 , 150 MHz)

Figure S12. MALDI-MS characterization result of thiopyronin derivative.

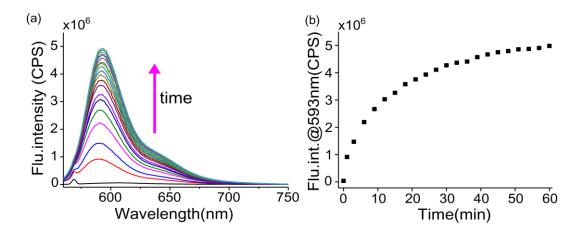
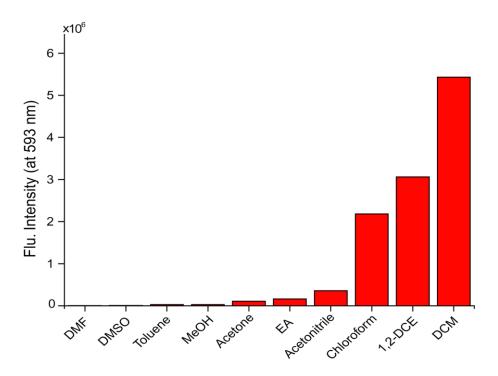
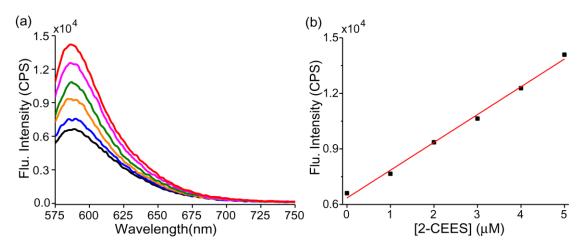
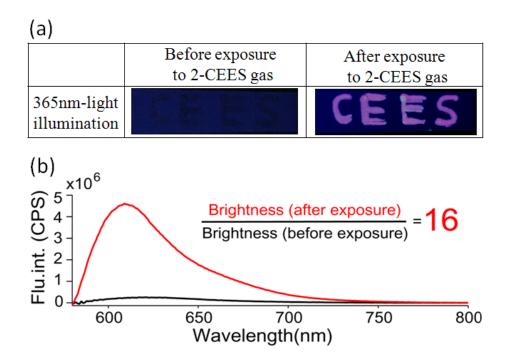

Figure S13. ¹H NMR characterization result of XTT (CDCl₃, 400 MHz)

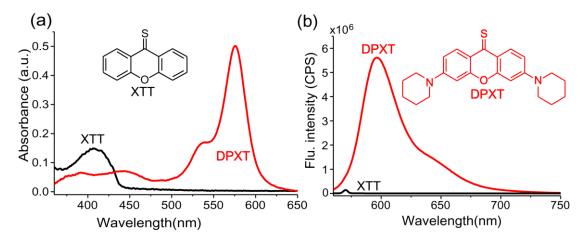
Figure S14. ¹³C NMR characterization result of XTT (CDCl₃, 100 MHz)


Figure S15. MALDI-MS characterization result of XTT

Probe structure	Response time (2-CEES)	Signal enhancement	Limit of detection (LOD)	Test condition	Gas detection	Ref.
	1 min (2-CEES)	~ 4 fold	200 μM (2-CEES)	80°C, pH=9	No	1
	1 min (2-CEES)	~ 27 fold	10 μM (2-CEES)	80°C+K ₂ CO ₃	Yes	2
	1 min (2-CEES)	~ 6 fold	18 μM (SM)	80°C+K ₂ CO ₃	Yes	3
	>1 h (SM in solution), 10 min (gaseous SM)	~ 100 fold	4.75 μM (SM in solution), 6.25 ppm /10 min (SM gas)	room temperature	Yes	4
N N N N N N	1 min (SM in solution)	~ 25 fold	31.6 μM (0.005 mg/mL) (SM in solution)	50-60°С, КОН, МеОН	No	5
	> 1 h (2-CEES in solution), 2 min (2-CEES vapor)	850 fold (in solution)	1.2 μM (2-CEES in solution), 0.5 ppm/ min (2-CEES gas)	room temperature	Yes	This work


 Table S1. Summary of merits of representative fluorescent probes for sulfur mustard (simultant) sensing.


Figure S1. (a) Fluorescence responses of DPXT (10 μ M) to 2-CEES (100 equiv.) recorded at 2 min interval; (b) time-dependent fluorescence responses recorded at 593 nm. $\lambda_{ex} = 465$ nm


Figure S2. Fluorescence intensity (at 593 nm) enhancement of DPXT in various solvents (10 μ M) upon addition of 100 equiv. of 2-CEES. $\lambda_{ex} = 570$ nm. Each spectrum was recorded 1 h after the addition of 2-CEES.

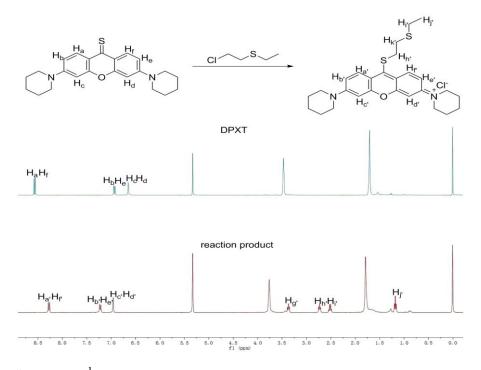

Figure S3. (a) Fluorescence emission spectra of DPXT/DCM solution upon gradually increasing the concentration 2-CEES (0-5 μ M). (b) A plot of the fluorescence intensity (at 593 nm) as a function of 2-CEES concentration. The red line is a linear fit to the experimental data ($R^2 = 0.993$).

Figure S4. (a) Photographs of a TLC plate patterned with "CEES" using DPXT/DCM solution acquired before and after exposure to 2-CEES vapor with concentration of 0.5 ppm upon illumination of 365-nm light. (b) Fluorescence emission spectra of the abovementioned TLC plate before (black curve) and after (red curve) exposure to 2-CEES vapor ($\lambda_{ex} = 570$ nm).

Figure S5. UV-vis absorption (a) and fluorescence emission spectra (b) of DPXT/DCM solution and the DCM solution containing the reference compound xanthene-9-thione (XTT), respectively, in the presence of 100 equiv. of 2-CEES.

Figure S6. Partial ¹H NMR (400 MHz) characterization results of DPXT probe and the thiopyronin product in CD_2Cl_2

To gain a deeper insight into the underlying mechanism that DPXT underwent, the comparative analysis of the ¹H NMR measurement results of DPXT and the reaction product confirmed the molecular structure of the latter and presented a clue to the underlying mechanism that DPXT underwent. In the presence of CEES, the new signals at 3.37 ($H_{g'}$), 2.73($H_{h'}$), 2.52($H_{i'}$), 1.18($H_{j'}$) ppm in the ¹H NMR spectrum

attributable to reaction between DPXT and CEES. Hydrogen signals H_a, H_f (8.55 pm) shifted to H_a', H_{f'} (8.29 ppm) due to the shielding effect, it attribute to the disappearance of the electron-withdrawing thiocarbonyl groups after the reaction of DPXT with CEES. Due to the de-shielding effect of the nitrogen ionization in the piperidyl group, hydrogen signals H_b, H_e (6.95 pm) and H_b, H_e (6.65 pm) which are adjacent to piperidyl group shift to the low field H_b', H_{e'} (7.24 ppm) and H_b', H_{e'} (6.96ppm). At the same time, the hydrogen signals in the piperidyl group carbon also moves to the low field significantly. In addition, the proposed mechanism of DPXT probe for 2-CEES sensing also found support from the MALDI-MS characterization results of the DPXT probe sample in the absence and presence of 2-CEES. Specifically, the adduct product of the probe upon addition of 2-CEES displayed characteristic mass-to-charge ratios at 467.2186 (MALDI-MS, [M]⁺), which is in well agreement with the calculated m/z values of the structures of reaction product. Definitely, the ¹H NMR and MALDI-MS characterization results validated the abovementioned proposed sensing mechanism of the as-prepared DPXT probe.

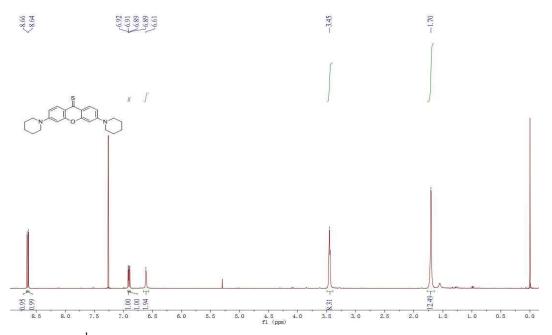


Figure S7. ¹H NMR characterization result of the DPXT probe (CDCl₃, 400 MHz)

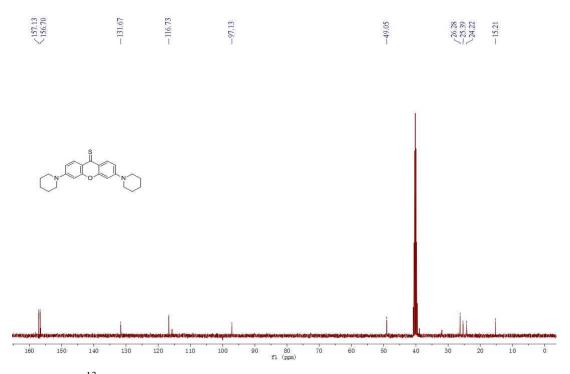


Figure S8. ¹³C NMR characterization result of the DPXT probe (CDCl₃, 100 MHz)

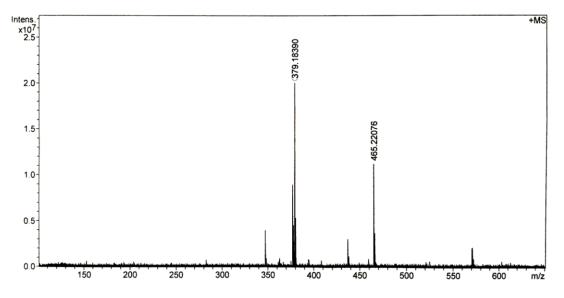
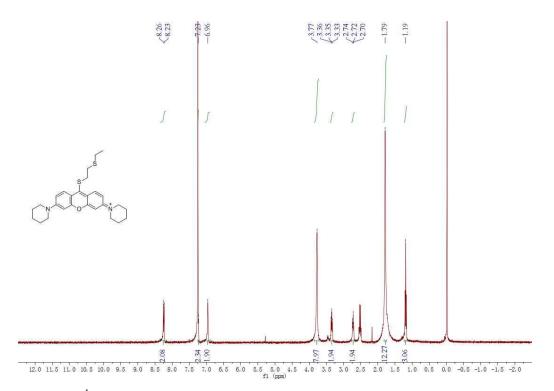
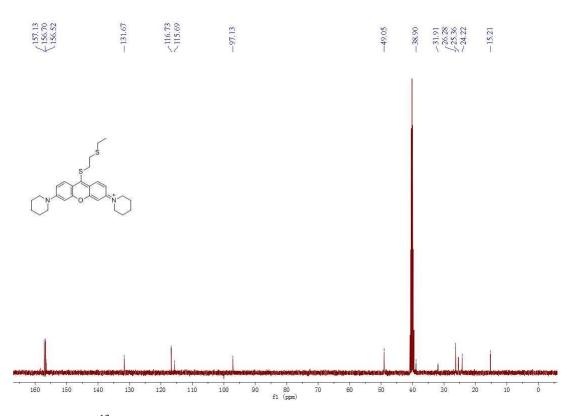




Figure S9. MALDI-MS characterization result of the DPXT probe.

Figure S10. ¹H NMR characterization result of thiopyronin derivative (CDCl₃, 400 MHz)

Figure S11. ¹³C NMR characterization result of thiopyronin derivative (DMSO- d_6 , 150 MHz)



Figure S12. MALDI-MS characterization result of thiopyronin derivative.

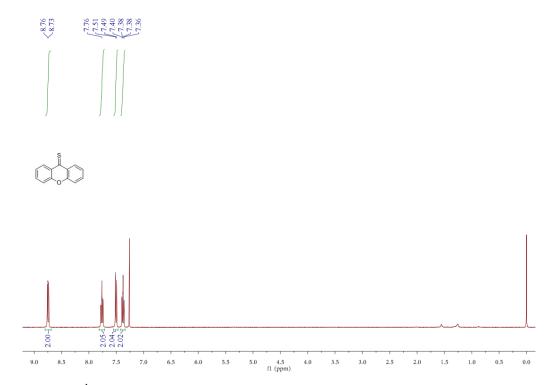


Figure S13. ¹H NMR characterization result of XTT (CDCl₃, 400 MHz).

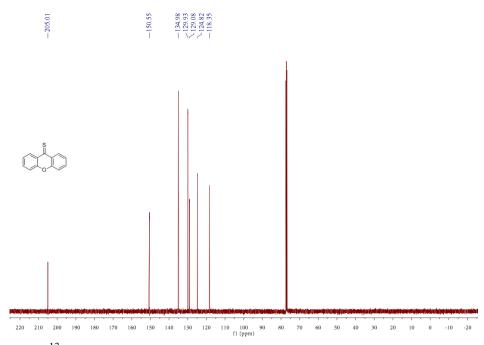


Figure S14. ¹³C NMR characterization result of XTT (CDCl₃, 400 MHz).

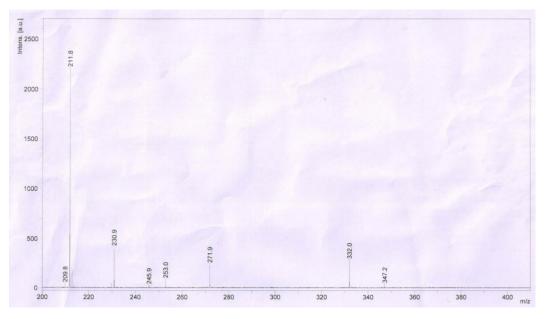


Figure S15. MALDI-MS characterization result of XTT.

References

- (1) Kumar, V.; Anslyn, E. V. J. Am. Chem. Soc. 2013, 135, 6338-6344.
- (2) Kumar, V.; Anslyn, E. V. Chem. Sci. 2013, 4, 4292-4297.
- (3) Kumar, V.; Rana, H. RSC Adv. 2015, 5, 91946-91950.
- (4) Goud, D. R.; Purohit, A. K.; Tak, V.; Dubey, D. K.; Kumar, P.; Pardasani, D. *Chem. Commun.* **2014**, *50*, 12363-12366.
- (5) Kumar, V.; Rana, H.; Raviraju, G.; Gupta, A. K. Anal. Chem. 2018, 90, 1417-1422.