Abrupt Switching of Crystal Fields during

Formation of Molecular Contacts

Jinjie Chen, ${ }^{*, \dagger}$ Hironari Isshiki, ${ }^{\dagger, \dagger}$ Clemens Baretzky, ${ }^{\dagger}$ Timofey Balashov, ${ }^{\dagger}$ and Wulf Wulfhekel ${ }^{\dagger}$
Physikalisches Institut, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany
E-mail: jinjie.chen@kit.edu

Supporting Information

Figure S1: Topography of a $\mathrm{Co}(\mathrm{thd})_{2}$ molecule (a) presents a four-fold symmetry, while the corresponding map of $d I / d V$ signal on same molecule (b) shows a $C_{1 \mathrm{v}}$ symmetry with a mirror plane (white dashed line). The white arrow indicates the [110] direction of $\mathrm{Cu}(100)$ surface. Set point: $720 \mathrm{mV}, 400 \mathrm{pA}$, modulation of lock-in: 10 mV .

[^0]

Figure S2: Four $I(z)$ curves scanned on the center of the very same $\mathrm{Co}(\text { thd })_{2}$ molecule repeatedly. Negative z-offsets represent a decrease of the tip-sample distance from the initial set point: $20 \mathrm{mV}, 20 \mathrm{pA}$. The arrows indicate the directions, approaching and retracting the tip. The current is on a logarithmic scale.

Figure S3: Four reproducible $d I / d V$ spectra scanned respectively after each time when the tip contacted the center of a $\mathrm{Co}(\mathrm{thd})_{2}$ molecule with a same z-offset of -240 pm from the same initial set point $(U=20 \mathrm{mV}, I=20 \mathrm{pA})$.

Kondo resonances and inelastic spin excitations were only clearly observed when contacting the molecule in the center at the location of the metal ion. Figure S 4 shows an example of $d I / d V$ curves obtained when contacting the molecules in the center and on a ligand.

Figure S4: A comparison of normalized $d I / d V$ spectra scanned when contacting the ligand (black) and the center (red) of a $\mathrm{Co}(\mathrm{thd})_{2}$ molecule with a same set point ($U=25 \mathrm{mV}$, $I=1 \mathrm{nA})$. The spectrum on the ligand is vertically offset by 0.1 for clarity.

Figure S5: $I(z)$ curves on $\mathrm{Ni}(\mathrm{thd})_{2}$ (a) and $\mathrm{Cu}(\text { thd })_{2}$ (b) molecules. Negative z-offsets represent a decrease of the tip-sample distance from the initial set point: $20 \mathrm{mV}, 20 \mathrm{pA}$. The arrows indicate the directions, approaching and retracting the tip. Note that the current is on a logarithmic scale.

Table S1: Determined coefficients of Kondo resonance fits near zero bias on $d I / d V$ spectra of Co^{2+} in both tunneling and contact conditions in Fig. 1(c) with Fano function:
$y(x)=R_{0}\left(q+\frac{x-E_{K}}{k_{B} T_{K}}\right)^{2} /\left(1+\left(\frac{x-E_{K}}{k_{B} T_{K}}\right)^{2}\right)+k x+y_{0}$, where T_{K}, q and E_{K} are the Kondo temperature, Fano parameter and position of Kondo resonance, respectively, $k x+y_{0}$ is a linear background. Note that the value of q indicates the ratio of transmission amplitudes between resonant tunneling via the Kondo state and non-resonant tunneling to the substrate, the sign of q depends on the phase shift between the two channels, which determines the resonances appearing as peaks or dips.

	tunneling	contact
$T_{K}(\mathrm{~K})$	1.2 ± 0.5	11.4 ± 0.2
q	-0.6 ± 0.2	0.07 ± 0.02
$E_{K}(\mathrm{mV})$	-0.08 ± 0.03	-0.01 ± 0.03
R_{0}	-0.021 ± 0.006	-0.0725 ± 0.0007
k	-0.0025 ± 0.0008	0.0019 ± 0.0004
y_{0}	1.174 ± 0.006	0.8438 ± 0.0006

Table S2: Eigenstates and eigenenergies to spin Hamiltonians quantitated by fitting the spectra.

		eigenstate	eigenenergy (mV)
$\mathrm{Co}(\text { thd })_{2}$	tunneling	$0.4601\|1 / 2\rangle+0.0004\|-1 / 2\rangle-0.8879\|-3 / 2\rangle$	-6.36
		$0.8879\|3 / 2\rangle+0.0004\|1 / 2\rangle-0.4601\|-1 / 2\rangle$	-6.36
		$0.8879\|1 / 2\rangle+0.0008\|-1 / 2\rangle+0.4601\|-3 / 2\rangle$	1.03
		$-0.4601\|3 / 2\rangle+0.0008\|1 / 2\rangle-0.8879\|-1 / 2\rangle$	1.03
	contact	$0.3147\|1 / 2\rangle-0.6847\|-1 / 2\rangle-0.6573\|-3 / 2\rangle$	-5.29
		$-0.6573\|3 / 2\rangle+0.6847\|1 / 2\rangle+0.3147\|-1 / 2\rangle$	-5.29
		$0.2745\|1 / 2\rangle-0.5973\|-1 / 2\rangle+0.7536\|-3 / 2\rangle$	7.46
		$0.7536\|3 / 2\rangle+0.5973\|1 / 2\rangle+0.2745\|-1 / 2\rangle$	7.46
$\mathrm{Ni}(\mathrm{thd})_{2}$	tunneling	$-0.0106\|1\rangle-0.9998\|0\rangle+0.0106\|-1\rangle$	-0.0003
		$0.7070\|1\rangle-0.0150\|0\rangle-0.7070\|-1\rangle$	1.40
		$0.7071\|1\rangle+0.7071\|-1\rangle$	3.51
	contact	$-0.5956\|1\rangle+0.5389\|0\rangle+0.5956\|-1\rangle$	-0.57
		$0.3811\|1\rangle+0.8424\|0\rangle-0.3811\|-1\rangle$	0.23
		$0.7071\|1\rangle+0.7071\|-1\rangle$	4.19

[^0]: *To whom correspondence should be addressed
 ${ }^{\dagger}$ Physikalisches Institut, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany
 ${ }^{\ddagger}$ Current address: ISSP, Wakashiba 226-1, Kashiwa-shi, Chiba-ken, 277-8581, Japan

