Supporting Information

Access to Quaternary Stereogenic Centers via Rhodium(III)-Catalyzed Annulations between 2-Phenylindoles and Ketenes

Xifa Yang, ^{†,‡} Yunyun Li, ^{†‡} Lingheng Kong, ^{†‡} Xingwei Li*,[†]

[†]Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China [‡]University of Chinese Academy of Sciences, Beijing 100049, China

Contents

1.	General Information	S2-2
2.	Optimization Studies	S2-4
3.	Representative Synthesis of Products	S4-5
4.	Mechanistic Studies	S5-7
5.	Crystal Structure of 3aa	S8-9
6.	Reference	S9-9
7.	Characterization Data	S10-18
8.	NMR Spectra	S19-49

1. General Information

Unless otherwise noted, all the coupling reactions and were carried out in flame-dried pressure tubes with a Teflon screw cap under nitrogen atmosphere. Solvents were purified and dried by standard procedures. All chemicals were obtained from commercial sources and were used as received unless otherwise noted. 2-Phenylindoles¹⁻³ and ketenes⁴ were prepared by following literature reports. ¹H and ¹³C NMR spectra were recorded on a Bruker AV 400 spectrometer (400 MHz for ¹H, 101 MHz for ¹³C, and 376 MHz for ¹⁹F). All coupling constants were reported in Hz. The residual solvent signals were used as references for ¹H and ¹³C NMR spectra and the chemical shifts were converted to the TMS scale {CDCl₃: δ ¹H = 7.26 ppm, δ ¹³C = 77.16 ppm; CD₂Cl₂: δ ¹H = 5.32 ppm, δ ¹³C = 53.84 ppm; (CD₃)₂SO: δ ¹H = 2.50 ppm, δ ¹³C = 39.52 ppm; CD₃CN: δ ¹H = 1.94 ppm, δ ¹³C = 1.32, 118.26}. HRMS data were obtained using a TOF mode. Column chromatography was performed on silica gel (300-400 mesh) using ethyl acetate (EA)/petroleum ether (PE).

2. Optimization Studies

entry	oxidant (equiv)	base	solvent	yield (%)	yield (%)
				3 aa	4aa
1	AgOAc (2.2)	Na ₂ CO ₃	DCE	ND	36
2	AgOAc (2.2)	K ₂ CO ₃	DCE	ND	28
3	AgOAc (2.2)	LiOAc	DCE	ND	45
4	AgOAc (2.2)	KOAc	DCE	trace	ND
5	AgOAc (2.2)	Li ₂ CO ₃	DCE	ND	41
6	Ag ₂ CO ₃ (2.0)	CS_2CO_3	DCE	NR	
7^b	AgOAc (2.2)	K ₂ CO ₃	EtOH	ND	<5
8^b	AgOAc (2.2)	NaOAc	MeOH	ND	<5
9^b	AgOAc (2.2)	Li ₂ CO ₃	MeOH	ND	<5
10	AgOAc (2.2)	Li ₂ CO ₃	DCE	ND	17
11	AgOAc (2.2)	Na ₂ CO ₃	CF ₃ Ph	8	10
12 ^c	AgOAc (2.2)	Na ₂ CO ₃	DCE	15	5
13	AgOAc (2.2)	Na ₂ CO ₃	cyclohexane	17	ND
14	AgOAc (2.2)	Na ₂ CO ₃	THF	22	ND
15	AgOAc (2.2)	Na ₂ CO ₃	σ -xylene	18	ND
16	AgOAc (2.2)	CS_2CO_3	DCE	20	ND
17	Cu(OAc) ₂ (2.0)	Na ₂ CO ₃	CH ₃ Ph	ND	ND
18^d	Ag ₂ CO ₃ (2.2)	NaOAc	DCE	43	ND
19	Ag ₂ CO ₃ (2.0)	KOAc	DCE	NR	
20	Ag ₂ CO ₃ (2.0)	CsOAc	DCE	NR	
21	Ag ₂ CO ₃ (2.0)	NaOAc	DCE	45	ND
22^{b}	Ag ₂ CO ₃ (2.0)	NaOAc	DCE	38	ND
23 ^e	Ag ₂ CO ₃ (2.0)	NaOAc	DCE	NR	
24 ^f	Ag ₂ CO ₃ (2.0)	NaOAc	DCE	trace	ND
25	Ag ₂ CO ₃ (2.0)	NaOAc	CF ₃ Ph	50	ND
26	$Ag_{2}CO_{3}(2.0)$	NaOAc	PhCl	50	ND
27	Ag ₂ CO ₃ (2.0)	NaOAc	cyclohexane	53	ND
28	Ag ₂ CO ₃ (2.0)	NaOAc	<i>n</i> -hexane	NR	
29 ^g	$Ag_{2}CO_{3}(2.0)$	NaOAc	cyclohexane	35	ND
30^h	Ag ₂ CO ₃ (2.0)	NaOAc	cyclohexane	57	ND
31 ^{<i>h</i>}	Ag ₂ O	NaOAc	cyclohexane	39	ND
32 ^{<i>i</i>}	Ag ₂ CO ₃ (2.0)	NaOAc	cyclohexane	43	ND
33 ^{<i>h,j</i>}	Ag ₂ CO ₃ (2.0)	NaOAc	cyclohexane	38	ND
34 ^{<i>k</i>}	Ag ₂ CO ₃ (2.0)	NaOAc	cyclohexane	57	ND
35 ¹	Ag ₂ CO ₃ (2.0)	NaOAc	cyclohexane	39	ND
36 ^m	Ag ₂ CO ₃ (2.0)	NaOAc	cyclohexane	10	ND

37 ^{<i>n</i>,0}	Ag ₂ CO ₃ (2.0)	NaOAc	cyclohexane	10	ND
38 ^h	Cu(OAc) ₂	NaOAc	cyclohexane	NR	
39 ⁿ	MesCOOAg (2.2)	NaOAc	cyclohexane	ND	20
40^{p}	Ag ₂ CO ₃ (2.0)	NaOAc	cyclohexane	56	ND
41^q	Ag ₂ CO ₃ (2.0)	NaOAc	cyclohexane	66	ND
42 ^{<i>n</i>}	Ag ₂ CO ₃ (2.0)	NaOAc (3.0)	cyclohexane	61	ND
43 ⁿ	Ag ₂ CO ₃ (2.0)	NaOAc	cyclohexane	67	ND
44 ^{n,r}	Ag ₂ CO ₃ (2.0)	NaOAc	cyclohexane	70	ND
45 ⁿ	Ag ₂ CO ₃ (2.0)	NaOAc (1.5)	cyclohexane	22	ND
46 ⁿ	Ag ₂ CO ₃ (2.0)	HCOONa	cyclohexane	41	ND
47 ⁿ	Ag ₂ CO ₃ (2.0)	C ₂ H ₅ COONa	cyclohexane	43	ND
48 ⁿ	Ag ₂ CO ₃ (2.0)	CF ₃ COONa	cyclohexane	55	ND
49 ⁿ	Ag ₂ CO ₃ (2.0)	TsONa	cyclohexane	44	ND
50 ^s	Ag ₂ CO ₃ (2.0)	NaOAc	cyclohexane	62	ND
$51^{h,q}$	Ag ₂ CO ₃ (2.0)	$Ba(OAc)_2(0.1)$	cyclohexane	64	ND
52 ^{<i>n</i>,s}	Ag ₂ CO ₃ (2.0)	C ₂ H ₅ COONa	cyclohexane	58	ND

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (0.4 mmol), [RhCp*Cl₂]₂ (4 mol %), AgSbF₆ (16 mol %), base (2.0 equiv) unless otherwise noted, solvent (2.0 mL) under N₂ for 10 h, 80 °C, isolated yield after column chromatography. ^{*b*}[RhCp*(MeCN)₃]₂(SbF₆)₂ (8 mol %) was used instead of [RhCp*Cl₂]₂/AgSbF₆. ^{*c*}PivOH (1.0 equiv), 60 °C. ^{*d*}HOAc (0.2 mmol). ^{*e*}Zn(NTf)₂ 20 mol % ^{*f*}Zn(OAc)₂ 20 mol%. ^{*g*}Fe(OAc)₂ 20 mol %. ^{*h*}AgOAc was used instead of AgSbF₆. ^{*i*}AgPF₆ 16 mol %. ^{*j*}Cp*Rh(OAc)₂. ^{*k*}AgNO₃ 40 mol %. ^{*l*}AgOTf 40 mol %. ^{*m*}AgBF₄ 40 mol %. ^{*n*}AgOAc 40 mol % instead of AgSbF₆, 15 h. ^{*o*}TBAA (0.4 mmol). ^{*p*}silver cyclohexanebutyrate (40 mol %).^{*q*}AgOAc (0.2 mmol), 15 h. ^{*r*}Solvent (3.0 mL). ^{*s*}Ag₂WO₄ (20 mol %).

3 The Synthesis Products

3.1 General Procedure for Synthesis of 3.

2-Phenylindole (1, 0.2 mmol), ketene (2, 0.4 mmol), [RhCp*Cl₂]₂ (4 mol %), AgOAc (0.08 mmol), Ag₂CO₃ (0.4 mmol), NaOAc (0.4 mmol), and cyclohexane (3.0 mL) were charged into a pressure tube. The reaction mixture was stirred at 80 °C for 15 h. After the solvent was removed under reduced pressure, the residue was purified by silica gel chromatography using PE/EA (8:1) to afford product **3**.

3.2 Synthesis of 3aa at a 1 mmol scale

2-Phenylindole (1a, 193 mg, 1 mmol), phenyl ethyl ketene (2a, 292 mg, 2 mmol), $[RhCp*Cl_2]_2$ (4 mol %), AgOAc (0.08 mmol), Ag₂CO₃ (2 mmol), NaOAc (2 mmol), and cyclohexane (15.0 mL) were charged into a pressure tube. The reaction mixture was stirred at 80 °C for 15 h. After the solvent was removed under reduced pressure, the residue was purified by silica gel chromatography using PE/EA (8:1) to afford product **3aa** (229 mg, 68%).

4. Mechanistic Studies on Annulation between 2-Phenylindoles and Ketenes

4.1 H/D Exchange of 2-Phenylindole

2-Phenyl-1*H*-indole (0.2 mmol), $[RhCp*Cl_2]_2$ (4 mol%), AgOAc (0.08 mmol), Ag₂CO₃ (0.4 mmol), NaOAc (0.4 mmol), and cyclohexane/CD₃OD (10:1) were charged into a pressure tube. The reaction mixture was stirred at 80 °C for 15 h. The 2-phenylindole was isolated after chromatography using EA/PE (1:10), and only slight H/D exchange (< 5%) was observed on the basis of ¹H NMR analysis.

2-Phenylindole (0.2 mmol), [RhCp*Cl₂]₂ (4 mol%), AgOAc (0.08 mmol), Ag₂CO₃ (0.4 mmol), NaOAc (0.4 mmol), CD₃COOD (2 mmol), and cyclohexane were charged into a pressure tube. The mixture was

stirred at 80 °C for 15 h. The recovered 2-phenylindole was isolated after chromatography using EA/PE (1:10). Only slight H/D exchange was observed on the basis of ¹H NMR analysis.

4.2 KIE Experiments

Two independent reactions with **1a** or deuterated substrate **1a**-*d*⁵ were performed under the standard conditions. Suspensions of **1a** (0.1 mmol) or **1a**-*d*⁵ (0.1 mmol), $[RhCp*(MeCN)_3]_2(SbF_6)_2$ (8 mol%), ketene **2a** (0.2 mmol), Ag₂CO₃ (0.2 mmol), AgOAc (0.04 mmol), NaOAc (0.2 mmol), and cyclohexane (2 mL) were stirred side-by-side in an oil bath at 80 °C for 40 min under nitrogen. Both reactions were quenched and the two reactions mixtures were rapidly combined, and the volatiles were removed under reduced pressure. The residue was purified by silica gel chromatography. KIE value ($k_{\rm H}/k_{\rm D} = 6.0$) was determined on the basis of ¹H NMR analysis.

5. Crystal Structure of 3aa

Table S3. Crystal data and structure refinement for cd17084.

Identification code	cd17084		
Empirical formula	C24 H19 N O		
Formula weight	337.40		
Temperature	293(2) K		
Wavelength	0.71073 Å		
Crystal system	Orthorhombic		
Space group	Pna21		
Unit cell dimensions	a = 15.9550(15) Å	α= 90°.	
	b = 8.8361(9) Å	β= 90°.	
	c = 25.229(2) Å	$\gamma = 90^{\circ}.$	
Volume	3556.8(6) Å ³		
Z	8		
Density (calculated)	1.260 Mg/m ³		
Absorption coefficient	0.076 mm ⁻¹ S8		

F(000)	1424
Crystal size	0.200 x 0.170 x 0.140 mm ³
Theta range for data collection	2.442 to 25.498°.
Index ranges	-19<=h<=19, -8<=k<=10, -30<=l<=30
Reflections collected	19259
Independent reflections	6605 [R(int) = 0.0373]
Completeness to theta = 25.242°	100.0 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7456 and 0.6554
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	6605 / 3 / 480
Goodness-of-fit on F ²	1.016
Final R indices [I>2sigma(I)]	R1 = 0.0431, wR2 = 0.0989
R indices (all data)	R1 = 0.0622, wR2 = 0.1083
Absolute structure parameter	0.2(10)
Largest diff. peak and hole	0.135 and -0.120 e.Å ⁻³

6. References

1. Kim, D.; Kang, M. S.; Song, K.; Kang, S. O.; Ko, J. Tetrahedron 2008, 64, 10417.

2. Yang, S. D.; Sun, C. L.; Fang, Z.; Li, B. J.; Li, Y. Z.; Shi, Z. J. Angew. Chem. Int. Ed. 2008, 47, 1473.

3. Yu, X.; Park, E. J.; Kondratyuk, T. P.; Pezzuto, J. M.; Sun, D. Org. Biomol. Chem. 2012, 10, 8835.

4. (a) Douglas, J.; Taylor, J. E.; Churchill, G.; Slawin, A. M.; Smith, A. D. J. Org. Chem. 2013, 78,

3925. (b) Lv, H.; Zhang, Y. R.; Huang, X. L.; Ye, S. Adv. Synth. Catal. 2008, 350, 2715.

5. Zhang, G.; Wen, X.; Wang, Y.; Mo, W.; Ding, C. J. Org. Chem. 2011, 76, 4665.

6. Neely, J. M.; Rovis, T. J. Am. Chem. Soc. 2012, 135, 66.

7. Characterization Data

^{3aa H} Purified by column chromatography using ethyl acetate/petroleum ether, Yellow solid, 70% (47.2 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.73 (s, 1H), 8.06 (d, *J* = 7.8 Hz, 1H), 7.63 – 7.56 (m, 2H), 7.43 (d, *J* = 8.0 Hz, 1H), 7.33 – 7.31 (m, 3H), 7.22 – 7.13 (m, 5H), 6.99 – 6.96 (m, 1H), 3.09 (dq, *J* = 14.3, 7.2 Hz, 1H), 2.56 (dq, *J* = 14.8, 7.4 Hz, 1H), 0.66 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 202.0, 142.5, 137.9, 134.6, 132.4, 130.5, 129.2, 128.7, 128.6, 127.6, 127.6, 127.1, 126.9, 123.6, 120.8, 120. 5, 120.4, 117.8, 111.7, 58.5, 32.4, 10.1. HRMS: [M + H]⁺ calculated for C₂₄H₂₀NO⁺: 338.1539, found: 338.1547.

^{4aa H} Purified by column chromatography using ethyl acetate/petroleum ether, Gray solid, 45% (30. 3 mg). ¹H NMR {400 MHz, (CD₃)₂SO)} δ 12.7 (s, 1H), 8.19 (d, *J* = 6.7 Hz, 1H), 8.03 (d, *J* = 8.7 Hz, 1H), 7.58 (d, *J* = 9.8 Hz, 1H), 7.50 – 7.4 (m, 1H), 7.43 – 7.40 (m, 1H), 7.34 – 7.30 (m, 1H), 7.23 – 7.10 (m, 7H), 2.91 – 2.86 (m, 1H), 2.37 – 2.32 (m, 1H), 0.48 (bs, 3H). ¹³C NMR {400 MHz, (CD₃)₂SO)} δ 193.3, 146.1, 145.5, 145.0, 137.7, 129.8, 129.4, 128.3, 127.1, 127.0, 126.4, 125.5, 124.6, 124.1, 122.6, 122.6, 120.9, 112.2, 110.4, 60.2, 31.4, 8.8. HRMS: [M + H]⁺ calculated for C₂₄H₂₀NO⁺: 338.1539, found: 338.1545.

^{3ba H} Purified by column chromatography using ethyl acetate/petroleum ether, Yellow solid, 69% (49.0 mg). ¹H NMR (400 MHz, CD₃CN) δ 10.18 (s, 1H), 7.96 (d, *J* = 7.8 Hz, 1H), 7.82 (d, *J* = 7.6 Hz, 1H), 7.77 – 7.73 (m, 1H), 7.49 (dd, *J* = 8.8, 4.5 Hz, 1H), 7.43 – 7.39 (m, 1H), 7.26 – 7.14 (m, 5H), 6.98 – 6.93 (m, 1H), 6.80 (dd, *J* = 10.0, 2.0 Hz, 1H), 2.94 (dq, *J* = 14.5, 7.2 Hz, 1H), 2.56 – 2.47 (m, 1H), 0.60 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CD₃CN) δ 202.0, 158.4 (d, *J* = 233.3 Hz), 143.8, 136.0, 135.7, 133.5, 133.1, 129.4, 129.4, 129.1, 128.9, 128.1, 128.0, 127.3 (d, *J* = 10.1 Hz), 122.4, 117.6 (d, *J* = 8.1 Hz), 113.9 (d, *J* = 9.8 Hz), 112.2 (d, *J* = 26.4 Hz), 105.3 (d, *J* = 24.2 Hz), 58.6, 31.7, 9.9. HRMS: [M + H]⁺ calculated for C₂₄H₁₉FNO⁺: 356.1445, found: 356.1451.

^{3ca H} Purified by column chromatography using ethyl acetate/petroleum ether, Yellow solid, 52% (43.3 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.76 (s, 1H), 8.06 (d, *J* = 7.8 Hz, 1H), 7.67 – 7.63 (m, 1H), 7.58 (d, *J* = 7.7 Hz, 1H), 7.42 – 7.15 (m, 9H), 3.09 (dq, *J* = 13.7, 6.9 Hz, 1H), 2.49 (dq, *J* = 14.7, 7.4 Hz, 1H), 0.65 (t, *J* = 7.3 Hz, 3H). ¹³C NMR {101 MHz, (CD₃)₂SO} δ 200.4, 142.4, 136.7, 135.2, 132.0, 128.5, 128.2, 128.0, 127.9, 127.5, 127.0, 126.9, 125.3, 124.4, 122.2, 121.4, 115.1, 114.1, 112.1, 57.4, 30.6, 9.7. HRMS: [M + H]⁺ calculated for C₂₄H₁₉BrNO⁺: 416.0645, 416.0638.

^{3da H} Purified by column chromatography using ethyl acetate/petroleum ether, Yellow solid, 67% (49.7 mg). ¹H NMR {400 MHz, (CD₃)₂SO} δ 12.21 (s, 1H), 8.07 (d, *J* = 7.8 Hz, 1H), 7.91 (d, *J* = 7.7 Hz, 1H), 7.85 – 7.81 (m, 1H), 7.53 (d, *J* = 8.6 Hz, 1H), 7.47 – 7.43 (m, 1H), 7.26 – 7.22 (m, 2H), 7.20 – 7.15 (m, 4H), 7.08 (d, *J* = 1.7 Hz, 1H), 2.91 (dq, *J* = 13.9, 7.0 Hz, 1H), 2.51 – 2.44(m, 1H), 0.54 (t, *J* = 7.2 Hz, 3H). ¹³C NMR {101 MHz, (CD₃)₂SO} δ 200.5, 142.5, 136.5, 135.3, 132.2, 132.1, 128.6, 128.2, 128.1, 127.9, 127. 0, 127.0, 126.8, 124.1, 122.8, 122.2, 118.4, 115.3, 113.7, 57.4, 30.6, 9.7. HRMS: [M + H]⁺ calculated for C₂₄H₁₉CINO⁺:372.1150, found: 372.1147.

^{3ea} ^H Purified by column chromatography using ethyl acetate/petroleum ether, Yellow solid, 50% (39.3 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.53 (s, 1H), 8.05 (d, J = 8.5 Hz, 1H), 7.65 – 7.61 (m, 1H), 7.55 (d, J = 7.7 Hz, 1H), 7.39 – 7.25 (m, 5H), 7.23 – 7.13 (m, 4H), 3.15 – 2.92 (m, 1H), 2.60 – 2.51 (m, 1H), 1.23 (s, 9H), 0.69 (t, J = 6.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 202.3, 143.2, 142.7, 136.1, 134.6, 132.6, 13054, 129.1, 128.8, 128.5, 127.7, 127.4, 127.0, 126.8, 121.9, 120.3, 118.0, 116.6, 111.0, 58.5, 34.6, 32.4, 31.8, 10.0. HRMS: [M + H]⁺ calculated for C₂₈H₂₈NO⁺:394.2165, found: 394.2167.

^{3fa} Purified by column chromatography using ethyl acetate/petroleum ether, Yellow solid, 50% (36.5 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.56 (s, 1H), 7.97 (d, *J* = 7.8 Hz, 1H), 7.55 -7.47 (m, 2H), 7.30 - 7.21 (m, 4H), 7.14 - 7.06 (m, 3H), 7.01 - 6.98 (d, J = 8.4 Hz, 1H), 6.93 (s, 1H), 3.01 (dq, J = 14.3, 7.2 Hz, 1H), 2.55 - 2.44 (m, 3H), 1.09 (t, J = 7.6 Hz, 3H), 0.60 (t, J = 7.3 Hz, 3H).¹³C NMR (101 MHz, CDCl₃) δ 202.0, 142.5, 136.5, 136.4, 134.6, 132.5, 130.6, 129.2, 128.7, 128.5, 127.6, 127.4, 127.2, 127.0, 124.2, 120.3, 119.3, 117.4, 111.5, 58.6, 32.3, 29.1, 16.4, 10.1. HRMS: [M + H]⁺ calculated for C₂₆H₂₄NO⁺:366.1852, found: 366.1860.

^{3ga H} Purified by column chromatography using ethyl acetate/petroleum ether, Yellow solid, 54% (42.4 mg). ¹H NMR (400 MHz, CD₃CN) δ 9.96 (s, 1H), 7.94 (dd, *J* = 7.8, 0.8 Hz, 1H), 7.81 – 7.77 (m, 1H), 7.76 – 7.71 (m, 1H), 7.42 – 7.36 (m, 2H), 7.27 – 7.15 (m, 5H), 6.83 (dd, *J* = 8.9, 2.5 Hz, 1H), 6.56 (d, *J* = 2.4 Hz, 1H), 3.62 (s, 3H), 2.93 (dq, *J* = 13.3, 7.2 Hz, 1H), 2.58 (dq, *J* = 13.0, 7.4 Hz, 1H), 0.61 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CD₂Cl₂) δ 201.9, 154.7, 143.2, 135.0, 133.5, 132.7, 131.6, 129.1, 129.0, 128.8, 127.8, 127.8, 127.6, 127.3, 120.8, 117.6, 113.5, 112.7, 102.7, 58.5, 56.0, 31.9, 10.0. HRMS: [M + H]⁺ calculated for C₂₅H₂₂NO₂⁺:394.1645, found: 394.1646.

^{3ha} Th Purified by column chromatography using ethyl acetate/petroleum ether, Yellow solid, 38% (32.0 mg). ¹H NMR (400 MHz, CD₃CN) δ 10.30 (s, 1H), 7.98 (d, *J* = 7.8 Hz, 1H), 7.84 (d, *J* = 7.7 Hz, 1H), 7.79 –7.75 (m, 1H), 7.56 (d, *J* = 8.8 Hz, 1H), 7.45 – 7.41 (m, 1H), 7.25 – 7.17 (m, 5H), 7.10 (d, *J* = 8.8 Hz, 1H), 7.00 (s, 1H), 2.95 (dq, *J* = 14.4, 7.2 Hz, 1H), 2.50 (dq, *J* = 14.8, 7.4 Hz, 1H), 0.60 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CD₃CN) δ 202.0, 143.8, 143.6, 143.5, 137.5, 136.0, 133.9, 132.9, 129.5, 129.4, 129.2, 128.2, 128.0, 127.2, 122.7, 121.6, (q, *J* = 260.3 Hz), 117.9, 117.7, 113.9, 113.0, 58.7, 31.9, 9.9. HRMS: [M + H]⁺ calculated for C₂₅H₁₉F₃NO₂⁺: 422. 1362, found: 422.1363.

^{3ia} ^H Purified by column chromatography using ethyl acetate/petroleum ether, Yellow solid, 60% (44.5 mg). ¹H NMR (400 MHz, CD₃CN) δ 10.19 (s, 1H), 7.95 (d, J = 6.6 Hz, 1H), 7.80 (d, J = 9.5 Hz, 1H), 7.76 – 7.68 (m, 1H), 7.53 (s, 1H), 7.45 – 7.34 (m, 1H), 7.26 – 7.13 (m, 5H), 7.07 (d, J = 9.8 Hz, 1H), 6.89 (d, J = 9.9 Hz, 1H), 3.00 – 2.91 (m, 1H), 2.51 – 2.46 (m, 1H), 0.56 (t, J = 6.6 Hz, 1H) 6.4 Hz, 3H). ¹³C NMR {101 MHz, (CD₃)₂SO} δ 200.5, 142.5, 138.4, 135.2, 132.1, 131.6, 128.4, 128.0, 127.9, 127.8, 127.4, 126.9, 126.9, 124.6, 122.0, 120.9, 120.0, 115.8, 111.6, 57.4, 30.7, 9.6. HRMS: [M + H]⁺ calculated for C₂₄H₁₉ClNO⁺:372.1150, found: 372.1147.

Purified by column chromatography using ethyl acetate/petroleum ether, Yellow solid, 68% (48.2 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.70 (s, 1H), 8.05 (d, *J* = 7.7 Hz, 1H), 7.66 – 7.62 (m, 1H), 7.56 (d, *J* = 7.6 Hz, 1H), 7.35 – 7.08 (m, 8H), 6.77 – 6.72 (m, 1H), 3.12 – 3.04 (m, 1H), 2.54 – 2.45 (m, 1H), 0.66 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CD₃CN) δ 202.1, 161.3 (d, *J* = 237.7 Hz), 144.1, 139.4 (d, *J* = 12.6 Hz), 136.0, 133.4, 132.4 (d, *J* = 3.4 Hz), 129.4, 129. 2, 129.1, 128.6, 128.1, 127.9, 123.9, 122.3, 121.9 (d, *J* = 10.3 Hz), 117.9, 109.3 (d, *J* = 24.7 Hz), 99.0 (d, *J* = 26.1 Hz), 58.7, 32.0, 9.9. HRMS: [M + H]⁺ calculated for C₂₄H₁₉FNO⁺:356.1445, found: 356.1447.

^{3ka H} Purified by column chromatography using ethyl acetate/petroleum ether, Yellow solid, 43% (34.8 mg). ¹H NMR (400 MHz, CD₃CN) δ 10.55 (s, 1H), 7.97 (d, *J* = 7.7 Hz, 1H), 7.87 (d, *J* = 7.4 Hz, 1H), 7.82 – 7.78 (m, 1H), 7.53 (s, 1H), 7.48 – 7.44 (m, 1H), 7.25 – 7.18 (m, 5H), 7.01 (bs, 1H), 3.06 (dq, *J* = 14.0, 7.3 Hz, 1H), 2.87 (dq, *J* = 14.0, 7.1 Hz, 1H), 0.51 (t, *J* = 7.1 Hz, 1H). ¹³C NMR {101 MHz, (CD₃)₂SO} δ 199.8, 143.5, 140.1, 135.5, 133.1, 131.7, 128.6, 128.2, 128.0, 127.3, 127.3, 127.2, 126.6, 125.1, 122.5, 122.3, 121.0, 115.4, 110.7, 57.6, 33.0, 9.2. HRMS: [M + H]⁺ calculated for C₂₄H₁₈Cl₂NO⁺:406.0760, found: 406.0760.

^{31a} ^H Purified by column chromatography using ethyl acetate/petroleum ether, Yellow solid, 45% (32.9 mg). ¹H NMR (400 MHz, CD₃CN) δ 9.99 (s, 1H), 7.91 (d, *J* = 7.7 Hz, 1H), 7.82 (d, *J* = 7.7 Hz, 1H), 7.75 – 7.71 (m, 1H), 7.34 – 7.17 (m, 7H), 6.56 (s, 1H), 3.11 – 3.02 (m, 1H), 2.45 – 2.42 (m, 1H), 2.34 (s, 3H), 1.78 (s, 3H), 0.49 (t, *J* = 7.0 Hz, 3H).¹³C NMR (101 MHz, CD₃CN) δ 202.1, 145.3, 140.8, 136.1, 134.3, 134.1, 131.1, 131.0, 129.3, 128.9, 128.6, 128.1, 127.8, 125.3, 124. 5, 122.3, 110.4, 59.3, 34.5, 22.4, 21.3, 9.5. (two signals are missing due to overlap). HRMS: [M + H]⁺ calculated for C₂₆H₂₄NO⁺: 366.1852, found: 366.1854.

^{3ma H} Purified by column chromatography using ethyl acetate/petroleum ether, Yellow solid, 54% (37.9 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.60 (s, 1H), 7.87 (s, 1H), 7.50 – 7.44 (m, 3H), 7.30 (d, *J* = 7.8 Hz, 2H), 7.22 – 7.13 (m, 5H), 7.00 – 6.96 (m, 1H), 3.08 (dq, *J* = 14.3, 7.1 Hz, 1H), 2.54 (dq, *J* = 14.7, 7.3 Hz, 1H), 2.38 (s, 3H), 0.65 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 202.0, 142.6, 137.7, 135.4, 130.8, 129.8, 129.5, 128.7, 128.5, 127.6, 127.1, 127.0, 123.3, 120.6, 120.4, 120.4, 120.3, 117.0, 111.6, 58.5, 32.2, 21.4, 10.0. HRMS: [M + H]⁺ calculated for C₂₅H₂₂NO⁺:352.1696, found: 352.1699.

^{3na H} Purified by column chromatography using ethyl acetate/petroleum ether, Yellow solid, 46% (36.2 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.62 (s, 1H), 8.10 (s, 1H), 7.69 – 7.66 (m, 1H), 7.53 (d, *J* = 8.1 Hz, 1H), 7.44 (d, *J* = 8.1 Hz, 1H), 7.34 – 7.32 (m, 2H), 7.22 – 7.15 (m, 5H), 6.99 – 6.69 (t = 1H), 3.15 – 3.06 (m, 1H), 2.55 (dq, *J* = 14.8, 7.4 Hz, 1H), 1.32 (s, 9H), 0.66 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 202.2, 151.0, 142.7, 137.8, 132.0, 130.8, 129.8, 128.5, 128.4, 127.7, 127.0, 127.0, 125.9, 123.3, 120.7, 120.4, 120.3, 117.2, 111.6, 58.5, 35.1, 32.5, 31.2, 10.1. HRMS: [M + H]+ calculated for C₂₈H₂₈NO⁺:394.2167, found: 394.2168.

^{30a} Purified by column chromatography using ethyl acetate/petroleum ether, Yellow solid, 60% (48.6 mg). ¹H NMR (400 MHz, (CD₃)₂SO) δ 10.78 (s, 1H), 8.79 (s, 1H), 8.60 – 8.54 (m, 1H), 8.13 (d, *J* = 8.2 Hz, 1H), 7.95 – 7.72 (m, 7H), 7.54 – 7.50 (m, 1H), 3.58 (dq, *J* = 14.3, 7.2 Hz, 1H), 3.17 (dq, *J* = 14.7, 7.4 Hz, 1H), 1.18 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CD₃CN) δ 201.5, 143.7, 139.7, 136.8, 132.22 (q, *J* = 3.7 Hz), 130.4, 129.9, 129.5, 129.4 (d, *J* = 32.9 Hz), 129.3, 128.2, 128.1, 126.9, 126.2 (q, 3.9 Hz), 125.1, 125.0 (q, *J* = 271.3 Hz) 123.4, 121.2 (d, *J* = 2.6 Hz), 119.9, 113.2, 59.2, 32.2, 10.0. HRMS: [M + H]+ calculated for C₂₅H₁₉ F₃NO⁺:406.1413, found: 406.1417.

^{3pa H} Purified by column chromatography using ethyl acetate/petroleum ether, Yellow solid, 35% (25.7 mg). ¹H NMR (400 MHz, CD₃CN) δ 9.99 (s, 1H), 7.77 (d, *J* = 8.6 Hz, 1H), 7.53 – 7.45 (m, 2H), 7.33 (dd, *J* = 8.6, 2.8 Hz, 1H), 7.25 – 7.11 (m, 7H), 6.92 – 6.88 (m, 1H), 3.85 (s, 3H), 2.97 (dq, *J* = 14.4, 7.2 Hz, 1H), 2.64 – 2.46 (m, 1H), 0.58 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 201.9, 159.3, 142.6, 137.7, 130.8, 130.2, 128.6, 127.6, 127.1, 127.1, 125.8, 123.0, 122.5, 122.0, 120.4, 120.4, 115.9, 111.7, 111.5, 58.5, 55.7, 32.4, 10.0. HRMS: [M + H]⁺ calculated for C₂₅H₂₂NO₂⁺:368.1645, found: 368.1648.

^{3qa H} Purified by column chromatography using ethyl acetate/petroleum ether, Yellow solid, 61% (43.3 mg). ¹H NMR {400 MHz, (CD₃)₂SO} δ 10.63 (s, 1H), 8.43 (dd, *J* = 8.6, 5.0 Hz, 1H), 8.24 (dd, *J* = 9.3, 2.7 Hz, 1H), 8.11 – 8.06 (m, 2H), 7.84 – 7.71 (m, 7H), 7.52 – 7.48 (m 1H), 3.56 (dq, *J* = 14.4, 7.2 Hz, 1H), 3.15 (dq, *J* = 14.5, 7.4 Hz, 1H), 1.17 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CD₃CN). δ 201.6, 162.8 (d, *J* = 246.5 Hz), 143.8, 139.1, 131.2, 131.2, 131.0, 130.3 (d, *J* = 2.9 Hz), 129.3, 128.1, 128.0, 127.0, 124.8 (d, *J* = 7.5 Hz), 123.1, 122.9 (d, *J* = 23.1 Hz), 120.8 (d, *J* = 18.2 Hz), 117.0, 115.21 (d, *J* = 23.0 Hz), 112.9, 58.9, 32.1, 9.9. HRMS: [M + H]⁺ calculated for C₂₄H₁₉FNO⁺:356.1445, found: 356.1446.

^{3ra H} Purified by column chromatography using ethyl acetate/petroleum ether, Yellow solid, 63% (46.7 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.70 (s, 1H), 8.01 (s, 1H), 7.55 – 6.99 (m, 11H), 3.07 (bs, 1H), 2.56 (bs, 1H), 0.67 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 201.0, 142.1, 138.0, 134.5, 133.5, 130.8, 129.9, 129.7, 129.1, 128.7, 127.6, 127.3, 126.8, 123.9, 121.9, 120.8, 120.7, 118.0, 111.8, 58.7, 32.3, 10.0. HRMS: [M + H]⁺ calculated for C₂₄H₁₉Cl NO⁺:372.1150, found: 372.1147.

^{3sa H} / Purified by column chromatography using ethyl acetate/petroleum ether, Yellow solid, 44% (30.9 mg). ¹H NMR (400 MHz, CD₃CN) δ 10.18 (s, 1H), 7.96 (d, *J* = 7.8 Hz, 1H), 7.82 (d, J = 7.6 Hz, 1H), 7.77 - 7.73 (m, 1H), 7.49 (dd, J = 8.8, 4.5 Hz, 1H), 7.41 (t, J = 7.5 Hz, 1H), 7.23 - 7.17 (m, 5H), 6.98 - 6.93 (m, 1H), 6.80 (dd, J = 10.0, 2.0 Hz, 1H), 2.94 (dq, J = 14.3, 7.2 Hz, 1H), 2.51 (m, 2.47 – 2.56, 1H), 2.2 (s, 3H), 0.60 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 202.0, 142.7, 138.0, 137.5, 131.6, 131.2, 131.2, 130.1, 128.5, 127.9, 127.6, 127.3, 127.0, 125.9, 123.4, 120.9, 120.5, 118.0, 111.7, 58.0, 32.4, 23.0, 10.1. HRMS: [M + H]⁺ calculated for C₂₅H₂₂NO⁺:352.1696, found: 352.1692.

Purified by column chromatography using ethyl acetate/petroleum ether, Yellow solid, 63% (46.0 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.61 (s, 1H), 7.83 (s, 1H), 7.43 (d, J = 8.5Hz, 1H), 7.38 (s, 1H), 7.30 (d, J = 7.1 Hz, 2H), 7.22 – 7.10 (m, 5H), 6.98 – 6.94 (m, 1H), 3.07 (dq, J = 14.3, 7.1 Hz, 1H), 2.53 (dq, J = 14.8, 7.4 Hz, 1H), 2.38 (s, 3H), 2.29 (s, 3H), 0.64 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 201.9, 144.4, 142.8, 137.8, 136.6, 130.8, 130.3, 130.0, 128.5, 127.6, 127.0, 126.9, 126.8, 123.2, 121.7, 120.6, 120.3, 117.3, 111.6, 58.3, 32.2, 20.6, 19.8, 10.0. HRMS: [M + H]⁺ calculated for C₂₆H₂₄NO⁺:366.1852, found: 366.1854.

Purified by column chromatography using ethyl acetate/petroleum ether, Yellow solid, 82% (66.4 mg). ¹H NMR (400 MHz, CD₃CN) δ 10.01 (s, 1H), 7.99 (d, J = 8.7 Hz, 2H), 7.51 (d, J = 8.2 Hz, 1H), 7.29 - 7.04 (m, 7H), 6.94 - 6.91 (m, 1H), 3.00 - 2.91 (m, 1H), 2.60 - 2.52 (m, 1H), 2.

1H), 0.58 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CD₃CN) δ 200.7, 143.6, 139.6, 139.4, 133.4, 131.7, 131.1, 129.7, 129.5, 128.9, 128.2, 128.1, 126.8, 124.9, 124.7, 121.2, 121.1, 119.4, 113.1, 59.1, 32.2, 9.9. HRMS: $[M + H]^+$ calculated for $C_{24}H_{18}Cl_2NO^+$: 406.0760, found: 406.0758.

Purified by column chromatography using ethyl acetate/petroleum ether, Yellow solid, 54% (42.3 mg). ¹H NMR (400 MHz, CD₃CN) δ 10.01 (s, 1H), 7.99 (d, J = 8.7 Hz, 2H), 7.51 (d, J = 8.2 Hz, 1H), 7.22 - 7.13 (m, 7H), 6.95 - 6.91 (t, J = 7.5 Hz, 1H), 3.00 - 2.91 (m, 1H), 2.60-2.52 (m, 1H), 0.58 (m, 3H). ¹³C NMR (101 MHz, CD₃CN) δ 200.6, 155.7 (dd, J = 255.5, 13.9 Hz), 150.4 (dd, *J* = 248.8, 13.6 Hz), 143.7, 139.3, 132.0 (dd, *J* = 8.5, 3.3 Hz), 130.0, 129.5, 128.2, 128.1, 126.9, 126.7 (dd, *J* = 4.0, 3.5 Hz), 124.7, 121.1, 121.1, 118.6 (dd, *J* = 15.0, 1.9 Hz), 113.8, 111.7, 111.5, 58.8, 32.3, 9.9. HRMS: $[M + H]^+$ calculated for $C_{24}H_{18}F_2NO^+$: 374.1351, found: 374.1352.

Purified by column chromatography using ethyl acetate/petroleum ether, Yellow solid, 50% (38.6 mg). ¹H NMR (400 MHz, CD₃CN) δ 10.20 (s, 1H), 8.57 (s, 1H), 8.24 (s, 1H), 8.05 - 7.92 (m, 2H), 7.64 (t, J = 7.5 Hz, 1H), 7.56 (d, J = 8.1 Hz, 1H), 7.50 (d, J = 7.3 Hz, 1H), 7.30 (d, J = 7.2 Hz, 2H), 7.19 (dd, J = 15.8, 7.4 Hz, 5H), 6.93 (t, J = 7.4 Hz, 1H), 3.04 (dq, J = 14.0, 7.0 Hz, 1H), 2.66 - 2.51 (m, 1H), 0.64 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CD₃CN) δ 201.8, 144.5, 139.4, 137.3, 133.0, 132.3, 131.3, 131.1, 130.4, 129.3, 129.0, 128.7, 128.2, 128.2, 127.8, 127.6, 127.2, 124.2, 120.9, 120.8, 120.5, 117.1, 112.8, 58.7, 31.6, 10.1. HRMS: [M + H]⁺ calculated for C₂₈H₂₂NO⁺: 388.1696, found: 388.1704.

Purified by column chromatography using ethyl acetate/petroleum ether, Yellow solid, 50% (35.3 mg). ¹H NMR (400 MHz, CDCl₃) δ 9.01 (s, 1H), 8.06 (d, J = 7.9 Hz, 1H), 7.57 -7.53 (m, 2H), 7.39 (d, J = 8.2 Hz, 1H), 7.31 - 7.26 (m, 1H), 7.24 - 7.16 (m, 4H), 6.99 - 6.95 (m, 3H), 3.08 (dq, J = 14.3, 7.2 Hz, 1H), 2.55 (dq, J = 14.8, 7.4 Hz, 1H), 2.19 (s, 3H), 0.67 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 202.5, 139.5, 138.0, 136.7, 134.6, 132.6, 130.5, 129.3, 129.1, 128.7, 127.5, 127.4, 126.9, 123.5, 120.7, 120.6, 120.3, 117.8, 111.8, 58.2, 32.3, 21.0, 10.0. HRMS: [M + H]⁺ calculated for C₂₅H₂₂NO⁺: 352.1696, found: 352.1701.

^{3ac H} Purified by column chromatography using ethyl acetate/petroleum ether, Yellow solid, 44% (32.5 mg). ¹H NMR (400 MHz, CD₃CN) δ 10.13 (s, 1H), 7.97 (d, J = 7.5 Hz, 1H), 7.84 – 7.82 (d, J = 7.6 Hz, 1H), 7.78 – 7.74 m, 1H), 7.53 (d, J = 8.2 Hz, 1H), 7.42 – 7.38 (m, 1H), 7.25 – 7.12 (m, 6H), 6.96 – 6.92 (m, 1H), 3.04 – 2.85 (m, 1H), 2.58 – 2.49 (td, J = 14.1, 8.0 Hz, 1H), 0.57 (t, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CD₃CN) δ 201.8, 146.6, 139.2, 136.2, 134.7, 134.5, 133.5, 131.8, 130.9, 129.2, 129.1, 128.7, 128.2, 127.9, 126.9, 124.3, 122.5, 121.0, 120.6, 116.8, 113.0, 58.6, 32.3, 9.9. HRMS: [M + H]⁺ calculated for C₂₄H₁₉CINO⁺:372.1150, found: 372.1147.

^{3ad H} Purified by column chromatography using ethyl acetate/petroleum ether, Yellow solid, 38% (26.5 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.69 (s, 1H), 8.20 (d, *J* = 7.7 Hz, 1H), 7.94 (d, *J* = 7.8 Hz, 1H), 7.69 – 7.66 (m, 1H), 7.61 (d, *J* = 7.5 Hz, 1H), 7.42 – 7.35 (m, 3H), 7.20 – 7.16 (m, 1H), 7.20 – 7.10 (m, 1H), 6.98 (d, *J* = 7.2 Hz, 1H), 6.85 – 6.79 (m, 2H), 2.58 (qd, *J* = 12.4, 7.2 Hz, 2H), 1.60 (s, 3H), 0.67 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CD₃CN) δ 203.6, 144.2, 139.0, 137.9, 135.7, 133.4, 132.3, 131.1, 130.9, 128.5, 128.4, 128.2, 127.9, 126.5, 126.5, 124.0, 122.6, 120.4, 120.0, 117.9, 112.7, 57.7, 35.1, 20.2, 8.8. HRMS: [M + H]⁺ calculated for C₂₅H₂₂NO⁺:352.1696, found: 352.1697.

^{3ae} Purified by column chromatography using ethyl acetate/petroleum ether, Yellow solid, 61% (47.1 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.88 (s, 1H), 8.07 (d, *J* = 7.1 Hz, 1H), 7.62 – 7.57 (m, 2H), 7.41 (d, *J* = 8.2 Hz, 1H), 7.34 – 7.30 (m, 1H), 7.27 – 7.14 (m, 6H), 7.00 – 6.97 (m, 1H), 2.98 – 2.91 (m, 1H), 2.51 – 2.44 (m,1H), 1.03 – 0.98 (m, 2H), 0.76 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 201.9, 141.2, 137.9, 134.9, 133.0, 132.4, 130.2, 129.2, 129.1, 128.7, 127.7, 126.7, 123.7, 120.6, 120.5, 117.6, 111.8, 57.4, 42.0, 18.8, 14.6. (one signal is missing due to overlap). HRMS: [M + H]⁺ calculated for C₂₅H₂₁ClNO⁺:386.1306, found: 386.1304.

8. NMR Spectra of Coupled Products

¹H and ¹³C NMR Spectra of compound **3aa**

¹H and ¹³C NMR Spectra of compound 4aa

¹H and ¹³C NMR Spectra of compound **3ba**

$^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR Spectra of compound 3ca

4	<u>ო</u> თ		9861148 0000011	010
758	066	175222595525 1752225952525525525555555555555555555555	$\begin{array}{c} 1137\\ 11152\\ 551137\\ 4492\\ 4412$ 4412\\ 4412\\ 4412\\ 4412\\ 4412	671 653 634
ø	യ്യ്	· · · · · · · · · · · · · · · · · · ·	નંનંનંનંનં ગંગંગંગંગંગં	000
	\sim			\mathbf{V}

¹H and ¹³C NMR Spectra of compound **3da**

¹H and ¹³C NMR Spectra of compound **3ea**

¹H and ¹³C NMR Spectra of compound **3fa**

¹H and ¹³C NMR Spectra of compound **3ga**

S26

¹H and ¹³C NMR Spectra of compound **3ha**

¹H and ¹³C NMR Spectra of compound **3ia**

¹H and ¹³C NMR Spectra of compound **3ja**

¹H and ¹³C NMR Spectra of compound **3ka**

¹H and ¹³C NMR Spectra of compound **3la**

¹H and ¹³C NMR Spectra of compound **3ma**

¹H and ¹³C NMR Spectra of compound **3na**

¹H and ¹³C NMR Spectra of compound **30a**

¹H and ¹³C NMR Spectra of compound **3pa**

¹H and ¹³C NMR Spectra of compound **3qa**

¹H and ¹³C NMR Spectra of compound **3ra**

¹H and ¹³C NMR Spectra of compound **3sa**

¹H and ¹³C NMR Spectra of compound **3ta**

¹H and ¹³C NMR Spectra of compound **3ua**

¹H and ¹³C NMR Spectra of compound **3va**

¹H and ¹³C NMR Spectra of compound **3wa**

¹H and ¹³C NMR Spectra of compound **3xa**

¹H and ¹³C NMR Spectra of compound **3ab**

$^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR Spectra of compound 3ac

¹H and ¹³C NMR Spectra of compound **3ad**

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR Spectra of compound 3ae

